
COSE212: Programming Languages

Lecture 3 — Programming in OCaml

Hakjoo Oh
2016 Fall

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 1 / 49

Why learn ML?

Learning ML is a good way of experiencing modern language features:

functional programming: scala, java8, haskell, python, JavaScript, etc

value-oriented programming: scala, haskell, scheme, etc

type inference: scala, haskell, etc

pattern matching: scala, etc

algebraic data types, module system, etc

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 2 / 49

Basics of the Language

Expressions

Names

Functions

Pattern matching

Type inference

Tuples and lists

Data types

Exceptions

Modules

Write and run all examples in the slides by yourself!

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 3 / 49

An OCaml Program is an Expression

Statement and expressions:

A statement does something.

An expression evaluates to a value.

Programming languages can be classified into

statement-oriented: C, C++, Java, Python, JavaScript, etc
I often called “imperative languages”

expression-oriented: ML, Haskell, Scala, Lisp, etc
I often called “functional languages”

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 4 / 49

Arithmetic Expressions

Arithmetic expressions evaluate to numbers: e.g., 1+2*3, 1+5, 7

Try to evaluate expressions in the REPL:

1+2*3;;

- : int = 7

Arithmetic operators on integers:

a + b addition
a - b subtraction
a * b multiplication
a / b divide a by b, returning the whole part
a mod b divide a by b, returning the remaining part

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 5 / 49

Boolean Expressions

Boolean expressions evaluate to boolean values (i.e., true, false).

Try to evaluate boolean expressions:

true;;

- : bool = true

true;;

- : bool = true

1 > 2;;

- : bool = false

Comparison operators produces boolean values:

a = b true if a and b are equal
a <> b true if a and b are not equal
a < b true if a is less than b
a <= b true if a is less than or equal to b
a > b true if a is greater than b
a >= b true if a is greater than or equal to b

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 6 / 49

Boolean Operators

Boolean expressions are combined by boolean operators:

true && false;;

- : bool = false

true || false;;

- : bool = true

(2 > 1) && (3 > 2);;

- : bool = true

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 7 / 49

ML is a Statically Typed Language

If you try to evaluate an expression that does not make sense, OCaml
rejects and does not evaluate the program: e.g.,

1 + true;;

Error: This expression has type bool but an expression was

expected of type int

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 8 / 49

cf) Static Types and Dynamic Types

Programming languages are classified into:

Statically typed languages: type checking is done at compile-time.
I type errors are detected before program executions
I C, C++, Java, ML, Scala, etc

Dynamically typed languages: type checking is done at run-time.
I type errors are detected during program executions
I Python, JavaScript, Ruby, Lisp, etc

Statically typed languages are further classified into:

Type-safe languages guarantee that compiled programs do not have
type errors at run-time.

I All type errors are detected at compile time.
I Compiled programs do not stuck.
I ML, Haskell, Scala

Unsafe languages do not provide such a guarantee.
I Some type errors remain at run-time.
I C, C++

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 9 / 49

Which one is better?

Statically typed languages:

(+) Type errors are caught early in the development cycle.

(+) Program execution is efficient by omitting runtime checks.

(−) Less flexible than dynamic languages.

Dynamically typed languages:

(−) Type errors appear at run-time, often unexpectedly.

(+) Provide more flexible language features.

(+) Easy and fast prototyping.

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 10 / 49

Conversion between Different Types

In OCaml, different types of values are distinguished:

3 + 2.0;;

Error: This expression has type float but an expression

was expected of type int

Types must be explicitly converted:

3 + int_of_float 2.0;;

- : int = 5

Operators for floating point numbers:

1.2 +. 2.3;;

- : float = 3.5

1.5 *. 2.0;;

- : float = 3.

float_of_int 1 +. 2.2;;

- : float = 3.2

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 11 / 49

Other Primitive Values

OCaml provides six primitive values: integers, booleans, floating point
numbers, characters, strings, and unit.

’c’;;

- : char = ’c’

"cose212";;

- : string = "cose212"

();;

- : unit = ()

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 12 / 49

Conditional Expressions

if be then e1 else e2

If be is true, the value of the conditional expression is the value of e1.

If be is false, the value of the expression is the value of e2.

if 2 > 1 then 0 else 1;;

- : int = 0

if 2 < 1 then 0 else 1;;

- : int = 1

be must be a boolean expression.

types of e1 and e2 must be equivalent.

if 1 then 1 else 2;;

Error: ...

if true then 1 else true;;

Error: ...

if true then true else false;;

- : bool = true

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 13 / 49

Names and Functions

Create a global variable with the let keyword:

let x = 3 + 4;;

val x : int = 7

We say a variable x is bound to value 7.

let y = x + x;;

val y : int = 14

Create a local variable with let ... in ... construct:

let x = e1 in e2

I x is bound to the value of e1
I the scope of x is e2
I the value of e2 becomes the value of the entire expression

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 14 / 49

Examples

let a = 1 in a;;

- : int = 1

let a = 1 in a * 2;;

- : int = 2

let a = 1 in

let b = a + a in

let c = b + b in

c + c;;

- : int = 8

let d =

let a = 1 in

let b = a + a in

let c = b + b in

c + c;;

val d : int = 8

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 15 / 49

Functions

Define a function with let:

let square x = x * x;;

val square : int -> int = <fun>

Apply the function:

square 2;;

- : int = 4

square (2 + 5);;

- : int = 49

square (square 2);;

- : int = 16

The body can be any expression:

let neg x = if x < 0 then true else false;;

val neg : int -> bool = <fun>

neg 1;;

- : bool = false

neg (-1);;

- : bool = true

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 16 / 49

Functions

Functions with multiple arguments:

let sum_of_squares x y = (square x) + (square y);;

val sum_of_squares : int -> int -> int = <fun>

sum_of_squares 3 4;;

- : int = 25

Recursive functions are defined with let rec construct:

let rec factorial a =

if a = 1 then 1 else a * factorial (a - 1);;

val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 17 / 49

Nameless Functions

Many modern programming languages provide nameless functions,
e.g., ML, Scala, Java8, JavaScript, Python, etc.

In OCaml, a function can be defined without names:

fun x -> x * x;;

- : int -> int = <fun>

Called nameless or anonymous functions.

Apply nameless function as usual:

(fun x -> x * x) 2;;

- : int = 4

A variable can be bound to functions:

let square = fun x -> x * x;;

val square : int -> int = <fun>

The followings are equivalent:

let square = fun x -> x * x

let square x = x * x

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 18 / 49

Example: Square Roots with Newton’s Method

We implement the function

sqrt : float− > float

using Newton’s method. To compute sqrt(x),

Start with an initial guess y for the value of the square root of x
(pick y = 1).

Repeatedly improve the estimate by taking the mean of y and x/y.

ex)

Estimation Quotient Mean
1 2/1 = 2 1.5
1.5 2/1.5 = 1.3333 1.4167
1.4167 2/1.4167 = 1.4118 1.4142
1.4142

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 19 / 49

Example: Square Roots with Newton’s Method

let is_good_enough guess x =

abs_float (guess *. guess -. x) < 0.001

let improve guess x = (guess +. x /. guess) /. 2.0

let rec sqrt_iter guess x =

if is_good_enough guess x then guess

else sqrt_iter (improve guess x) x

let sqrt x = sqrt_iter 1.0 x

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 20 / 49

Example: Square Roots with Newton’s Method

#use "sqrt.ml";;

val is_good_enough : float -> float -> bool = <fun>

val improve : float -> float -> float = <fun>

val sqrt_iter : float -> float -> float = <fun>

val sqrt : float -> float = <fun>

sqrt 9.0;;

- : float = 3.00009155413138

sqrt (sqrt 2.0 +. sqrt 3.0);;

- : float = 1.77392790232078923

sqrt 1000.0 *. sqrt 1000.0;;

- : float = 1000.00036992436605

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 21 / 49

Functions are First-Class in OCaml

In programming languages, a value is first-class, if the value can be

stored in a variable,

passed as an argument of a function, and

returned from other functions.

A language is often called functional, if functions are first class values,
e.g., ML, Scala, Java8, JavaScript, Python, Lisp, etc.

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 22 / 49

Functions are First-Class in OCaml

Functions can be stored in variables:

let square = fun x -> x * x;;

square 2;;

- : int = 4

Functions can be passed to other functions:

let sum_if_true test first second =

(if test first then first else 0)

+ (if test second then second else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

let even x = x mod 2 = 0;;

val even : int -> bool = <fun>

sum_if_true even 3 4;;

- : int = 4

sum_if_true even 2 4;;

- : int = 6

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 23 / 49

Functions are First-Class in OCaml

Functions can be also returned from a procedure:

let plus_a a = fun b -> a + b;;

val plus_a : int -> int -> int = <fun>

let f = plus_a 3;;

val f : int -> int = <fun>

f 1;;

- : int = 4

f 2;;

- : int = 5

Functions that manipulate functions are called higher-order functions.

i.e., functions that take as argument functions or return functions

greatly increase the expressiveness of the language

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 24 / 49

Pattern Matching

An elegant way of doing case analysis.

E.g., using pattern-matching, the factorial function

let rec factorial a =

if a = 1 then 1 else a * factorial (a - 1)

can be written as follows:

let factorial a =

match a with

1 -> 1

|_ -> a * factorial (a - 1)

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 25 / 49

Pattern Matching

The nested if-then-else expression

let isabc c = if c = ’a’ then true

else if c = ’b’ then true

else if c = ’c’ then true

else false

can be written using pattern matching:

let isabc c =

match c with

’a’ -> true

|’b’ -> true

|’c’ -> true

| _ -> false

or simply,

let isabc c =

match c with

’a’ | ’b’ | ’c’ -> true

| _ -> false

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 26 / 49

Type Inference

In C or Java, types must be annotated:

public static int f(int n)

{

int a = 2;

return a * n;

}

In OCaml, type annotations are not mandatory:

let f n =

let a = 2 in

a * n;;

val f : int -> int = <fun>

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 27 / 49

Type Inference

OCaml can infer types, no matter how complex the program is:

let sum_if_true test first second =

(if test first then first else 0)

+ (if test second then second else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

OCaml compiler infers the type through the following reasoning steps:

1 the types of first and second must be int, because both branches
of a conditional expression must have the same type,

2 the type of test is a function type α→ β, because test is used as
a function,

3 α must be of int, because test is applied to first, a value of int,

4 β must be of bool, because conditions must be boolean expressions,

5 the return value of the function has type int, because the two
conditional expressions are of int and their addition gives int.

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 28 / 49

Type Annotation

Explicit type annotations are possible:

let sum_if_true (test : int -> bool) (x : int) (y : int) : int =

(if test x then x else 0) + (if test y then y else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

If the annotation is wrong, OCaml finds the error and report it:

let sum_if_true (test : int -> int) (x : int) (y : int) : int =

(if test x then x else 0) + (if test y then y else 0);;

Error: The expression (test x) has type int but an expression

was expected of type bool

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 29 / 49

Polymorphic Types

What is the type of the program?

let id x = x

See how OCaml infers its type:

let id x = x;;

val id : ’a -> ’a = <fun>

The function works for values of any type:

id 1;;

- : int = 1

id "abc";;

- : string = "abc"

id true;;

- : bool = true

Such a function is called polymorphic and ’a is a type variable.

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 30 / 49

Polymorphic Types

Quiz) What is the type of the function?

let first_if_true test x y =

if test x then x else y

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 31 / 49

Tuples

An ordered collection of values, each of which can be a different
types, e.g.,

let x = (1, "one");;

val x : int * string = (1, "one")

let y = (2, "two", true);;

val y : int * string * bool = (2, "two", true)

Extract each component using pattern-matching:

let fst p = match p with (x,_) -> x;;

val fst : ’a * ’b -> ’a = <fun>

let snd p = match p with (_,x) -> x;;

val snd : ’a * ’b -> ’b = <fun>

or equivalently,

let fst (x,_) = x;;

val fst : ’a * ’b -> ’a = <fun>

let snd (_,x) = x;;

val snd : ’a * ’b -> ’b = <fun>

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 32 / 49

Tuples

Patterns can be used in let:

let p = (1, true);;

val p : int * bool = (1, true)

let (x,y) = p;;

val x : int = 1

val y : bool = true

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 33 / 49

Lists

A finite sequence of elements, each of which has the same type, e.g.,

[1; 2; 3]

is a list of integers:

[1; 2; 3];;

- : int list = [1; 2; 3]

Note that
I all elements must have the same type, e.g., [1; true; 2] is not a list,
I the elements are ordered, e.g., [1; 2; 3] 6= [2; 3; 1], and
I the first element is called head, the rest tail.

[]: the empty list, i.e., nil. What are head and tail of []?

[5]: a list with a single element. What are head and tail of [5]?

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 34 / 49

List Examples

[1;2;3;4;5];;

- : int list = [1; 2; 3; 4; 5]

["OCaml"; "Java"; "C"];;

- : string list = ["OCaml"; "Java"; "C"]

[(1,"one"); (2,"two"); (3,"three")];;

- : (int * string) list = [(1, "one"); (2, "two"); (3, "three")]

[[1;2;3];[2;3;4];[4;5;6]];;

- : int list list = [[1; 2; 3]; [2; 3; 4]; [4; 5; 6]]

[1;"OCaml";3] ;;

Error: This expression has type string but an expression was

expected of type int

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 35 / 49

List Operators

:: (cons): add a single element to the front of a list, e.g.,

1::[2;3];;

- : int list = [1; 2; 3]

1::2::3::[];;

- : int list = [1; 2; 3]

([1; 2; 3] is a shorthand for 1::2::3::[])

@ (append): combine two lists, e.g.,

[1; 2] @ [3; 4; 5];;

- : int list = [1; 2; 3; 4; 5]

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 36 / 49

Patterns for Lists

Pattern matching is useful for manipulating lists.

A function to check if a list is empty:

let isnil l =

match l with

[] -> true

|_ -> false;;

val isnil : ’a list -> bool = <fun>

isnil [1];;

- : bool = false

isnil [];;

- : bool = true

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 37 / 49

Patterns for Lists

A function that computes the length of lists:

let rec length l =

match l with

[] -> 0

|h::t -> 1 + length t;;

val length : ’a list -> int = <fun>

length [1;2;3];;

- : int = 3

We can replace pattern h by _:

let rec length l =

match l with

[] -> 0

|_::t -> 1 + length t;;

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 38 / 49

Data Types

If data elements are finite, just enumerate them, e.g., “days”:

type days = Mon | Tue | Wed | Thu | Fri | Sat | Sun;;

type days = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Construct values of the type:

Mon;;

- : days = Mon

Tue;;

- : days = Tue

A function that manipulates the defined data:

let nextday d =

match d with

| Mon -> Tue | Tue -> Wed | Wed -> Thu | Thu -> Fri

| Fri -> Sa | Sat -> Sun | Sun -> Mon ;;

val nextday : days -> days = <fun>

nextday Mon;;

- : days = Tue

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 39 / 49

Data Types

Constructors can be associated with values, e.g.,
type shape = Rect of int * int | Circle of int;;

type shape = Rect of int * int | Circle of int

Construct values of the type:
Rect (2,3);;

- : shape = Rect (2, 3)

Circle 5;;

- : shape = Circle 5

A function that manipulates the data:
let area s =

match s with

Rect (w,h) -> w * h

| Circle r -> r * r * 3;;

val area : shape -> int = <fun>

area (Rect (2,3));;

- : int = 6

area (Circle 5);;

- : int = 75

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 40 / 49

Data Types

Inductive data types, e.g.,
type mylist = Nil | List of int * mylist;;

type mylist = Nil | List of int * mylist

Construct values of the type:
Nil;;

- : mylist = Nil

List (1, Nil);;

- : mylist = List (1, Nil)

List (1, List (2, Nil));;

- : mylist = List (1, List (2, Nil))

A function that manipulates the data:
let rec mylength l =

match l with

Nil -> 0

|List (_,l’) -> 1 + mylength l’;;

val mylength : mylist -> int = <fun>

mylength (List (1, List (2, Nil)));;

- : int = 2

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 41 / 49

Exceptions

An exception means a run-time error: e.g.,

let div a b = a / b;;

val div : int -> int -> int = <fun>

div 10 5;;

- : int = 2

div 10 0;;

Exception: Division_by_zero.

The exception can be handled with try ... with constructs.

let div a b =

try

a / b

with Division_by_zero -> 0;;

val div : int -> int -> int = <fun>

div 10 5;;

- : int = 2

div 10 0;;

- : int = 0

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 42 / 49

Exceptions

User-defined exceptions: e.g.,

exception Problem;;

exception Problem

let div a b =

if b = 0 then raise Problem

else a / b;;

val div : int -> int -> int = <fun>

div 10 5;;

- : int = 2

div 10 0;;

Exception: Problem.

try

div 10 0

with Problem -> 0;;

- : int = 0

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 43 / 49

Module System

ML provides an elegant module system:

Structure is a collection of types, exceptions, values, and functions,
i.e., implementation details.

Signature is the interface of the structure.

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 44 / 49

Example

The interface of a queue data structure:

empty: the empty queue

isempty: the boolean-valued test of whether q is empty

enq(q,x): the queue obtained by inserting x on the end of q

deq(q): the queue obtained by removing the front element of q (also
returns the front element)

print(q): show the contents of q

E: the exception raised by deq if the queue is empty

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 45 / 49

Example

The signature of the queue data structure:

module type IntQueue =

sig

type t

exception E

val empty : t

val is_empty : t -> bool

val enq : t -> int -> t

val deq : t -> int * t

val print : t -> unit

end

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 46 / 49

Example

An implementation:

module IntQueue : IntQueue =

struct

type t = int list

exception E

let empty = []

let enq q x = q @ [x]

let is_empty q = q = []

let deq q = match q with [] -> raise E | h::t -> (h, t)

let rec print q =

match q with

[] -> print_string "\n"

|h::t -> print_int h; print_string " "; print t

end

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 47 / 49

Example

The module can be used as follows:

let q0 = IntQueue.empty

let q1 = IntQueue.enq q0 1

let q2 = IntQueue.enq q1 2

let (_,q3) = IntQueue.deq q2

let _ = IntQueue.print q1

let _ = IntQueue.print q2

let _ = IntQueue.print q3

The program prints:

1

1 2

2

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 48 / 49

Example

The OCaml module system ensures the abstraction layer of the program:

let q4 = q1 @ [2]

produces a compile error:

Error: This expression has type IntQueue.t

but an expression was expected of type ’a list

Hakjoo Oh COSE212 2016 Fall, Lecture 3 September 26, 2016 49 / 49

