COSE212: Programming Languages

Lecture 15 — Program Synthesis

Hakjoo Oh
2016 Fall

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 1/14

Program Synthesis

Technology for automatically generating programs from specifications.
@ Specifications: logic, examples, natural language, programs, etc
@ Programs: general-purpose, domain-specific, etc

Applications:
@ Programming assistance: programs write programs

End-user programming: automate repetitive tasks

Algorithm discovery: find a new solution or insight

Patch generation: automatically fix software bugs

Program optimization: find a more efficient implementation

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 2 /14

Example 1

Q. Find a regular expression for the following language:

L = {w € {0,1}" | w has exactly one pair of consecutive Os}

@ Positive examples: 00, 1001, 010010, 1011001110, ...
@ Negative examples: 01, 11, 000, 00100, ...

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 3/14

Regular Expression Synthesizer!

Positive Examples
00,
1001,
010010,
1011001110

—> | RE Synthesizer| => (071)*00(107)*

Negative Examples
01,
11,
000,
00100

'http://prl.korea.ac.kr/AlphaRegex

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 4 /14

http://prl.korea.ac.kr/AlphaRegex

Example 2
Q. Complete the following program that reverses integers:

int reverse (int n) {
int r = 0;
while (n > 0) {

? .
)

3

return r;

}
For example,
el1=1
e 12 = 21
e 123 = 321
Given a partial program (sketch) and input-output examples, a program

synthesizer completes the program.

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 5/ 14

Today: Automatic Synthesis of Regular Expressions

Regular expressions:

@ Syntax:
e—>a€X|e|D|er+ex|er-ex|e”

@ Semantics:

[a] = {a} (a€X)

[e] = {e}

[0] = 0
[extex] = [er]U[ez]
[er-e2] = [er]lez]

[ex] = [el”

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 6 /14

Synthesis Problem

Given P C X* of positive examples and N' C X* of negative examples,
find a regular expression e that accepts all the positive examples while
rejecting all the negative examples:

VpePpeE[e]AVneNng[e].

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 7/ 14

Synthesis Algorithm

Reduction to a search problem:

(S,—,I,F)

States: Partial regular expressions possibly with holes (CJ):
s—>a€X|e|0|s1+s2]|s1-82]|8 |0

Initial State: I = [.

Transition Relation: (—) C S X S determines the next states.
The set of all states that follow s:

next(s) = {s’ | s — s’}.

Solution States: F' = {s | solution(s)}

solution(s) <—-
s/A ANVpePpe[s]AVneN.ng][s].

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 8 /14

Synthesis Algorithm
Transition relation:

51— 8} S3 — 84
/ 14
81+ 82 — 87 + S2 81+ 82 — 81 1 S5

s1— s} S2 — S5

S1+82 — 8} - s2 S1+S2 — S1 - S5
s — s
s* — g’*

a€cXx

O0—>a 00— € O—0

O—-040 O—-0.0 o— 0o*

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 9 /14

Synthesis Algorithm

a+a a+e a+0 " a+0O+0) a+(O-0) a+(0) e4+a e+e e+0 e+ (O+0)
\ |

—/ »

a+(a+a) a+(ate) a+ (a+0)

Hakjoo Oh COSE212 2016 Fall, Lecture 15

Synthesis Algorithm

Naive search algorithm:

w .= {O}
repeat
Pick a state s from W
if solution(s) then return s

else
W := W U next(s)
until W #£ 0

Challenge: extremely large search space!

N(d)=7" -1

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 11 /14

Pruning the Search Space

Techniques for safely pruning the search space:
@ pruning semantically-equivalent states,
@ pruning states that are guaranteed not to be solutions, and
@ pruning redundant states.

(beP) (aeN)
| |
a0 a-(O)*
/ k& XA
More details can be found at:

@ Mina Lee, Sunbeom So, and Hakjoo Oh.
Synthesizing Regular Expressions from Examples for Introductory
Automata Assignments. GPCE 2016.

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 12 / 14

Performance

Level No Description Examples Full | NoApr | NoRd Output
Pos | Neg | sec sec sec
1 | Start with 0. 3 31 00 0.0 0.0 0(0+1)*
2 | End with 01. 3 6| 00 0.1 0.0 (0+1)*01
Basy 3 Contain the substring 0101. 3 7 14 10.6 1.9 (0+1)*0101(0+1)*
4 | Begin with 1 and end with 0. 3 5 0.0 0.0 0.0 1(0+1)*0
5 | Lengthis at least 3 and the 3rd symbol is 0. 3 4| 00 0.0 0.0 (0+1)(0+1)0(0+1)*
6 | Length is a multiple of 3. 2 30 01 0.1 0.1 ((O+1)(0+1)(0+1))*
7 The number of Os is divisible by 3. 8 7 9.5 2384 36.9 (1+01*01*0)*
8 | Even number of 0s. 7 7 0.1 1.0 0.2 (1+01*0)*
9 The 5th symbol from the right end is 1. 3 3 9.0 56.3 143 (O+1)*1(0+1)(0+1)(0+1)(0+1)
10 | Oand 1 alternate. 9 8 1.7 19.7 35 12001)*0?
Normal 11 | Each 0 is followed by at least one 1. 7 6 0.0 0.0 0.0 (021)*
12 | 0™1™ where n > 3 and m is even. 6 5 0.2 1.0 0.7 000*0(11)*
13 | Have at most two 0Os. 8 7 14 9.5 2.3 1#¥021*0?1*
14 | Start with 0 and have odd length or 5 5| 165 771.9 14.7 (O+1(0+1))((O+1)(0+1))*
start with 1 and have even length.
15 | Any strings except 0 and 1. 3 2 0.0 0.0 0.0 (0+1)(0+1)(0+1)*
16 | Do not end with 01. 8 30178 | 3021 152 | O+14+(0+1)*(0+1(0+1))
17 | Contain at least one 0 and at most one 1. 6 9 2.7 335 7.7 0#(01?4+100%)
18 | Atleast two occurrences of 1 7 7 0.2 0.4 0.2 02(1(10)7*
between any two occurrences of 0.
19 | Do not contain 100 as a substring. 8 4 0.1 0.1 0.1 0*(1(0+1)1)*
20 | Every odd position is 1. 6 9 3.6 10.5 5.0 (1(0+1))*1*
21 | Have exactly one pair of consecutive 0s. 4 4 1.0 16.1 29 (021)*00(102)*
Hard 22 | Do not end with 10 and 9 4 | 572 | 42480 75.3 (O+1)(0+1)*1+(0+1)*0(0+1)
have a length of at least two
23 | Even number of Os and 6 9 1.8 30.2 4.3 (1401*101)*
each 0 is followed by at least one 1.
24 | Every pair of adjacent Os appears 9 9 | 144 506.1 73.7 02((01)?107)*
before any pair of adjacent 1s.
25 | Atmost one pair of consecutive Is. 5 5 | 28.8 863.6 211.2 (120)*1?12(017)*
Average 6.7 284.8 18.8

Hakjoo Oh COSE212 2016 Fall, Lecture

December 5, 2016

13 / 14

Summary

@ Program synthesis is an active research area, which enables
computers to write programs.

@ The task of synthesizing a program is reduced to a search problem
over the space of programs (i.e., programming language).

Hakjoo Oh COSE212 2016 Fall, Lecture 15 December 5, 2016 14 / 14

