Homework 1
 COSE212, Fall 2016

Hakjoo Oh
Due: 09/30, 24:00

Problem 1 The Fibonacci numbers can be defined as follows:

$$
f i b(n)= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ \operatorname{fib}(n-1)+\operatorname{fib}(n-2) & \text { otherwise }\end{cases}
$$

Write in OCaml the function
fib: int -> int
that computes the Fibonacci numbers.

Problem 2 Consider the following triangle (it is called Pascal's triangle):

1			
$\begin{array}{ll}1 & 1 \\ 2\end{array}$			
		3	3
1	4	6	

where the numbers at the edge of the triangle are all 1 , and each number inside the triangle is the sum of the two numbers above it. Write a function

```
pascal: int * int -> int
```

that computes elements of Pascal's triangle. For example, pascal should behave as follows:

```
pascal (0,0) = 1
pascal (1,0) = 1
pascal (1,1) = 1
pascal (2,1) = 2
pascal (4,2) = 6
```

Problem 3 Write a function
prime: int -> bool
that checks whether a number is prime (n is prime if and only if n is its own smallest divisor). For example,

$$
\begin{aligned}
& \text { prime } 2=\text { true } \\
& \text { prime } 3=\text { true } \\
& \text { prime } 4=\text { false } \\
& \text { prime } 17=\text { true }
\end{aligned}
$$

Problem 4 Write a function
sigma : (int -> int) -> int -> int -> int
such that sigma $f a b$ computes

$$
\sum_{i=a}^{b} f(i)
$$

For instance,

$$
\text { sigma (fun x -> x) } 110
$$

evaulates to 55 and

$$
\text { sigma (fun } x \text {-> } x * x \text {) } 17
$$

evaluates to 140 .

