
Homework 5: Type Checker

COSE212, Fall 2016

Hakjoo Oh

Due: 12/2, 24:00

Problem 1 Consider the LETREC language:

type exp =

| CONST of int

| VAR of var

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| ISZERO of exp

| IF of exp * exp * exp

| LET of var * exp * exp

| LETREC of var * var * exp * exp

| PROC of var * exp

| CALL of exp * exp

and var = string

Types for the language are defined as follows:

type typ = TyInt | TyBool | TyFun of typ * typ | TyVar of tyvar

and tyvar = string

Implement the following type-inference function:

typeof : exp -> typ

which takes a program and returns its type if the program is well-typed. When
the program is ill-typed, typeof should raise an exception TypeError.

Examples:

• The program

PROC ("f",

PROC ("x", SUB (CALL (VAR "f", CONST 3),

CALL (VAR "f", VAR "x"))))

1

has type TyFun (TyFun (TyInt, TyInt), TyFun (TyInt, TyInt)).

• The program

PROC ("f", CALL (VAR "f", CONST 11))

has type TyFun (TyFun (TyInt, TyVar "t"), TyVar "t"), where t can
be any type variable.

• The program

LET ("x", CONST 1,

IF (VAR "x", SUB (VAR "x", CONST 1), CONST 0))

is ill-typed, so typeof should raise an exception TypeError.

As discussed in class, typeof is defined with two functions: one for generating
type equations and the other for solving the equations. Your job is to complete
the implementation of these two functions:

gen equations : TEnv.t -> exp -> typ -> typ eqn

solve : typ eqn -> Subst.t

Modules for type environments (TEnv) and substitutions (Subst), as well as
the operations of applying substitutions to types (Subst.apply) and extending
substitutions (Subst.extend), are provided. Also, a parser will be provided.

2

