COSE212: Programming Languages

Lecture 8 — Design and Implementation of PLs
(4) States

Hakjoo Oh
2016 Fall

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 1/21

Motivating Example

@ How can we compute the number of times £ has been called?
let £ = proc (x) (x)
in (£ (£ 1))

@ Does the following program work?

let counter = 0
in let f = proc (x) (let counter = counter + 1
in x)
in let a = (f (f 1))
in counter
@ The language should support effects.

o Effects are implemented by introducing memory (store) and locations
(reference).

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 2/21

Computational Effects

Programming languages support effects explicitly or implicitly.

@ Explicit languages provide a clear account of allocation, dereference,
and mutation of memory cells, e.g., ML.

@ In implict languages, they are built-in, e.g., C and Java.

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 3/21

A Language with Explict References

P — FE

E — n|z

| E+E|E—E

| zero? E | if E then F else E
| letz=FEinFE

| procxz E|EE

| ref E

| 'E

| E:=FE

| E;E

o ref F allocates a new location and store the value of E in it.

@ ! F returns the contents of the location that E refers to.

e E; := E5 changes the contents of the location (E7) by the value of
E,.

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 4 /21

Example 1

@ let counter ref O
in let f = proc (x)
in let a = (f 0)
in let b = (£
in (a - b)
let counter
in proc (x)
in let a = (£ 0)
in let b = (f 0)
in (a - b)

@ let f = proc (x) (let counter

0

@ let f ref O

(counter :

(counter :

in (counter :

in let a = (£ 0)
in let b = (f 0)
in (a - b)

Hakjoo Oh COSE212 2016 Fall, Lecture 8

lcounter + 1; !counter)
lcounter + 1; !counter)
ref O
= lcounter + 1; !counter))

October 30, 2016 5/21

Example 2
We can make chains of references:

let x = ref (ref 0)
in ('x := 11; '('x))

Hakjoo Oh COSE212 2016 Fall, Lecture 8

Semantics

Memory is modeled as a finite map from locations to values:

Val
Procedure
p € Env
o € Mem

7, + Bool + Procedure-+ Loc
Var x E X Env

Var — Val

Loc — Val

Semantics rules describe memory effects:

p,o-E = v,0'

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016

7/21

Semantics

Existing rules are enriched with stores:

p,o-n=n,o p,otx= p(x),o

p,oo0 - E1 = ni,01 p,o01 - E2 = n2,02
psoo = E1 + E2 = n1 + na2,02

p,oo - E = 0,01 p,oo - E = n,o1
p, 00 F zero? E = true,o1 p, o0 F zero? E = false, o1

n#0

p,o0 - E1 = true,o1 p,o1 - E2 = v,02
p,o00 - if E;1 then E3 else E3 = v, 02

p,o0+ E1 = v1,01 [— vi]p,o1 + E2 = v,02

p,00 - let * = Eq in E2 = v,02

p,o Fprocx E = (z,E,p),o

psoo- E1+ (z,E,p'),01 p,o1+ E2 = v,02 [— v]p’yo2 - E = v',03
p,o0 - E1 E2 = v/, 03

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 8/21

Semantics
Rules for new constructs:

p,oo- E = v,01
p,oo Fref E=1,[l — v]oy

I & Dom(o1)

p,oo-E=1,01
pyoo ! E = o1(l),01

p,oo - E1 = 1,01 p,o01 + Ey = v,02
P00 F FEq := Es = v, [l I—)’U]O’2

psoo - E1 = v1,01 p,o1 = Ey = v2,02
psoo = Ey; Es = va,02

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 9/21

Example

p,oo - let x = ref (ref 0) in (!x := 11; ! (!x)) =

Hakjoo Oh COSE212 2016 Fall, Lecture 8

A Language with Implict References

P — FE

E — n|z

| E+E|E—E

| zero? E | if E then F else E
| letz=FEinFE

| procxz E|EE

| setx=FE

| E;E

e Every variable is mutable (i.e., changeable).
@ set * = FE change the contents of « by the value of E.

@ Locations are created with each binding operation: call and let.

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 11 /21

Examples

@ let £ = let count = 0
in proc (x) (set count = count + 1; count)

in let a = (f 0)
in let b = (f 0)
ina-b
@ let f = proc (%)
proc (y)
(set x =x +1; x - y)

in ((f 44) 33)

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 12 /21

Semantics

Every variable denotes a reference:

Val = 7 + Bool + Procedure
Procedure = Var X E X Env
p€ Env = Var — Loc
o € Mem = Loc— Val
October 30, 2016

13 /21

Semantics

p,obEn=n,o p,o -z = o(p(x)),o

p,00 - E1 = ni,01 p,o1 - E2 = na2,02
p,o0 - E1 4+ E2 = ni1 + n2,02

p,oo+-E = 0,01 p,o0 - E1 = true,o1 p,o1+ E2 = v,02

p, o0 - zero? E = true,o1 p,o0 - if E;1 then E3 else E3 = v, 02

p,o0 - E = v,01

p,o - procx E = (x, E, p),o p,oo - set x = E = v, [p(x) — v]ow

p,o0+ E1 = v1,01 [— Up, [l — vi]o1 F E2 = v,02

I & D
p,o0 - let € = Eq in E2 = v,02 ¢ Dom(c1)
psoo - E1+ (z,E,p’),01 p,o1 + Ez = v,02
x — lp/,[l — v]lo2 - E = v',03
[10, []) I & Dom(oa)

p,o0 - E1 E2 = v',03

p,oo0 - E1 = vi,01 p,o01 - E2 = v2,02

ps00 - E15 E2 = v2,02

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 14 /21

Example

let £ = let count = 0
in proc (x) (set count = count + 1; count)

in let a = (f 0)
in let b = (f 0)
ina-b

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 15 /21

Call-By-Value Parameter-Passing

What is the value of the following program?
let p = proc (x) (set x = 4)
in let a = 3

in ((p a); a)

The call semantics:

p’UOFE1F($7Eap,)?Ul p70'1|_E2:>'U30'2

[x — l]p/,[l — v]oz - E = v/, 03
; l & Dom(o2)
psoo - Ey E3 = v',03

Call-by-value parameter-passing:

@ The formal parameter refers to a new location containing the value of
the actual parameter.

@ The most commonly used form of parameter-passing.

Hakjoo Oh COSE212 2016 Fall, Lecture 8

October 30, 2016 16 / 21

Call-By-Reference Parameter-Passing

The location of the caller’s variable is passed, rather than the contents of
the variable.

o Extend the syntax:

E

E —
|
| (y)

E
E
@ Extend the semantics:

p,oot- E1 - (x,E,p'),01 [x — p(y)]p,o1F E = v 02

p,o0 F Eq (y) = v, 02

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 17 /21

Examples

@ let p = proc (x) (set x = 4)
in let a = 3
in ((p <a>); a)
@ let £ = proc (x) (set x = 44)

in let g = proc (y) (f <y>)
in let z = 55
in ((g <z>); 2z)
@ let swap = proc (x) proc (y)
let temp = x
in (set x = y; set y = temp)
in let a = 33
in let b = 44
in (((swap <a>)); (a-b))

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 18 / 21

Variable Aliasing

More than one call-by-reference parameter may refer to the same location:

let b =3
in let p = proc (x) proc (y)
(set x = 4; y)
in ((p))

@ A variable aliasing is created: x and y refer to the same location

e With aliasing, reasoning about program behavior is very difficult,
because an assignment to one variable may change the value of
another.

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 19 /21

cf) Eager vs. Lazy Evaluation

letrec infinite-loop (x) = infinite-loop (x)
in let f = proc (x) (1)
in (£ (infinite-loop 0))

@ In eager evaluation, procedure arguments are completely evaluated
before passing them to the procedure.

@ In lazy evaluation, evaluation of arguments is delayed until it is
needed by the procedure body.

@ Shortcoming of lazy evaluation?

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 20 /21

Summary

Our current language supports
@ expressions, statements,
@ procedures, recursion,

@ parameter-passing variations: call-by-value, call-by-reference.

Hakjoo Oh COSE212 2016 Fall, Lecture 8 October 30, 2016 21 /21

