COSE212: Programming Languages

Lecture 11 - Automatic Type Inference (2)

Hakjoo Oh
2016 Fall

Finding a Solution of Type Equations

Find values for the type variables that make all the equations true.

Equations	
$\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow \boldsymbol{t}_{\mathbf{1}}$	Solution
$\boldsymbol{t}_{\mathbf{1}}=$ t $\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{2}}$	$\boldsymbol{t}_{\mathbf{1}}=$ (int \rightarrow int $) \rightarrow$ (int \rightarrow int $)$
$\boldsymbol{t}_{\mathbf{3}}=$ int	$\boldsymbol{t}_{\mathbf{2}}=$ int
$\boldsymbol{t}_{\mathbf{4}}=$ int	$\boldsymbol{t}_{\mathbf{3}}=$ int
$\boldsymbol{t}_{\mathbf{2}}=$ int	$\boldsymbol{t}_{\mathbf{4}}=$ int
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{3}}$	$\boldsymbol{t}_{\boldsymbol{f}}=$ int \rightarrow int
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{4}}$	$\boldsymbol{t}_{\boldsymbol{x}}=$ int

Such a solution can be found by the unification algorithm.

Unification Algorithm: Example 1

The calculation is split into equations to be solved and substitution found so far. Initially, the substitution is empty:

| Equations | Substitution |
| ---: | :--- | :--- |
| $\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow \boldsymbol{t}_{1}$ | |
| $\boldsymbol{t}_{\mathbf{1}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{2}}$ | |
| $\boldsymbol{t}_{\mathbf{3}}=$ int | |
| $\boldsymbol{t}_{\mathbf{4}}=$ int | |
| $\boldsymbol{t}_{\mathbf{2}}=$ int | |
| $\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\boldsymbol{3}}$ | |
| $\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{4}}$ | |

Unification Algorithm: Example 1

Consider each equation in turn. If the equation's left-hand side is a variable, move it to the substitution:

Equations	Substitution
$\boldsymbol{t}_{\mathbf{1}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{2}}$	$\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow \boldsymbol{t}_{\mathbf{1}}$
$\boldsymbol{t}_{\mathbf{3}}=$ int	
$\boldsymbol{t}_{\boldsymbol{4}}=$ int	
$\boldsymbol{t}_{\mathbf{2}}=$ int	
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{3}}$	
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\boldsymbol{4}}$	

Unification Algorithm: Example 1

Move the next equation to the substitution and propagate the information to the existing substitution (i.e., substitute the right-hand side for each occurrence of \boldsymbol{t}_{1}):

Equations	Substitution
$\boldsymbol{t}_{\mathbf{3}}=$ int	$\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow\left(\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{2}}\right)$
$\boldsymbol{t}_{\boldsymbol{4}}=$ int	$\boldsymbol{t}_{1}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{2}}$
$\boldsymbol{t}_{\mathbf{2}}=$ int	
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{3}}$	
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\boldsymbol{4}}$	

Unification Algorithm: Example 1

Same for the next three equations:

Equations	Substitution
$\boldsymbol{t}_{\boldsymbol{4}}=$ int	$t_{0}=t_{f} \rightarrow\left(t_{x} \rightarrow t_{2}\right)$
$\boldsymbol{t}_{2}=$ int	$t_{1}=t_{x} \rightarrow t_{2}$
$t_{f}=$ int $\rightarrow t_{3}$	$\boldsymbol{t}_{3}=\mathrm{int}$
$t_{f}=t_{x} \rightarrow t_{4}$	
Equations	Substitution
$\boldsymbol{t}_{\mathbf{2}}=\mathrm{int}$	$t_{0}=t_{f} \rightarrow\left(t_{x} \rightarrow t_{2}\right)$
$t_{f}=\mathrm{int} \rightarrow t_{3}$	$t_{1}=t_{x} \rightarrow t_{2}$
$t_{f}=t_{x} \rightarrow t_{4}$	$\begin{aligned} & \boldsymbol{t}_{\mathbf{3}}=\text { int } \\ & \boldsymbol{t}_{\mathbf{4}}=\text { int } \end{aligned}$
Equations	Substitution
$t_{f}=$ int $\rightarrow t_{3}$	$t_{0}=t_{f} \rightarrow\left(t_{x} \rightarrow \mathrm{int}\right)$
$t_{f}=t_{x} \rightarrow t_{4}$	$t_{1}=t_{x} \rightarrow \mathrm{int}$
	$\boldsymbol{t}_{\mathbf{3}}=\mathrm{int}$
	$\boldsymbol{t}_{4}=\mathrm{int}$
	$\boldsymbol{t}_{\mathbf{2}}=\mathrm{int}$

Unification Algorithm: Example 1

Consider the next equation $\boldsymbol{t}_{f}=\mathrm{int} \rightarrow \boldsymbol{t}_{\mathbf{3}}$. The equation contains $\boldsymbol{t}_{\mathbf{3}}$, which is already bound to int in the substitution. Substitute int for t_{3} in the equation. This is called applying the substitution to the equation.

Equations	Substitution
$\boldsymbol{t}_{\boldsymbol{f}}=$ int \rightarrow int	$\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow\left(\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \mathrm{int}\right)$
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{4}$	$\boldsymbol{t}_{\mathbf{1}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow$ int
$\boldsymbol{t}_{3}=$ int	
$\boldsymbol{t}_{\mathbf{4}}=$ int	
$\boldsymbol{t}_{\mathbf{2}}=$ int	

Move the resulting equation to the substitution and update it.

Equations	Substitution
$t_{f}=t_{x} \rightarrow t_{4}$	$\begin{aligned} \boldsymbol{t}_{\mathbf{0}} & =(\text { int } \rightarrow \text { int }) \rightarrow\left(\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \mathrm{int}\right) \\ \boldsymbol{t}_{\mathbf{1}} & =\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \text { int } \\ \boldsymbol{t}_{3} & =\text { int } \\ \boldsymbol{t}_{\mathbf{4}} & =\text { int } \\ \boldsymbol{t}_{\mathbf{2}} & =\text { int } \\ \boldsymbol{t}_{\boldsymbol{f}} & =\text { int } \rightarrow \text { int } \end{aligned}$

Unification Algorithm: Example 1

Apply the substitution to the equation:

Equations	
int \rightarrow int $=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow$ int	$\boldsymbol{t}_{\mathbf{0}}=$ (int \rightarrow int $) \rightarrow\left(t_{x} \rightarrow \mathrm{int}\right)$
	$\boldsymbol{t}_{1}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow$ int
$\boldsymbol{t}_{3}=$ int	
	$\boldsymbol{t}_{\mathbf{4}}=$ int
$\boldsymbol{t}_{2}=$ int	
$\boldsymbol{t}_{\boldsymbol{f}}=$ int \rightarrow int	

If neither side of the equation is a variable, simplify the equation by yielding two new equations:

Equations	Substitution
int $=\boldsymbol{t}_{\boldsymbol{x}}$	$t_{0}=($ int \rightarrow int $) \rightarrow\left(t_{x} \rightarrow\right.$ int $)$
int $=$ int	$t_{1}=t_{x} \rightarrow \mathrm{int}$
	$\boldsymbol{t}_{3}=\mathrm{int}$
	$\boldsymbol{t}_{\boldsymbol{4}}=\mathrm{int}$
	$\boldsymbol{t}_{2}=\mathrm{int}$
	$\boldsymbol{t}_{\boldsymbol{f}}=\mathrm{int} \rightarrow$ int

Unification Algorithm: Example 1

Switch the sides of the first equation and move it to the substitution:

Equations	Substitution
int $=$ int	$\begin{aligned} & \left.\boldsymbol{t}_{\mathbf{0}}=\text { (int } \rightarrow \mathrm{int}\right) \rightarrow(\mathrm{int} \rightarrow \mathrm{int}) \\ & \boldsymbol{t}_{\mathbf{1}}=\text { int } \rightarrow \text { int } \\ & \boldsymbol{t}_{3}=\text { int } \\ & \boldsymbol{t}_{\mathbf{4}}=\text { int } \\ & \boldsymbol{t}_{\mathbf{2}}=\text { int } \\ & \boldsymbol{t}_{\boldsymbol{f}}=\text { int } \rightarrow \text { int } \\ & \boldsymbol{t}_{\boldsymbol{x}}=\text { int } \end{aligned}$

The final substitution is the solution of the original equations.

Unification Algorithm

For each equation in turn,
(1) Apply the current substitituion to the equation.
(2) If the left-hand side is a variable, move it to the substitution and substitute the right-hand side for each occurrence of the variable in the substitution. (If the right-hand side is a variable, switch the sides and do the same thing).
Basically, the algorithm follows the two steps. Two execptions: If neither side is a variable, simplify the equation, which eventually generates an equation whose left- or right-hand side is a variable. If the equation is always true, discard it.

Unification Algorithm: Example 2

$$
\begin{aligned}
\boldsymbol{t}_{\mathbf{0}} & =\boldsymbol{t}_{\boldsymbol{f}} \rightarrow \boldsymbol{t}_{1} \\
\boldsymbol{t}_{\boldsymbol{f}} & =\text { int } \rightarrow \boldsymbol{t}_{1}
\end{aligned}
$$

Unification Algorithm: Example 2

(1)

Equations	Substitution
$t_{0}=\boldsymbol{t}_{f} \rightarrow \boldsymbol{t}_{1}$	
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{1}$	

(2)

Equations	Substitution
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{1}}$	$\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow \boldsymbol{t}_{\mathbf{1}}$

(3)

Equations	Substitution
	$t_{0}=\left(\operatorname{int} \rightarrow t_{1}\right) \rightarrow \boldsymbol{t}_{1}$
	$t_{f}=$ int $\rightarrow t_{1}$

The type is polymorphic in $\boldsymbol{t}_{\mathbf{1}}$.

Unification Algorithm: Example 3

Unification Algorithm: Example 4

Exercises

For each following expression, perform the type inference and find its type, or determine that no such type exists.
(1) let $x=4$ in ($x 3$)
(2) let $f=\operatorname{proc}(z) z$ in $\operatorname{proc}(x)((f x)-1)$
(3) let $p=$ iszero 1 in if p then 88 else 99
(9) let $f=\operatorname{proc}(x) x$ in if $(f($ iszero 0$))$ then $(f 11)$ else $(f 22)$

Summary

Automatic type inference:

- derive type equations from the program text, and
- solve the equations by unification.

