Homework 1
 COSE212, Fall 2017

Hakjoo Oh
Due: 10/15, 24:00

Academic Integrity / Assignment Policy

- All assignments must be your own work.
- Discussion with fellow students is encouraged including how to approach the problem. However, your code must be your own.
- Discussion must be limited to general discussion and must not involve details of how to write code.
- You must write your code by yourself and must not look at someone else's code (including ones on the web).
- Do not allow other students to copy your code.
- Do not post your code on the public web.
- Violating above rules gets you 0 points for the entire HW score.

Problem 1 (10pts) Consider the task of computing the exponential of a given number. We would like to write a function that takes as arguments a base b and a positive integer exponent n to compute b^{n}. Read the remaining problem description carefully and devise an algorithm that has time complexity of $\Theta(\log n)$.

One simple way to implement the function is via the following recursive definition:

$$
\begin{aligned}
b^{0} & =1 \\
b^{n} & =b \cdot b^{n-1}
\end{aligned}
$$

which translates into the OCaml code:

```
let rec expt b n =
    if n = 0 then 1
    else b * (expt b (n-1))
```

However, this algorithm is slow; it takes $\Theta(n)$ steps.

We can improve the algorithm by using successive squaring. For instance, rather than computing b^{8} as

$$
b \cdot(b \cdot(b \cdot(b \cdot(b \cdot(b \cdot(b \cdot b))))))
$$

we can compute it using three multiplications as follows:

$$
\begin{aligned}
b^{2} & =b \cdot b \\
b^{4} & =b^{2} \cdot b^{2} \\
b^{8} & =b^{4} \cdot b^{4}
\end{aligned}
$$

This method works only for exponents that are powers of 2 . We can generalize the idea via the following recursive rules:

$$
\begin{array}{ll}
b^{n}=\left(b^{n / 2}\right)^{2} & \text { if } n \text { is even } \\
b^{n}=b \cdot b^{n-1} & \text { if } n \text { is odd }
\end{array}
$$

Use the rules to write a function fastexpt that computes exponentials in $\Theta(\log n)$ steps:
fastexpt: int -> int -> int

Problem 2 (10pts) Write a function
smallest_divisor: int -> int
that finds the smallest integral divisor (greater than 1) of a given number n. For example,

```
smallest_divisor 15 = 3
smallest_divisor 121 =11
smallest_divisor 141 = 3
smallest_divisor 199 = 199
```

Ensure that your algorithm runs in $\Theta(\sqrt{n})$ steps.
Problem 3 (10pts) Define the function iter:

```
iter : int * (int -> int) -> (int -> int)
```

such that

$$
\operatorname{iter}(n, f)=\underbrace{f \circ \cdots \circ f}_{n} .
$$

When $n=0$, iter (n, f) is defined to be the identity function. When $n>0$, iter (n, f) is the function that applies f repeatedly n times. For instance,

$$
\text { iter }(n \text {, fun } \mathrm{x}->2+\mathrm{x}) 0
$$

evaluates to $2 \times n$.

Problem 4 (10pts) Write a higher-order function
product : (int -> int) -> int -> int -> int
such that product f a b computes

$$
\prod_{i=a}^{b} f(i)
$$

For instance,

$$
\text { product (fun x } \rightarrow \text { x) } 15
$$

evaulates to 120. In general, we can use product to define the factorial function:

$$
\text { fact } n=\text { product (fun } x \rightarrow x \text {) } 1 n
$$

Problem 5 (10pts) Use product to define a function
dfact : int -> int
that computes double-factorials. Given a non-negative integer n, its doublefactorial, denoted $n!!$, is the product of all the integers of the same parity as n from 1 to n. That is, when n is even

$$
n!!=\prod_{k=1}^{n / 2}(2 k)=n \cdot(n-2) \cdot(n-4) \cdots 4 \cdot 2
$$

and when n is odd,

$$
n!!=\prod_{k=1}^{(n+1) / 2}(2 k-1)=n \cdot(n-2) \cdot(n-4) \cdots 3 \cdot 1
$$

For example, $7!!=1 \times 3 \times 5 \times 7=105$ and $6!!=2 * 4 * 6=48$.
Problem 6 (10pts) Write a function drop:
drop : 'a list -> int -> 'a list
that takes a list l and an integer n to take all but the first n elements of l. For example,

```
drop [1;2;3;4;5] 2 = [3; 4; 5]
drop [1;2] 3 = []
drop ["C"; "Java"; "OCaml"] 2 = ["OCaml"]
```

Problem 7 (10pts) Write a function

```
unzip: ('a * 'b) list -> 'a list * 'b list
```

that converts a list of pairs to a pair of lists. For example,

```
unzip [(1,"one");(2,"two");(3,"three")] = ([1;2;3],["one";"two";"three"])
```

Problem 8 (30pts) Consider the problem of counting the number of different ways of making coin-changes of a given amount of money. For example, when three types of coins ($1,5,10$ wons) are available, there are four different ways of making changes of 12 won:

$$
\begin{aligned}
& 12 \text { won }=10 \text { won } * 1+1 \text { won } * 2 \\
& 12 \text { won }=5 \text { won } * 2+1 \text { won } * 2 \\
& 12 \text { won }=5 \text { won } * 1+1 \text { won } * 7 \\
& 12 \text { won }=1 \text { won } * 12
\end{aligned}
$$

Write a function
change: int list -> int -> int
that takes a list of the denominations of the coins and an amount of money to change, and returns the number of ways to make changes. For example,

```
change [1;5;10] 12 = 4
change [1;5;10;25;50] 100=292
```

Note that special cases are defined as follows:

- When the amount is 0 , we count that as 1 way to make change: e.g.,

$$
\text { change }[1 ; 5 ; 10] 0=1
$$

- When the amount is less than 0 , we count that as 0 ways to make change: e.g.,

$$
\text { change }[1 ; 5 ; 10]-5=0
$$

- When the number of coin kinds is 0 , we count that as 0 ways to make change: e.g.,

$$
\text { change }[] \quad 10=0
$$

