COSE212: Programming Languages

Lecture 13 - Untyped Lambda Calculus

Hakjoo Oh
2016 Fall

Origins of Computers and Programming Languages

- What is the original model of computers?
- What is the original model of programming languages?
- Which one came first?
cf) Church-Turing thesis:
Lambda calculus $=$ Turing machine

Lambda Calculus

- The first, yet turing-complete, programming language
- Developed by Alonzo Church in 1936
- The core of functional programming languages (e.g., Lisp, ML, Haskell, Scala, etc)

Syntax of Lambda Calculus

\boldsymbol{e}	$\rightarrow \boldsymbol{x}$	variables
$\boldsymbol{\lambda x . e}$	abstraction	
$\boldsymbol{e} \boldsymbol{e}$	application	

- Examples:

\[

\]

- Conventions when writing $\boldsymbol{\lambda}$-expressions:
(1) Application associates to the left, e.g., $s t u=(s t) u$
(2) The body of an abstraction extends as far to the right as possible, e.g., $\lambda x . \lambda y . x y x=\lambda x .(\lambda y \cdot((x y) x))$

Bound and Free Variables

- An occurrence of variable \boldsymbol{x} is said to be bound when it occurs inside $\boldsymbol{\lambda} \boldsymbol{x}$, otherwise said to be free.
- $\lambda y .(x y)$
- $\lambda x . x$
- $\lambda z . \lambda x \cdot \lambda x .(y z)$
- $(\lambda x . x) x$
- Expressions without free variables is said to be closed expressions or combinators.

Evaluation

To evaluate $\boldsymbol{\lambda}$-expression \boldsymbol{e},
(1) Find a sub-expression of the form:

$$
\left(\lambda x \cdot e_{1}\right) e_{2}
$$

Expressions of this form are called "redex" (reducible expression).
(2) Rewrite the expression by substituting the \boldsymbol{e}_{2} for every free occurrence of \boldsymbol{x} in e_{1} :

$$
\left(\lambda x . e_{1}\right) e_{2} \rightarrow\left[x \mapsto e_{2}\right] e_{1}
$$

This rewriting is called $\boldsymbol{\beta}$-reduction
Repeat the above two steps until there are no redexes.

Evaluation

- $\lambda x . x$
- $(\lambda x . x) y$
- $(\lambda x . x y)$
- $(\lambda x . x y) z$
- $(\lambda x .(\lambda y . x)) z$
- $(\lambda x .(\lambda x . x)) z$
- $(\lambda x .(\lambda y . x)) y$
- $(\lambda x .(\lambda y . x y))(\lambda x . x) z$

Evaluation Strategy

- In a lambda expression, multiple redexes may exist. Which redex to reduce next?

$$
\lambda x . x(\lambda x . x(\lambda z .(\lambda x . x) z))=i d(i d(\lambda z . i d z))
$$

redexes:

$$
\begin{aligned}
& \frac{i d(i d(\lambda z . i d z))}{i d(i d(\lambda z . i d z))} \\
& i d(i d(\lambda z . i d z))
\end{aligned}
$$

- Evaluation strategies:
- Full beta-reduction
- Normal order
- Call-by-name
- Call-by-value

Full beta-reduction strategy

Any redex may be reduced at any time:

$$
\begin{aligned}
& i d(i d(\lambda z . \underline{i d ~ z})) \\
\rightarrow & i d(i d(\lambda z . z)) \\
\rightarrow & i d(\overline{(\lambda z . z)} \\
\rightarrow & \frac{\lambda z . z}{\rightarrow}
\end{aligned}
$$

or,

$$
\begin{aligned}
& i d(\underline{i d(\lambda z . i d z)}) \\
\rightarrow & \frac{i d(\overline{\lambda z . i d z)}}{\lambda z . i d z} \\
\rightarrow & \lambda z . z \\
\rightarrow &
\end{aligned}
$$

The evaluation is non-deterministic.

Normal order strategy

Reduce the leftmost, outermost redex first:

$$
\begin{aligned}
& \quad \frac{i d(i d(\lambda z . i d z))}{\rightarrow} \frac{\underline{i d(\lambda z . i d z))}}{\lambda z . \underline{i d z}} \\
& \rightarrow \lambda z . \bar{z} \\
& \rightarrow
\end{aligned}
$$

The evaluation is deterministic (i.e., partial function).

Call-by-name strategy

Follow the normal order reduction, not allowing reductions inside abstractions:

$$
\begin{aligned}
& \rightarrow \frac{i d(i d(\lambda z . i d z))}{i d(\lambda z . i d z))} \\
& \rightarrow \\
& \rightarrow
\end{aligned}
$$

The call-by-name strategy is non-strict (or lazy) in that it evaluates arguments that are actually used.

Call-by-value strategy

Reduce the outermost redex whose right-hand side has a value (a term that cannot be reduced any further):

$$
\begin{aligned}
& i d(\overline{i d(\lambda z . i d z)}) \\
\rightarrow & \frac{i d(\overline{\lambda z . i d z)})}{\lambda z . i d z} \\
\rightarrow &
\end{aligned}
$$

The call-by-name strategy is strict in that it always evaluates arguments, whether or not they are used in the body.

Programming in the Lambda Calculus

- boolean values
- natural numbers
- pairs
- recursion

Church Booleans

- Boolean values:

$$
\begin{aligned}
\text { true } & =\boldsymbol{\lambda} t . \boldsymbol{\lambda} . t \\
\text { false } & =\boldsymbol{\lambda} \cdot \boldsymbol{\lambda} \cdot \boldsymbol{f} \cdot \boldsymbol{f}
\end{aligned}
$$

- Conditional test:

$$
\text { test }=\lambda l \cdot \lambda m \cdot \lambda n \cdot l m n
$$

- Then,

$$
\text { test } b \boldsymbol{v} \boldsymbol{w}= \begin{cases}\boldsymbol{v} & \text { if } \boldsymbol{b}=\text { true } \\ \boldsymbol{w} & \text { if } \boldsymbol{b}=\text { false }\end{cases}
$$

- Example:

$$
\begin{aligned}
\text { test true } v w & =(\lambda l . \lambda m . \lambda n . l m n) \operatorname{true} v w \\
& =(\lambda m . \lambda n . \operatorname{true} m n) v w \\
& =\operatorname{true} \boldsymbol{v} w \\
& =(\lambda t . \lambda f . t) v w \\
& =(\lambda f . v) w \\
& =v
\end{aligned}
$$

Church Booleans

Logical operators:

- Logical "and":

$$
\begin{aligned}
& \text { and }=\lambda b \cdot \boldsymbol{\lambda c} \cdot(b c \text { false }) \\
& \text { and true true }=\text { true } \\
& \text { and true false }=\text { false } \\
& \text { and false true }=\text { false } \\
& \text { and false false }=\text { false }
\end{aligned}
$$

- (exercise) Logical "or" and "not"?

$$
\begin{aligned}
\text { or true true } & =\text { true } \\
\text { or true false } & =\text { true } \\
\text { or false true } & =\text { true } \\
\text { or false false } & =\text { false } \\
\text { not true } & =\text { false } \\
\text { not false } & =\text { true }
\end{aligned}
$$

Pairs

Using booleans, we can encode pairs of values.
pair $\boldsymbol{v} \boldsymbol{w}$: create a pair of \boldsymbol{v} and \boldsymbol{w}
fst $\boldsymbol{p}:$ select the first component of \boldsymbol{p}
snd $\boldsymbol{p}:$ select the second component of \boldsymbol{p}

- Definition:

$$
\begin{aligned}
\text { pair } & =\lambda f . \lambda s . \lambda b . b f s \\
\text { fst } & =\lambda p . p \text { true } \\
\text { snd } & =\lambda p . p \text { false }
\end{aligned}
$$

- Example:

$$
\begin{aligned}
\text { fst }(\text { pair } v w) & =\text { fst }((\lambda f . \lambda s . \lambda b . b f s) v w) \\
& =\text { fst }(\lambda b . b v w) \\
& =(\lambda p . p \text { true })(\lambda b . b v w) \\
& =(\lambda b . b v w) \text { true } \\
& =\operatorname{true} \boldsymbol{v} w \\
& =\boldsymbol{v}
\end{aligned}
$$

Church Numerals

$$
\begin{aligned}
c_{0} & =\lambda s \cdot \lambda z \cdot z \\
c_{1} & =\lambda s \cdot \lambda z \cdot(s z) \\
c_{2} & =\lambda s \cdot \lambda z \cdot s(s z) \\
& \vdots \\
c_{n} & =\lambda s \cdot \lambda z \cdot s^{n} z
\end{aligned}
$$

Church Numerals

- Successor:

$$
\operatorname{succ} c_{i}=c_{i+1}
$$

Definition:

$$
\text { succ }=\lambda n . \lambda s . \lambda z . s(n s z)
$$

Example:

$$
\text { succ } \begin{aligned}
c_{0} & =\lambda n \cdot \lambda s \cdot \lambda z \cdot(s(n s z)) c_{0} \\
& =\lambda s \cdot \lambda z \cdot\left(s\left(c_{0} s z\right)\right) \\
& =\lambda s \cdot \lambda z \cdot(s z) \\
& =c_{1}
\end{aligned}
$$

Church Numeral

- Addition:

$$
\text { plus } c_{n} c_{m}=c_{n+m}
$$

Definition:

$$
\text { plus }=\lambda n \cdot \lambda m \cdot \lambda s . \lambda z \cdot m s(n s z)
$$

Example:

$$
\begin{aligned}
\text { plus } c_{1} c_{2} & =\lambda s \cdot \lambda z \cdot c_{2} s\left(c_{1} s z\right) \\
& =\lambda s \cdot \lambda z \cdot c_{2} s(s z) \\
& =\lambda s \cdot \lambda z \cdot s(s(s z)) \\
& =c_{3}
\end{aligned}
$$

Church Numerals

- Multiplication:

$$
\text { mult } c_{n} c_{m}=c_{n * m}
$$

Definition:
mult $=$

Church Numerals

- Multiplication:

$$
\text { mult } c_{n} c_{m}=c_{n * m}
$$

Definition:

$$
\text { mult }=
$$

Example:

$$
\begin{aligned}
\text { mult } c_{1} c_{2} & \left.=(\lambda m . \lambda n . m \text { (plus } n) c_{0}\right) c_{1} c_{2} \\
& =c_{1}\left(\text { plus } c_{2}\right) c_{0} \\
& =\left(\text { plus } c_{2}\right) c_{0} \\
& =\left(\lambda m . \lambda s . \lambda z . m \text { s }\left(c_{2} s z\right)\right) c_{0} \\
& =\lambda s . \lambda z \cdot c_{0} s\left(c_{2} s z\right) \\
& =\lambda s . \lambda z . c_{2} s \quad z \\
& =\lambda s . \lambda z . s(s \quad z)
\end{aligned}
$$

- Other definition:

$$
\text { mult2 }=\lambda m \cdot \lambda n \cdot \lambda s \cdot \lambda z \cdot m(n s) z
$$

- Power $\left(\boldsymbol{n}^{m}\right)$:

$$
\text { power }=\lambda m \cdot \lambda n \cdot m(\text { mult } n) c_{1}
$$

Church Numerals

- Testing zero:

$$
\begin{aligned}
& \text { zero? } \boldsymbol{c}_{\mathbf{0}}=\text { true } \\
& \text { zero? } \boldsymbol{c}_{\mathbf{1}}=\text { false }
\end{aligned}
$$

Definition:
zero? =

Example:

$$
\text { zero? } c_{0}=
$$

Recursion

- In lambda calculus, recursion is magically realized via Y-combinator:

$$
Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

- For example, the factorial function

$$
\mathrm{f}(\boldsymbol{n})=\text { if } \boldsymbol{n}=\mathbf{0} \text { then } \mathbf{1} \text { else } \boldsymbol{n} * \mathrm{f}(\boldsymbol{n}-\mathbf{1})
$$

is encoded by

$$
\text { fact }=Y(\lambda f . \lambda n \text {.if } n=0 \text { then } 1 \text { else } n * f(n-1))
$$

Then, fact \boldsymbol{n} computes \boldsymbol{n} !.

- Recursive functions can be encoded by composing non-recursive functions!

Recursion

Let $F=\lambda f$. $\boldsymbol{\lambda} n$.if $n=\mathbf{0}$ then $\mathbf{1}$ else $\boldsymbol{n} \boldsymbol{*}(\boldsymbol{n} \mathbf{- 1)}$ and $G=\lambda x . F(x x)$.
fact 1
$=\left(\begin{array}{ll}\boldsymbol{Y}\end{array}\right) 1$
$=(\lambda f \cdot((\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) F) 1$
$=((\lambda x . F(x x))(\lambda x . F(x x))) 1$
$=(G G) 1$
$=(F(G G)) 1$
$=(\lambda n$.if $n=0$ then 1 else $n *(G G)(n-1)) 1$
$=$ if $1=0$ then 1 else $1 *(G G)(1-1))$
$=$ if false then 1 else $1 *(G G)(1-1))$
$=1 *(G G)(1-1)$
$=1 *(F(G G))(1-1)$
$=1 *(\lambda n$.if $n=0$ then 1 else $n *(G G)(n-1))(1-1)$
$=1 *$ if $(1-1)=0$ then 1 else $(1-1) *(G G)((1-1)-1)$
$=1 * 1$

Summary

- λ-calculus is a simple and minimal language.
- Syntax: $e \rightarrow x|\lambda x . e| e e$
- Semantics: $\boldsymbol{\beta}$-reduction
- Yet, $\boldsymbol{\lambda}$-calculus is Turing-complete.
- E.g., ordinary values (e.g., boolean, numbers, pairs, etc) can be encoded in λ-calculus (see in the next class).
- Church-Turing thesis:

