Homework 4 COSE212, Fall 2017

Hakjoo Oh

Due: 11/26, 24:00

Problem 1 Consider the language:

```
type exp =
    | CONST of int
    | VAR of var
    | ADD of exp * exp
    | SUB of exp * exp
    | MUL of exp * exp
    | DIV of exp * exp
    | READ
    | ISZERO of exp
    | IF of exp * exp * exp
    | LET of var * exp * exp
    | LETREC of var * var * exp * exp
    | PROC of var * exp
    | CALL of exp * exp
and var = string
```

Types for the language are defined as follows:

```
type typ = TyInt | TyBool | TyFun of typ * typ | TyVar of tyvar
and tyvar = string
```

Implement the following type-inference function:

```
typeof : exp -> typ
```

which takes a program and returns its type if the program is well-typed. When the program is ill-typed, typeof should raise an exception TypeError.

Examples:

 $\bullet\,$ The program

```
PROC ("f",
PROC ("x", SUB (CALL (VAR "f", CONST 3),
CALL (VAR "f", VAR "x"))))
```

has type TyFun (TyFun (TyInt, TyInt), TyFun (TyInt, TyInt)).

• The program

```
PROC ("f", CALL (VAR "f", CONST 11))
```

has type TyFun (TyFun (TyInt, TyVar "t"), TyVar "t"), where t can be any type variable.

 \bullet The program

```
LET ("x", CONST 1,

IF (VAR "x", SUB (VAR "x", CONST 1), CONST 0))
```

is ill-typed, so typeof should raise an exception TypeError.

As discussed in class, typeof is defined with two functions: one for generating type equations and the other for solving the equations. Complete the implementation of these two functions:

Modules for type environments (TEnv) and substitutions (Subst), as well as the operations of applying substitutions to types (Subst.apply) and extending substitutions (Subst.extend), are provided.