
Homework 2

COSE212, Fall 2017

Hakjoo Oh

Due: 10/31, 24:00

Academic Integrity / Assignment Policy

• All assignments must be your own work.

• Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

– Discussion must be limited to general discussion and must not involve
details of how to write code.

– You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

– Do not allow other students to copy your code.

– Do not post your code on the public web.

• Violating above rules gets you 0 points for the entire HW score.

Problem 1 (10pts) Binary trees can be defined as follows:

type btree = Empty | Node of int * btree * btree

For example, the following t1 and t2

let t1 = Node(1,Empty,Empty)

let t2 = Node(1,Node(2,Node(3,Empty,Empty),Empty),Node(4,Empty,Empty))

are binary trees.
Write a function

mirror: btree -> btree

that exchanges the left and right subtrees all the ways down. For example,

mirror t1 = Node (1, Empty, Empty)

mirror t2 = Node(1,Node(4,Empty,Empty),Node(2,Empty,Node(3,Empty,Empty)))
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Problem 2 (10pts) Natural numbers can be defined as follows:

type nat = ZERO | SUCC of nat

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write
three functions that add, multiply, exponentiate natural numbers:

natadd : nat -> nat -> nat

natmul : nat -> nat -> nat

natexp : nat -> nat -> nat

For example,

# let two = SUCC (SUCC ZERO);;

val two : nat = SUCC (SUCC ZERO)

# let three = SUCC (SUCC (SUCC ZERO));;

val three : nat = SUCC (SUCC (SUCC ZERO))

# natadd two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))

# natmul two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))

# natexp two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))))

Problem 3 (20pts) Consider the formulas of propositional logic:

F → true
| false
| P variables
| ¬F negation (“not”)
| F1 ∧ F2 conjunction (“and”)
| F1 ∨ F2 disjunction (“or”)
| F1 → F2 implication (“implies”)
| F1 ↔ F2 iff (“if and only if”)

which translates to the following type definition in OCaml:

type formula =

True

| False

| Var of string

| Neg of formula

| And of formula * formula

| Or of formula * formula

| Imply of formula * formula

| Iff of formula * formula

We say a formula F is satisfiable iff there exists a variable assignment that
makes the formula true. For example, the formula P ∧¬Q is satisfiable because
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it evaluates to true when P is true and Q is false. The formula P ∧ ¬P is not
satisfiable since it always evaluates to false.

Write a function
sat: formula -> bool

that determines the satisfiability of a given formula. For example,

sat (And (Var "P", Neg (Var "Q")))

returns true.

Problem 4 (20pts) Write a function

diff : aexp * string -> aexp

that differentiates the given algebraic expression with respect to the variable
given as the second argument. The algebraic expression aexp is defined as fol-
lows:

type aexp =

| Const of int

| Var of string

| Power of string * int

| Times of aexp list

| Sum of aexp list

For example, x2 + 2x + 1 is represented by

Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]

and differentiating it (w.r.t. “x”) gives 2x + 2, which can be represented by

Sum [Times [Const 2; Var "x"]; Const 2]

Note that the representation of 2x + 2 in aexp is not unique. For instance, the
following also represents 2x + 2:

Sum

[Times [Const 2; Power ("x", 1)];

Sum

[Times [Const 0; Var "x"];

Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]]];

Const 0]

Problem 5 (10pts) Consider the following expressions:

type exp = X

| INT of int

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| SIGMA of exp * exp * exp

3



Implement a calculator for the expressions:

calculator : exp -> int

For instance,
10∑
x=1

(x ∗ x− 1)

is represented by

SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))

and evaluating it should give 375.

Problem 6 (10pts) A binary mobile consists of two branches, a left branch
and a right branch. Each branch is a rod of a certain length, from which hangs
either a weight or another binary mobile. In OCaml datatype, a binary mobile
can be defined as follows:

type mobile = branch * branch (* left and rigth branches *)

and branch = SimpleBranch of length * weight

| CompoundBranch of length * mobile

and length = int

and weight = int

A branch is either a simple branch, which is constructed from a length together
with a weight, or a compound branch, which is constructed from a length to-
gether with another mobile. For instance, the mobile

is represented by the following:

(CompoundBranch (3,

(CompoundBranch (2, (SimpleBranch (1, 1), SimpleBranch (1, 1))),

SimpleBranch (1, 4))),

SimpleBranch (6, 3))

Define the function

balanced : mobile -> bool

that tests whether a binary mobile is balanced. A mobile is said to be balanced if
the torque applied by its top-left branch is equal to that applied by its top-right
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branch (that is, if the length of the left rod multiplied by the weight hanging
from that rod is equal to the corresponding product for the right side) and if
each of the submobiles hanging off its branches is balanced. For example, the
example mobile above is balanced.

Problem 7 (20pts) Binary numerals can be represented by lists of 0 and 1:

type digit = ZERO | ONE

type bin = digit list

For example, the binary representations of 11 and 30 are

[ONE;ZERO;ONE;ONE]

and
[ONE;ONE;ONE;ONE;ZERO],

respectively. Write a function

bmul: bin -> bin -> bin

that computes the binary product. For example,

bmul [ONE;ZERO;ONE;ONE] [ONE;ONE;ONE;ONE;ZERO]

evaluates to [ONE;ZERO;ONE;ZERO;ZERO;ONE;ZERO;ONE;ZERO].
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