Homework 1
COSE212, Fall 2017

Hakjoo Oh
Due: 10/15, 24:00

Academic Integrity / Assignment Policy

o All assignments must be your own work.

e Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

— Discussion must be limited to general discussion and must not involve
details of how to write code.

You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

Do not allow other students to copy your code.

— Do not post your code on the public web.

e Violating above rules gets you 0 points for the entire HW score.

Problem 1 (10pts) Consider the task of computing the exponential of a given
number. We would like to write a function that takes as arguments a base b
and a positive integer exponent n to compute b". Read the remaining prob-
lem description carefully and devise an algorithm that has time complexity of
O(logn).
One simple way to implement the function is via the following recursive

definition:

o= 1

o= b bn—l

which translates into the OCaml code:

let rec expt bn =
if n = 0 then 1
else b * (expt b (n-1))

However, this algorithm is slow; it takes ©(n) steps.



We can improve the algorithm by using successive squaring. For instance,
rather than computing b® as

b (b-(b-(b-(b-(b-(b-0))))))

we can compute it using three multiplications as follows:

o= b-b
o= b2
o= bt

This method works only for exponents that are powers of 2. We can generalize
the idea via the following recursive rules:

b= (b*/?)? if nis even
b b-b""1 if nis odd

Use the rules to write a function fastexpt that computes exponentials in
O(logn) steps:

fastexpt: int -> int -> int
Problem 2 (10pts) Write a function
smallest_divisor: int -> int

that finds the smallest integral divisor (greater than 1) of a given number n.
For example,

smallest_divisor 15 = 3

smallest_divisor 121 =11

smallest_divisor 141 = 3

smallest_divisor 199 = 199

Ensure that your algorithm runs in ©(y/n) steps.
Problem 3 (10pts) Define the function iter:
iter : int * (int -> int) -> (int -> int)

such that
iter(n,f) = fo---of.
| S —
n

When n = 0, iter(n, f) is defined to be the identity function. When n > 0,
iter(n, f) is the function that applies f repeatedly n times. For instance,

iter(n, fun x -> 2+x) 0

evaluates to 2 x n.



Problem 4 (10pts) Write a higher-order function
product : (int -> int) -> int -> int -> int

such that product f a b computes

b
Hf(i)-

For instance,
product (fun x -> x) 1 5

evaulates to 120. In general, we can use product to define the factorial function:
fact n = product (fun x -> x) 1 n
Problem 5 (10pts) Use product to define a function
dfact : int -> int

that computes double-factorials. Given a non-negative integer n, its double-
factorial, denoted n!!, is the product of all the integers of the same parity as n
from 1 to n. That is, when n is even

n/2
=@k =n-(n-2)-(n—4)---4-2
k=1

and when n is odd,

(n+1)/2
= ] @-1)=n-(n-2)-(n—-4)--3-1
k=1

For example, 7! =1 x 3 x5 x 7=105 and 6!! =2 x4 %6 = 48.
Problem 6 (10pts) Write a function drop:
drop : ’a list -> int -> ’a list

that takes a list [ and an integer n to take all but the first n elements of [. For
example,

drop [1;2;3;4;5] 2 = [3; 4; 5]

drop [1;2] 3 = []

drop ["C"; "Java"; "OCaml"] 2 = ["OCaml"]

Problem 7 (10pts) Write a function
unzip: (a * ’b) list -> ’a list * ’b list
that converts a list of pairs to a pair of lists. For example,

unzip [(1,"one");(2,"two"); (3,"three")] = ([1;2;3],["one";"two";"three"])



Problem 8 (30pts) Consider the problem of counting the number of different
ways of making coin-changes of a given amount of money. For example, when
three types of coins (1, 5, 10 wons) are available, there are four different ways
of making changes of 12 won:

12 won = 10 won * 1 + 1 won * 2
12 won = 5 won * 2 + 1 won * 2
12 won =5 won *1 + 1 won * 7
12 won = 1 won * 12

Write a function
change: int list -> int -> int

that takes a list of the denominations of the coins and an amount of money to
change, and returns the number of ways to make changes. For example,

change [1;5;10] 12 = 4
change [1;5;10;25;50] 100 = 292

Note that special cases are defined as follows:

e When the amount is 0, we count that as 1 way to make change: e.g.,

change [1;5;10] 0 = 1

e When the amount is less than 0, we count that as 0 ways to make change:

e.g.,
change [1;5;10] -5 = 0

e When the number of coin kinds is 0, we count that as 0 ways to make
change: e.g.,
change [] 10 =0



