COSE212: Programming Languages

Lecture 7 — Design and Implementation of PLs
(3) Scoping and Binding

Hakjoo Oh
2016 Fall

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 1/16

References and Declarations

In programming languages, variables appear in two different ways:
@ A variable reference is a use of the variable.

@ A variable declaration introduces the variable as a name for some
value.

@ In well-formed programs, a variable reference is bound by some
declaration (where the variable is bound to its value).

@ Examples:
proc (x) (x + 3)

let x =y +7 inx + 3

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 2 /16

Binding

@ Binding: the association between a variable and its value; i.e., an
environment is a collection of variable bindings.
@ In LETREC, bindings are created in

> let expressions:

pHE; = v [t — vi]pF By = v
ptletx =F; in Es = v

> letrec expressions:

[f = (fsz, E1,p)lp - E2 = v
pt letrec f(x) = E1 in E3 = v

» procedure calls:

prEiF (z,E,p)) pHE;=v [z—v]pFE="v
pl‘El E2:>’Ul

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 3/16

Scoping Rules

@ How to determine the corresponding declaration of a variable
reference? By scoping rules.

@ Most programming languages use lexical scoping rules, where the

declaration of a reference is found by searching outward from the
reference until we find a declaration of the variable:

let x = 3 // call this x1
in let y = 4
in (let x =y + 5 // call this x2
in x * y) // Here x refers to x2
+ X // Here x refers to x1

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 4/ 16

Scopes of Variables

Declarations have limited scopes, each of which lies entirely within another:

proc (x)
(proc (y)
(let z =x +y
in proc (x)
(proc (z)

(let x = (let x = x +y + 2

in let y = 11
in x +y + z)
in x + y + 2z)

Hakjoo Oh COSE212 2016 Fall, Lecture 7

x1
yl
z1l
x2
z2
x3
y2

, X4

October 25, 2016

5/16

Scopes of Variables

Declarations have limited scopes, each of which lies entirely within another:

scope of x|
scope of y| scope of z2
scope of z|
scope of x2
proc (x) // x1
((proc (y) / /]/ N // vl
(let z=x+y [/ / N /7 =21
in(proc (x) / / // %2
(proc (z) / // z2
(let x = (let x =x +y + z // x3,x%4
in(let y = 11 // y2
in (x + vy + z
in(Xx + y * 2) / /
) / /7
0 / [/ b
U / [])
/ /
scope of x4
scope of x3 scope of y2

Hakjoo Oh COSE212 2016 Fall, Lecture 7

October 25, 2016

6/16

Static vs. Dynamic Properties of Programs

@ Static properties can be determined at compile-time.
> ex) declaration, scope, etc

@ Dynamic properties are only determined at run-time.
» ex) values, types, the absence of bugs, etc.

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 7 /16

Lexical Address

o Lexical depth of a variable reference is the number of declarations
crossed to find the associated declaration.
let x =1
in let y = 2
in x +y
@ The lexical depth of a variable reference uniquely identifes the
declaration to which it refers.
@ Therefore, variable names are entirely removed from the program, and
variable references are replaced by their lexical address:

let 1
in let 2
in #1 + #0

“Nameless' or “De Bruijn" representation.

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 8 /16

Examples: Nameless Representation

@ (let a = 5 in proc (x) (x-a)) 7
o (let x = 37
in proc (y)

let z = (y - x)
in (x - y)) 10

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 9 /16

Lexical Address

@ The lexical address of a variable indicates the position of the variable
in the environment.

@ let x =1
in let y = 2
inx +y

@ (let a = 5 in proc (x) (x-a)) 7

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 10 / 16

Nameless Proc

&
1]

E
n
#n

E+ FE

E—FE

zero? E

if F then F else E
let F in FE

proc E

EFE

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 11 /16

Nameless Proc

Semantics

Val = Z + Bool + Procedure
Procedure = FE X Env
Env = Val*
ptH E1 = ny pH Ex = ng
pFEFn=mn pFE#n = pn ptH E1+ Ez2 = n1 +n2
pHE=0 pHE=n

0
p b zero? E = true p b zero? E = false n#

pt E1 = true pkH E; = v p+ E1 = false pt E3 = v
pt if Eq then E3 else E3 = v p - if E; then E3 else E3 = v

pkH E1 = v viupk Ex = v
ptlet Eq in Ex = v

p b proc E = (E, p)

pt E1+ (E,p’) pHEz=wv vip' HE= v
pt E1 E2 = v

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 12 /16

Example

[[F (let 37 in proc (let (#0 -#1) in (#2 - #1))) 10 = 27

Hakjoo Oh COSE212 2016 Fall, Lecture 7

Translation

The nameless version of a program P is defined to be T(E)([]):

T(n)(p)

T(x)(p)

T(E1 + E2)(p)
T(zero?E)(p)

T(if E1 then E3 else E3)(p)
T(let « = E;1 in E2)(p)
T(proc(z) E)(p)

T(E1 E2)(p)

#n (n is the first position of @ in p)
T(E1)(p) + T(E=2)(p)

zero? (T(E)(p))

if T(E1)(p) then T(E2)(p) else T(E3)(p)
let T(E1)(p) in T(E2)(x :: p)

proc T(E)(x :: p)

T(E1)(p) T(E2)(p)

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 14 / 16

Example

(let x = 37
in proc (y) .
T II;tzzy(y—X) =
in (x —y)) 10

Hakjoo Oh COSE212 2016 Fall, Lecture 7

Summary

@ In lexical scoping, scoping rules are static properties: nameless
representation with lexical addresses.
@ Lexical address predicts the place of the variable in the environment.

@ Compilers routinely use the nameless representation: Given an input
program P,

@ translate it to T(P)([]),
© execute the nameless program.

Hakjoo Oh COSE212 2016 Fall, Lecture 7 October 25, 2016 16 / 16

