
Final Exam: COSE212 Programming Languages, Fall 2016

Instructor: Hakjoo Oh
Korea University

Problem 1 (40pts) O/X questions. Leave a blank when you are
uncertain; each correct answer gets you 2 points but you lose 2
points for each wrong answer.

1. Consider a set S of natural numbers that satisfies the two con-
ditions:

(a) 0 ∈ S, and

(b) if n ∈ S, then n+ 2 ∈ S.

Such a set S is unique.

2. The following inductive definition

leaf
t1 t2

(n, t1, t2)
n ∈ Z

defines the set of balanced binary trees. (A binary tree is bal-
anced if the depth of the two subtrees of every node never differ
by more than 1.)

3. C is a statically typed language with automatic type inference.

4. In C++, compiled programs do not get stuck.

5. In C, variables are first-class objects.

6. Consider the OCaml code:

let f a b = a + b
let g = f 1

The type of g is int -> int.

7. With static scoping, the program

let a = 1 in
let p = proc (b) (a+b) in

let f = proc (a) (p a) in
let a = 5 in

(f 2)

evaluates to 3.

8. With dynamic scoping, the previous program evaluates to 4.

9. Consider the semantics of procedure calls:

ρ ` E1 ⇒ (x,E, ρ′) ρ ` E2 ⇒ v [x 7→ v]ρ ` E ⇒ v′

ρ ` E1 E2 ⇒ v′

The semantics describes the dynamic scoping rule.

10. The nameless representation of the program

(let a = 5 in proc (x) (let y = x-a in x-y)) 7

is (let 5 in proc (let (#0-#1) in (#2-#1))) 7.

11. With static scoping, the following program

let f = proc (x) (
let counter = 0 in

(set counter = counter + 1; counter)) in
let a = (f 0) in
let b = (f 0) in

(a-b)

evaluates to −1.

12. With static scoping, the following program

let x = 0 in
let f = proc (x) (set x = 44; x) in
let g = proc (y) ((f <y>) + x) in

let z = 55 in
((g <z>); z)

evaluates to 44.

13. With static scoping, the following program

let b = 3 in
let p = proc (x) proc (y) (set x = 4; b) in

((p))

evaluates to 4.

14. Lazy evaluation is always faster than eager evaluation.

15. The static type system in OCaml accepts a program if and only
if the program has no type errors at runtime.

16. Our static type system discussed in class accepts the program:

(proc (x) (x 1)) ((proc y y) (proc z z))

17. Our static type system discussed in class accepts the program:

let id x = x in
let x = id 1 in
let y = id true in

if y then x else 2

18. For any Turing-complete language, it is impossible to design a
sound and complete static type system.

19. Recall the Church encoding of natural numbers:

ci = λs.λz.si z.

The multiplication function mult for Church numerals can be
defined as follows:

mult = λm.λn.λs.m (n s).

20. In program synthesis, the state space of programs is defined by
the grammar of the target programming language.

1 2017/11/30

Problem 2 (15pts) Consider the function definition in OCaml:

let f xs ys =
fold (fun x pairs ->
fold (fun y l -> (x,y) :: l) ys pairs

) xs []

where fold is defined as follows:

let rec fold f l a =
match l with
| [] -> a
| hd::tl -> f hd (fold f tl a)

1. (5pts) Write the type of the function f.

2. (10pts) What is the result of evaluating the following expres-
sion?

f [1;2] [’a’;’b’;’c’]

Problem 3 (20pts) Complete the definitions of the functions zip
and unzip.

1. (10pts) The function zip receives two lists and pairs corre-
sponding members of the lists:

zip [x1; . . . ;xn] [y1; . . . ; yn] = [(x1, y1); . . . ; (xn, yn)]

If the two lists differ in length, ignore surplus elements. For
example,
• zip [1;2;3] [4;5;6] = [(1,4);(2,5);(3,6)]

• zip [1;2] [4;5;6] = [(1,4);(2,5)]

• zip [1;2;3] [4;5] = [(1,4);(2,5)]

Fill in the holes (1) and (2) in the following definition:

let rec zip l1 l2 =
match l1, l2 with

| x::xs, y::ys -> (1)

| any -> (2)

2. (10pts) The function unzip is the inverse of zip. It takes a list
of pairs and returns a pair of lists. For example,

unzip [(1,4);(2,5)] = ([1; 2],[4; 5])

Complete the following definition:

let rec unzip l =
let conspair (x,y) (xs,ys) = (x::xs, y::ys) in
match l with

| [] -> (1)

| (x,y)::pairs -> (2)

Problem 4 (25pts) Let us design a C-like imperative program-
ming language. The syntax of the language is defined by the gram-
mar:
S → x := A assignment

| {var x;S} block
| skip skip
| S1;S2 sequence
| if B then S1 else S2 conditional
| while B do S while loop

A → n | x | A1 +A2 | A1 −A2 arithmetic exp.
B → true | false | A1 = A2 | A1 < A2 boolean exp.

A program is a statement (S). A statement is an assignment, local
block with variable declaration, skip, sequence, conditional state-
ment, or while loop. An expression is either an arithmetic expres-
sion (E) or a boolean expression (B).

The semantics of the language is defined in a standard way with
static scoping and explicit variable initialization. For example,

1: { var x; // x is initialized to 0
2: x := x + 1; // x is 1
3: { var x; // x is initialized to 0
4: while (x < 10) x := x + 1;
5: // x is 10
6: };
7: x := x + 1; // x is 2
8: }

Note that the variable definition at line 3 is only valid inside the
local block at lines 3–5.

To formally define the semantics, we need environments and
memory states:

σ ∈ Mem = Loc → Z
ρ ∈ Env = Var → Loc

A memory state (σ) is a function from locations (Loc) to integer
values (Z). An environment (ρ) maps variables (Var) to their loca-
tions (Loc).

1. (10pts) The semantics A(A) : Env ×Mem → Z and B(B) :
Env × Mem → {true, false} of arithmetic and boolean ex-
pressions are defined as follows:

A(n)(ρ, σ) = n

A(x)(ρ, σ) = (1)
A(A1 +A2)(ρ, σ) = A(A1)(ρ, σ) +A(A2)(ρ, σ)
A(A1 −A2)(ρ, σ) = A(A1)(ρ, σ)−A(A2)(ρ, σ)

B(true)(ρ, σ) = true
B(false)(ρ, σ) = false

B(A1 = A2)(ρ, σ) = (2)

B(A1 < A2)(ρ, σ) = (3)

Complete the definition.

2. (15pts) The semantics of statements is defined by the relation

ρ, σ ` S ⇒ σ′

which means that given environment ρ, executing S on the
input memory σ produces the output memory σ′. Complete the
definition:

ρ, σ ` x := A⇒ (1)

(2)

ρ, σ ` {var x;S} ⇒ σ1
(3)

ρ, σ ` skip⇒ σ

(4)

ρ, σ ` S1;S2 ⇒ σ2

ρ, σ ` S1 ⇒ σ1

ρ, σ ` if B then S1 else S2 ⇒ σ1
JBK(ρ, σ) = true

ρ, σ ` S2 ⇒ σ1

ρ, σ ` if B then S1 else S2 ⇒ σ1
JBK(ρ, σ) = false

ρ, σ ` while B do S ⇒ σ
JBK(ρ, σ) = false

(5)

ρ, σ ` while B do S ⇒ σ2
JBK(ρ, σ) = true

2 2017/11/30

