
COSE212: Programming Languages

Lecture 7 — Design and Implementation of PLs

(3) Scoping and Binding

Hakjoo Oh
2016 Fall

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 1 / 16



References and Declarations

In programming languages, variables appear in two different ways:

A variable reference is a use of the variable.

A variable declaration introduces the variable as a name for some
value.

In well-formed programs, a variable reference is bound by some
declaration (where the variable is bound to its value).

Examples:
proc (x) (x + 3)

let x = y + 7 in x + 3

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 2 / 16



Binding

Binding: the association between a variable and its value; i.e., an
environment is a collection of variable bindings.

In LETREC, bindings are created in
I let expressions:

ρ ` E1 ⇒ v1 [x 7→ v1]ρ ` E2 ⇒ v

ρ ` let x = E1 in E2 ⇒ v

I letrec expressions:

[f 7→ (f, x, E1, ρ)]ρ ` E2 ⇒ v

ρ ` letrec f(x) = E1 in E2 ⇒ v

I procedure calls:

ρ ` E1 ` (x,E, ρ′) ρ ` E2 ⇒ v [x 7→ v]ρ′ ` E ⇒ v′

ρ ` E1 E2 ⇒ v′

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 3 / 16



Scoping Rules

How to determine the corresponding declaration of a variable
reference? By scoping rules.

Most programming languages use lexical scoping rules, where the
declaration of a reference is found by searching outward from the
reference until we find a declaration of the variable:

let x = 3 // call this x1

in let y = 4

in (let x = y + 5 // call this x2

in x * y) // Here x refers to x2

+ x // Here x refers to x1

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 4 / 16



Scopes of Variables

Declarations have limited scopes, each of which lies entirely within another:

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 5 / 16



Scopes of Variables

Declarations have limited scopes, each of which lies entirely within another:

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 6 / 16



Static vs. Dynamic Properties of Programs

Static properties can be determined at compile-time.
I ex) declaration, scope, etc

Dynamic properties are only determined at run-time.
I ex) values, types, the absence of bugs, etc.

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 7 / 16



Lexical Address

Lexical depth of a variable reference is the number of declarations
crossed to find the associated declaration.

let x = 1

in let y = 2

in x + y

The lexical depth of a variable reference uniquely identifes the
declaration to which it refers.

Therefore, variable names are entirely removed from the program, and
variable references are replaced by their lexical address:

let 1

in let 2

in #1 + #0

“Nameless” or “De Bruijn” representation.

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 8 / 16



Examples: Nameless Representation

(let a = 5 in proc (x) (x-a)) 7

(let x = 37

in proc (y)

let z = (y - x)

in (x - y)) 10

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 9 / 16



Lexical Address

The lexical address of a variable indicates the position of the variable
in the environment.

let x = 1

in let y = 2

in x + y

(let a = 5 in proc (x) (x-a)) 7

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 10 / 16



Nameless Proc

Syntax

P → E

E → n
| #n
| E + E
| E − E
| zero? E
| if E then E else E
| let E in E
| proc E
| E E

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 11 / 16



Nameless Proc

Semantics
Val = Z + Bool + Procedure

Procedure = E × Env
Env = Val∗

ρ ` n⇒ n ρ ` #n⇒ ρn

ρ ` E1 ⇒ n1 ρ ` E2 ⇒ n2

ρ ` E1 + E2 ⇒ n1 + n2

ρ ` E ⇒ 0

ρ ` zero? E ⇒ true

ρ ` E ⇒ n

ρ ` zero? E ⇒ false
n 6= 0

ρ ` E1 ⇒ true ρ ` E2 ⇒ v

ρ ` if E1 then E2 else E3 ⇒ v

ρ ` E1 ⇒ false ρ ` E3 ⇒ v

ρ ` if E1 then E2 else E3 ⇒ v

ρ ` E1 ⇒ v1 v1 :: ρ ` E2 ⇒ v

ρ ` let E1 in E2 ⇒ v

ρ ` proc E ⇒ (E, ρ)

ρ ` E1 ` (E, ρ′) ρ ` E2 ⇒ v v :: ρ′ ` E ⇒ v′

ρ ` E1 E2 ⇒ v′

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 12 / 16



Example

[] ` (let 37 in proc (let (#0 -#1) in (#2 - #1))) 10⇒ 27

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 13 / 16



Translation
The nameless version of a program P is defined to be T(E)([]):

T(n)(ρ) = n
T(x)(ρ) = #n (n is the first position of x in ρ)

T(E1 + E2)(ρ) = T(E1)(ρ) + T(E2)(ρ)
T(zero?E)(ρ) = zero? (T(E)(ρ))

T(if E1 then E2 else E3)(ρ) = if T(E1)(ρ) then T(E2)(ρ) else T(E3)(ρ)
T(let x = E1 in E2)(ρ) = let T(E1)(ρ) in T(E2)(x :: ρ)

T(proc(x) E)(ρ) = proc T(E)(x :: ρ)
T(E1 E2)(ρ) = T(E1)(ρ) T(E2)(ρ)

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 14 / 16



Example

T


(let x = 37

in proc (y)
let z = (y− x)
in (x− y)) 10

 ([]) =

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 15 / 16



Summary

In lexical scoping, scoping rules are static properties: nameless
representation with lexical addresses.

Lexical address predicts the place of the variable in the environment.

Compilers routinely use the nameless representation: Given an input
program P ,

1 translate it to T(P )([]),
2 execute the nameless program.

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 16 / 16


