Final Exam: COSE212 Programming Languages, Fall 2016

Instructor: Hakjoo Oh

Korea University

Problem 1 (40pts) O/X questions. Leave a blank when you are uncertain; each correct answer gets you 2 points but you lose 2 points for each wrong answer.

1. Consider a set S of natural numbers that satisfies the two conditions:
(a) $0 \in S$, and
(b) if $n \in S$, then $n+2 \in S$.

Such a set S is unique.
2. The following inductive definition

$$
\overline{\text { leaf }} \quad \frac{t_{1} t_{2}}{\left(n, t_{1}, t_{2}\right)} n \in \mathbb{Z}
$$

defines the set of balanced binary trees. (A binary tree is balanced if the depth of the two subtrees of every node never differ by more than 1.)
3. C is a statically typed language with automatic type inference.
4. In $\mathrm{C}++$, compiled programs do not get stuck.
5. In C, variables are first-class objects.
6. Consider the OCaml code:

```
let f a b = a + b
let g = f 1
```

The type of g is int -> int.
7. With static scoping, the program

```
let a = 1 in
    let p = proc (b) (a+b) in
        let f = proc (a) (p a) in
            let a = 5 in
            (f 2)
```

evaluates to 3 .
8. With dynamic scoping, the previous program evaluates to 4 .
9. Consider the semantics of procedure calls:

$$
\frac{\rho \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right) \quad \rho \vdash E_{2} \Rightarrow v \quad[x \mapsto v] \rho \vdash E \Rightarrow v^{\prime}}{\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}}
$$

The semantics describes the dynamic scoping rule.
10. The nameless representation of the program

```
(let a = 5 in proc (x) (let y = x-a in x-y)) 7
is (let 5 in proc (let (#0-#1) in (#2-#1))) }7
```

11. With static scoping, the following program
```
let f = proc (x) (
    let counter = 0 in
```

```
    (set counter = counter + 1; counter)) in
let a = (f 0) in
    let b = (f 0) in
        (a-b)
```

evaluates to -1 .
12. With static scoping, the following program

```
let x = 0 in
    let f = proc (x) (set x = 44; x) in
        let g = proc (y) ((f <y>) + x) in
            let z = 55 in
            ((g<z>); z)
```

evaluates to 44 .
13. With static scoping, the following program

```
let b = 3 in
let p = proc (x) proc (y) (set x = 4; b) in
    ((p<b>) <b>)
```

evaluates to 4 .
14. Lazy evaluation is always faster than eager evaluation.
15. The static type system in OCaml accepts a program if and only if the program has no type errors at runtime.
16. Our static type system discussed in class accepts the program:

```
(proc (x) (x 1)) ((proc y y) (proc z z))
```

17. Our static type system discussed in class accepts the program:
```
let id x = x in
    let x = id 1 in
        let y = id true in
            if y then x else 2
```

18. For any Turing-complete language, it is impossible to design a sound and complete static type system.
19. Recall the Church encoding of natural numbers:

$$
c_{i}=\lambda s . \lambda z . s^{i} z
$$

The multiplication function mult for Church numerals can be defined as follows:

$$
\mathrm{mult}=\lambda m \cdot \lambda n \cdot \lambda s \cdot m(n s)
$$

20. In program synthesis, the state space of programs is defined by the grammar of the target programming language.

Problem 2 (15pts) Consider the function definition in OCaml:

```
let f xs ys =
    fold (fun x pairs ->
        fold (fun y l -> (x,y) :: l) ys pairs
    ) xs []
```

where fold is defined as follows:

```
let rec fold f l a =
    match l with
    | [] -> a
    | hd::tl -> f hd (fold f tl a)
```

1. (5pts) Write the type of the function f.
2. (10pts) What is the result of evaluating the following expression?

$$
f[1 ; 2]\left['^{\prime} ;{ }^{\prime}{ }^{\prime} ;{ }^{\prime}{ }^{\prime}\right]
$$

Problem 3 (20pts) Complete the definitions of the functions zip and unzip.

1. (10pts) The function zip receives two lists and pairs corresponding members of the lists:
$\operatorname{zip}\left[x_{1} ; \ldots ; x_{n}\right]\left[y_{1} ; \ldots ; y_{n}\right]=\left[\left(x_{1}, y_{1}\right) ; \ldots ;\left(x_{n}, y_{n}\right)\right]$
If the two lists differ in length, ignore surplus elements. For example,
```
- zip [1;2;3] [4;5;6] = [(1,4);(2,5);(3,6)]
- zip [1;2] [4;5;6] = [(1,4);(2,5)]
- zip [1;2;3] [4;5] = [(1,4);(2,5)]
```

Fill in the holes (1) and (2) in the following definition:

$$
\begin{aligned}
& \text { let rec zip l1 } 12= \\
& \text { match l1, l2 with } \\
& \text { | x::xs, y:ys -> (1) } \\
& \text { | any } \rightarrow(2)
\end{aligned}
$$

2. (10pts) The function unzip is the inverse of zip. It takes a list of pairs and returns a pair of lists. For example,

$$
\text { unzip }[(1,4) ;(2,5)]=([1 ; 2],[4 ; 5])
$$

Complete the following definition:

```
let rec unzip l =
let conspair (x,y) (xs,ys) = (x::xs, y::ys) in
match l with
| [] -> (1)
| (x,y)::pairs -> (2)
```

Problem 4 (25pts) Let us design a C-like imperative programming language. The syntax of the language is defined by the grammar:

$$
\begin{array}{lll}
S & \rightarrow & x:=A \\
& \{\text { var } x ; S\} \\
& \text { skip } \\
S_{1} ; S_{2} \\
\text { if } B \text { then } S_{1} \text { else } S_{2} \\
& \text { while } B \text { do } S \\
A & \rightarrow & n|x| A_{1}+A_{2} \mid A_{1}-A_{2} \\
B & \rightarrow \text { true } \mid \text { false }\left|A_{1}=A_{2}\right| A_{1}<A_{2}
\end{array}
$$

assignment block skip sequence conditional while loop
ooolean exp

A program is a statement (S). A statement is an assignment, local block with variable declaration, skip, sequence, conditional statement, or while loop. An expression is either an arithmetic expression (E) or a boolean expression (B).

The semantics of the language is defined in a standard way with static scoping and explicit variable initialization. For example,

```
{ var x; // x is initialized to 0
    x := x + 1; // x is 1
    { var x; // x is initialized to 0
        while (x < 10) x := x + 1;
        // x is 10
    };
    x := x + 1; // x is 2
}
```

Note that the variable definition at line 3 is only valid inside the local block at lines 3-5.

To formally define the semantics, we need environments and memory states:

$$
\begin{aligned}
\sigma \in M e m & =L o c \rightarrow \mathbb{Z} \\
\rho \in E n v & =\text { Var } \rightarrow \text { Loc }
\end{aligned}
$$

A memory state (σ) is a function from locations ($L o c$) to integer values (\mathbb{Z}). An environment (ρ) maps variables (Var) to their locations ($L o c$).

1. (10pts) The semantics $\mathcal{A}(A): E n v \times M e m \rightarrow \mathbb{Z}$ and $\mathcal{B}(B):$ $E n v \times M e m \rightarrow\{$ true, false $\}$ of arithmetic and boolean expressions are defined as follows:

$$
\begin{aligned}
\mathcal{A}(n)(\rho, \sigma) & =n \\
\mathcal{A}(x)(\rho, \sigma) & =(1) \\
\mathcal{A}\left(A_{1}+A_{2}\right)(\rho, \sigma) & =\mathcal{A}\left(A_{1}\right)(\rho, \sigma)+\mathcal{A}\left(A_{2}\right)(\rho, \sigma) \\
\mathcal{A}\left(A_{1}-A_{2}\right)(\rho, \sigma) & =\mathcal{A}\left(A_{1}\right)(\rho, \sigma)-\mathcal{A}\left(A_{2}\right)(\rho, \sigma) \\
\mathcal{B}(\text { true })(\rho, \sigma) & =\text { true } \\
\mathcal{B}(\text { false })(\rho, \sigma) & =\text { false } \\
\mathcal{B}\left(A_{1}=A_{2}\right)(\rho, \sigma) & =(2) \\
\mathcal{B}\left(A_{1}<A_{2}\right)(\rho, \sigma) & =(3)
\end{aligned}
$$

Complete the definition.
2. (15 pts) The semantics of statements is defined by the relation

$$
\rho, \sigma \vdash S \Rightarrow \sigma^{\prime}
$$

which means that given environment ρ, executing S on the input memory σ produces the output memory σ^{\prime}. Complete the definition:

$$
\begin{gathered}
\overline{\rho, \sigma \vdash x:=A \Rightarrow \boxed{(1)}} \\
\frac{(2)}{\rho, \sigma \vdash\{\operatorname{var} x ; S\} \Rightarrow \sigma_{1}} \\
\frac{(3)}{\rho, \sigma \vdash \operatorname{skip} \Rightarrow \sigma} \\
\frac{(4)}{\rho, \sigma \vdash S_{1} ; S_{2} \Rightarrow \sigma_{2}} \\
\frac{\rho, \sigma \vdash S_{1} \Rightarrow \sigma_{1}}{\rho, \sigma \vdash \text { if } B \text { then } S_{1} \text { else } S_{2} \Rightarrow \sigma_{1}} \llbracket B \rrbracket(\rho, \sigma)=\text { true } \\
\frac{\rho, \sigma \vdash S_{2} \Rightarrow \sigma_{1}}{\rho, \sigma \vdash \text { if } B \text { then } S_{1} \text { else } S_{2} \Rightarrow \sigma_{1}} \llbracket B \rrbracket(\rho, \sigma)=\text { false } \\
\frac{\rho, \sigma \vdash \text { while } B \text { do } S \Rightarrow \sigma}{} \llbracket B \rrbracket(\rho, \sigma)=\text { false } \\
\frac{(5)}{\rho, \sigma \vdash \text { while } B \text { do } S \Rightarrow \sigma_{2}} \llbracket B \rrbracket(\rho, \sigma)=\text { true }
\end{gathered}
$$

