
Homework 1

COSE212, Fall 2017

Hakjoo Oh

Due: 10/15, 24:00

Academic Integrity / Assignment Policy

• All assignments must be your own work.

• Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

– Discussion must be limited to general discussion and must not involve
details of how to write code.

– You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

– Do not allow other students to copy your code.

– Do not post your code on the public web.

• Violating above rules gets you 0 points for the entire HW score.

Problem 1 (10pts) Consider the task of computing the exponential of a given
number. We would like to write a function that takes as arguments a base b
and a positive integer exponent n to compute bn. Read the remaining prob-
lem description carefully and devise an algorithm that has time complexity of
Θ(log n).

One simple way to implement the function is via the following recursive
definition:

b0 = 1
bn = b · bn−1

which translates into the OCaml code:

let rec expt b n =

if n = 0 then 1

else b * (expt b (n-1))

However, this algorithm is slow; it takes Θ(n) steps.

1



We can improve the algorithm by using successive squaring. For instance,
rather than computing b8 as

b · (b · (b · (b · (b · (b · (b · b))))))

we can compute it using three multiplications as follows:

b2 = b · b
b4 = b2 · b2
b8 = b4 · b4

This method works only for exponents that are powers of 2. We can generalize
the idea via the following recursive rules:

bn = (bn/2)2 if n is even
bn = b · bn−1 if n is odd

Use the rules to write a function fastexpt that computes exponentials in
Θ(log n) steps:

fastexpt: int -> int -> int

Problem 2 (10pts) Write a function

smallest divisor: int -> int

that finds the smallest integral divisor (greater than 1) of a given number n.
For example,

smallest divisor 15 = 3

smallest divisor 121 =11

smallest divisor 141 = 3

smallest divisor 199 = 199

Ensure that your algorithm runs in Θ(
√
n) steps.

Problem 3 (10pts) Define the function iter:

iter : int * (int -> int) -> (int -> int)

such that
iter(n, f) = f ◦ · · · ◦ f︸ ︷︷ ︸

n

.

When n = 0, iter(n, f) is defined to be the identity function. When n > 0,
iter(n, f) is the function that applies f repeatedly n times. For instance,

iter(n, fun x -> 2+x) 0

evaluates to 2× n.

2



Problem 4 (10pts) Write a higher-order function

product : (int -> int) -> int -> int -> int

such that product f a b computes

b∏
i=a

f(i).

For instance,
product (fun x -> x) 1 5

evaulates to 120. In general, we can use product to define the factorial function:

fact n = product (fun x -> x) 1 n

Problem 5 (10pts) Use product to define a function

dfact : int -> int

that computes double-factorials. Given a non-negative integer n, its double-
factorial, denoted n!!, is the product of all the integers of the same parity as n
from 1 to n. That is, when n is even

n!! =

n/2∏
k=1

(2k) = n · (n− 2) · (n− 4) · · · 4 · 2

and when n is odd,

n!! =

(n+1)/2∏
k=1

(2k − 1) = n · (n− 2) · (n− 4) · · · 3 · 1

For example, 7!! = 1× 3× 5× 7 = 105 and 6!! = 2 ∗ 4 ∗ 6 = 48.

Problem 6 (10pts) Write a function drop:

drop : ’a list -> int -> ’a list

that takes a list l and an integer n to take all but the first n elements of l. For
example,

drop [1;2;3;4;5] 2 = [3; 4; 5]

drop [1;2] 3 = []

drop ["C"; "Java"; "OCaml"] 2 = ["OCaml"]

Problem 7 (10pts) Write a function

unzip: (’a * ’b) list -> ’a list * ’b list

that converts a list of pairs to a pair of lists. For example,

unzip [(1,"one");(2,"two");(3,"three")] = ([1;2;3],["one";"two";"three"])

3



Problem 8 (30pts) Consider the problem of counting the number of different
ways of making coin-changes of a given amount of money. For example, when
three types of coins (1, 5, 10 wons) are available, there are four different ways
of making changes of 12 won:

12 won = 10 won * 1 + 1 won * 2
12 won = 5 won * 2 + 1 won * 2
12 won = 5 won * 1 + 1 won * 7
12 won = 1 won * 12

Write a function
change: int list -> int -> int

that takes a list of the denominations of the coins and an amount of money to
change, and returns the number of ways to make changes. For example,

change [1;5;10] 12 = 4

change [1;5;10;25;50] 100 = 292

Note that special cases are defined as follows:

• When the amount is 0, we count that as 1 way to make change: e.g.,

change [1;5;10] 0 = 1

• When the amount is less than 0, we count that as 0 ways to make change:
e.g.,

change [1;5;10] -5 = 0

• When the number of coin kinds is 0, we count that as 0 ways to make
change: e.g.,

change [] 10 = 0

4


