
Homework 2

COSE212, Fall 2016

Hakjoo Oh

Due: 10/14, 24:00

Problem 1 Write two functions

max: int list -> int

min: int list -> int

that find maximum and minimum elements of a given list, respectively. For
example max [1;3;5;2] should evaluate to 5 and min [1;3;2] should be 1.
Assume that the input list is non-empty. (Hint: Use fold.)

Problem 2 Write the function filter

filter : (’a -> bool) -> ’a list -> ’a list

Given a predicate p and a list l, filter p l returns all the elements of the
list l that satisfy the predicate p. The order of the elements in the input list is
preserved. For example,

filter (fun x -> x mod 2 = 0) [1;2;3;4;5];;

- : int list = [2; 4]

filter (fun x -> x > 0) [5;-1;0;2;-9];;

- : int list = [5; 2]

filter (fun x -> x * x > 25) [1;2;3;4;5;6;7;8];;

- : int list = [6; 7; 8]

Problem 3 Write a function

double: (’a -> ’a) -> ’a -> ’a

that takes a function of one argument as argument and returns a function that
applies the original function twice. For example,

let inc x = x + 1;;

val inc : int -> int = <fun>

let mul x = x * 2;;

val mul : int -> int = <fun>

(double inc) 1;;

1

- : int = 3

((double double) inc) 0;;

- : int = 4

((double (double double)) inc) 5;;

- : int = 21

(double mul) 1;;

- : int = 4

(double double) mul 2;;

- : int = 32

Problem 4 Binary trees can be defined as follows:

type btree =

Empty

|Node of int * btree * btree

For example, the following t1 and t2

let t1 = Node (1, Empty, Empty)

let t2 = Node (1, Node (2, Empty, Empty), Node (3, Empty, Empty))

are binary trees. Write the function

mem: int -> btree -> bool

that checks whether a given integer is in the tree or not. For example,

mem 1 t1

evaluates to true, and
mem 4 t2

evaluates to false.

Problem 5 Natural numbers can be defined as follows:

type nat = ZERO | SUCC of nat

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two
functions that add and multiply natural numbers:

natadd : nat -> nat -> nat

natmul : nat -> nat -> nat

For example,

let two = SUCC (SUCC ZERO);;

val two : nat = SUCC (SUCC ZERO)

let three = SUCC (SUCC (SUCC ZERO));;

val three : nat = SUCC (SUCC (SUCC ZERO))

natmul two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))

natadd two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))

2

Problem 6 Consider the following propositional formula:

type formula =

| True

| False

| Not of formula

| AndAlso of formula * formula

| OrElse of formula * formula

| Imply of formula * formula

| Equal of exp * exp

and exp =

| Num of int

| Plus of exp * exp

| Minus of exp * exp

Write the function
eval : formula -> bool

that computes the truth value of a given formula. For example,

eval (Imply (Imply (True,False), True))

evaluates to true, and

eval (Equal (Num 1, Plus (Num 1, Num 2)))

evaluates to false.

3

