Final Exam

COSE212 Programming Languages, Fall 2015

Instructor: Hakjoo Oh

Problem 1 (10pts) Natural numbers are inductively defined as follows:

$$
n \rightarrow \circ \mid S n
$$

where \circ denotes $0, S \circ$ denotes $1, S(S \circ)$ denotes 2 , and so on.

1. Define a function

$$
\text { add : } n \times n \rightarrow n
$$

that adds two natural numbers.
2. Define a function

$$
\text { mul : } n \times n \rightarrow n
$$

that multiplies two natural numbers.

Problem 2 (10pts) The common pattern of the functions that accumulate something over a list can be captured by the higher-order function fold:

```
let rec fold f l a =
    match l with
    | [] -> a
    | hd::tl -> f hd (fold f tl a)
```

Re-write the following functions using fold:

```
1. let rec length l =
    match l with
    | [] -> 0
    | hd::tl -> 1 + length tl
2. let rec append x y =
    match x with
    | [] -> y
    | hd::tl -> hd::(append tl y)
```

Problem 3 (10pts) Consider the minimal yet Turing-complete programming language:

$$
E \quad \rightarrow \quad x|\operatorname{proc} x E| E E
$$

1. Define its semantics with static scoping. The domain is given below.

$$
\begin{aligned}
\text { Val } & =\text { Procedure } \\
\text { Procedure } & =\text { Var } \times E \times E n v \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

2. Define its semantics with dynamic scoping. The domain is given below.

$$
\begin{aligned}
\text { Val } & =\text { Procedure } \\
\text { Procedure } & =\text { Var } \times E \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

Problem 4 (10pts) Convert the following programs into the lexical-address-based nameless representation:

$$
\begin{aligned}
& \text { 1. let } \mathrm{a}=1 \text { in let } \mathrm{b}=2 \text { in } \mathrm{a}+\mathrm{b} \\
& \text { 2. let } \mathrm{x}=3 \\
& \text { in proc }(\mathrm{y}) \\
& \text { let } \mathrm{z}=(\mathrm{y}-\mathrm{x}) \\
& \text { in }(\mathrm{x}-\mathrm{z}+\mathrm{y})
\end{aligned}
$$

Problem 5 (10pts) Assuming static scoping for procedures, compare the behaviors and final values of the following two programs.

```
1. let \(\mathrm{f}=\) let counter \(=\) ref 0
            in proc (x) (counter : \(=\) !counter +1 ;
                        !counter)
    in let \(a=(f 0)\)
        in let \(b=(f 0)\)
    in ( \(\mathrm{a}-\mathrm{b}\) )
2. let \(\mathrm{f}=\operatorname{proc}(\mathrm{x})\) (let counter \(=\) ref 0
                in (counter := !counter + 1;
                ! counter))
in let \(a=(f 0)\)
    in let \(b=\binom{f}{0}\)
in ( \(\mathrm{a}-\mathrm{b}\) )
```

Problem 6 (10pts) Infer the type of $(\lambda x . x) 1$:

1. (5pts) Generate type equations.
2. (10pts) Solve the equations using the unification algorithm. Explain each step clearly.

Problem 7 (20pts) Consider the following language:

$$
E \rightarrow \text { true } \mid \text { false }|n| E_{1}+E_{2} \mid \text { if } E_{1} E_{2} E_{3}
$$

and the lambda calculus:

$$
L \rightarrow x|\lambda x . L| L_{1} L_{2}
$$

We write \underline{E} for the equivalent lambda term in L : that is, if E goes to a value v and \underline{E} goes to a value l in lambda term, then $\underline{v}=l$. Define \underline{E} :

Problem 8 (20pts) O/X questions:

1. $\{3 n \mid n \in N\}(N=\{0,1,2,3, \ldots\})$ is the only set S that satisfies the following two properties:
(a) $0 \in S$, and
(b) if $n \in S$, then $n+3 \in S$
2. Determining the values of program variables is a static property.
3. C supports call-by-reference for procedure calls.
4. Computers came first than programming languages.
5. C's pointers, structs, set-jumps/long-jumps, gotos, local blocks, and loops are all syntactic sugars of eagerevaluating λ-calculus.
6. All syntactically correct programs run OK in this language:

$$
\begin{aligned}
& C \rightarrow x:=E \mid C ; C \\
& E \rightarrow Z \mid B \\
& Z \rightarrow n|Z+Z| x \\
& B \rightarrow \text { true } \mid \text { false } \mid Z<Z
\end{aligned}
$$

7. There is only one redex in $((\lambda x . \lambda y \cdot x) 1) 2$.
8. The factorial function can be defined by

$$
\text { fact }=Y(\lambda f . \lambda n \text {.if } n=0 \text { then } 1 \text { else } n * f(n-1))
$$

where Y is the Y-combinator.
9. We can design a sound and complete type system for Java.
10. It is possible for the lambda calculus to simulate all language constructs of Java.

