COSE212: Programming Languages

Lecture 8 - States

Hakjoo Oh
2015 Fall

Motivating Example

- How can we compute the number of times f has been called?

```
let f = proc (x) (x)
in (f (f 1))
```

- Does the following program work?
let counter $=0$
in let $f=$ proc (x) (let counter $=$ counter +1 in x)
in let $a=(f(f 1))$
in counter
- The language should support effects.
- Effects are implemented by introducing memory (store) and locations (reference).

Computational Effects

Programming languages support effects explicitly or implicitly.

- Explicit languages provide a clear account of allocation, dereference, and mutation of memory cells, e.g., ML.
- In implict languages, they are built-in, e.g., C and Java.

A Language with Explict References

$$
\begin{aligned}
& P \rightarrow E \\
& E \rightarrow \boldsymbol{n} \mid \boldsymbol{x} \\
& E+E \mid E-E \\
& \text { zero? } \boldsymbol{E} \mid \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \mid \boldsymbol{E} \boldsymbol{E} \\
& \text { ref } \boldsymbol{E} \\
& \text { ! } E \\
& E:=E \\
& \text { E; } E
\end{aligned}
$$

- ref \boldsymbol{E} allocates a new location and store the value of \boldsymbol{E} in it.
- ! \boldsymbol{E} returns the contents of the location that \boldsymbol{E} refers to.
- $\boldsymbol{E}_{1}:=\boldsymbol{E}_{\mathbf{2}}$ changes the contents of the location $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ by the value of E_{2}.

Example 1

- let counter = ref 0

$$
\begin{aligned}
& \text { in let } f=\text { proc }(x) \text { (counter }:=\text { ! counter }+1 \text {; !counter) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

- let $f=$ let counter $=$ ref 0 in proc (x) (counter := !counter + 1; !counter)
in let $a=(f 0)$

$$
\begin{gathered}
\text { in let } b=(f 0) \\
\text { in }(a-b)
\end{gathered}
$$

- let $f=\operatorname{proc}(x)$ (let counter $=$ ref 0
in (counter := !counter + 1; !counter))

$$
\begin{gathered}
\text { in let } a=(f 0) \\
\text { in let } b=(f 0) \\
\text { in }(a-b)
\end{gathered}
$$

Example 2

We can make chains of references:

```
let x = ref (ref 0)
in (!x := 11; !(!x))
```


Semantics

Memory is modeled as a finite map from locations to values:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure }+ \text { Loc } \\
\text { Procedure } & =\operatorname{Var} \times \boldsymbol{E} \times \text { Env } \\
\rho \in \text { Env } & =\text { Var } \rightarrow \text { Val } \\
\sigma \in \text { Mem } & =\text { Loc } \rightarrow \text { Val }
\end{aligned}
$$

Semantics rules describe memory effects:

$$
\rho, \sigma \vdash E \Rightarrow v, \sigma^{\prime}
$$

Semantics

Existing rules are enriched with stores:

$$
\begin{gathered}
\overline{\rho, \sigma \vdash n \Rightarrow n, \sigma} \quad \overline{\rho, \sigma \vdash x \Rightarrow \rho(x), \sigma} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow n_{1}, \sigma_{1}}{\rho, \sigma_{0} \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}, \sigma_{2}} \quad \rho, \sigma_{1} \vdash E_{2}, \sigma_{2} \\
\frac{\rho, \sigma_{0} \vdash E \Rightarrow 0, \sigma_{1}}{\rho, \sigma_{0} \vdash \text { zero? } E \Rightarrow \operatorname{true}, \sigma_{1}} \quad \frac{\rho, \sigma_{0} \vdash E \Rightarrow n, \sigma_{1}}{\rho, \sigma_{0} \vdash \text { zero? } E \Rightarrow \text { false, } \sigma_{1}} n \neq 0 \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow \operatorname{true}, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad\left[x \mapsto v_{1}\right] \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \operatorname{let} x=E_{1} \text { in } E_{2} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma \vdash \operatorname{proc} x E \Rightarrow(x, E, \rho), \sigma}{\rho, \sigma_{0} \vdash E_{1} \vdash\left(x, E, \rho^{\prime}\right), \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2} \quad[x \mapsto v] \rho^{\prime}, \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3}} \\
\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3}
\end{gathered}
$$

Semantics

Rules for new constructs:

$$
\begin{gathered}
\frac{\rho, \sigma_{0} \vdash E \Rightarrow v, \sigma_{1}}{\rho, \sigma_{0} \vdash \operatorname{ref} E \Rightarrow l,[l \mapsto v] \sigma_{1}} l \notin \operatorname{Dom}\left(\sigma_{1}\right) \\
\frac{\rho, \sigma_{0} \vdash E \Rightarrow l, \sigma_{1}}{\rho, \sigma_{0} \vdash!E \Rightarrow \sigma_{1}(l), \sigma_{1}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow l, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1}:=E_{2} \Rightarrow v,[l \mapsto v] \sigma_{2}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v_{2}, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1} ; E_{2} \Rightarrow v_{2}, \sigma_{2}}
\end{gathered}
$$

Example

$$
\rho, \sigma_{0} \vdash \text { let } \mathrm{x}=\text { ref (ref 0) in }(!\mathrm{x}:=11 ;!(!\mathrm{x})) \Rightarrow
$$

A Language with Implict References

$$
\begin{array}{ll}
P \rightarrow E \\
\boldsymbol{E} & \rightarrow \boldsymbol{n} \mid \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \mid \boldsymbol{E}-\boldsymbol{E} \\
\mid & \operatorname{zero?~} \boldsymbol{E} \mid \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
\mid & \operatorname{let} \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
\mid & \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \mid \boldsymbol{E} \boldsymbol{E} \\
\mid & \operatorname{set} \boldsymbol{x}=\boldsymbol{E} \\
\mid & \boldsymbol{E} ; \boldsymbol{E}
\end{array}
$$

- Every variable is mutable (i.e., changeable).
- set $\boldsymbol{x}=\boldsymbol{E}$ change the contents of \boldsymbol{x} by the value of \boldsymbol{E}.
- Locations are created with each binding operation: call and let.

Examples

- let $f=$ let count $=0$ in proc (x) (set count = count + 1; count)
in let $a=(f 0)$
in let $b=(f 0)$
in $\mathrm{a}-\mathrm{b}$
- let $f=\operatorname{proc}(x)$
proc (y)
(set $x=x+1 ; x-y)$
in ($(\mathrm{f} 44) 33)$

Semantics

Every variable denotes a reference:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure } \\
\text { Procedure } & =\text { Var } \times \boldsymbol{E} \times \text { Env } \\
\rho \in \text { Env } & =\text { Var } \rightarrow \text { Loc } \\
\sigma \in M e m & =\text { Loc } \rightarrow \text { Val }
\end{aligned}
$$

Semantics

$$
\begin{gathered}
\overline{\rho, \sigma \vdash n \Rightarrow n, \sigma} \quad \overline{\rho, \sigma \vdash x \Rightarrow \sigma(\rho(x)), \sigma} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow n_{1}, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow n_{2}, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}, \sigma_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\rho, \sigma_{0} \vdash E \Rightarrow 0, \sigma_{1}}{\rho, \sigma_{0} \vdash \text { zero? } E \Rightarrow \text { true, } \sigma_{1}} \quad \frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow \text { true, } \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma_{0}}{\rho, \sigma \vdash \operatorname{proc} x E \Rightarrow(x, E, \rho), \sigma} \quad \frac{\rho, \sigma_{0} \vdash \operatorname{set} x=E \Rightarrow v,[\rho(x) \mapsto v] \sigma_{1}}{\rho, \sigma_{1}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad[x \mapsto l] \rho,\left[l \mapsto v_{1}\right] \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \operatorname{let} x=E_{1} \text { in } E_{2} \Rightarrow v, \sigma_{2}} l \notin \operatorname{Dom}\left(\sigma_{1}\right) \\
\rho, \sigma_{0} \vdash E_{1} \vdash\left(x, E, \rho^{\prime}\right), \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2} \\
{[x \mapsto l] \rho^{\prime},[l \mapsto v] \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3}} \\
\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v_{2}, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1} ; E_{2} \Rightarrow v_{2}, \sigma_{2}}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \text { let } \mathrm{f}=\text { let count }=0 \\
& \text { in proc }(x) \text { (set count }=\text { count }+1 \text {; count) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in } a-b
\end{aligned}
$$

Call-By-Value Parameter-Passing

What is the value of the following program?

$$
\begin{aligned}
& \text { let } p=\operatorname{proc}(x)(\text { set } x=4) \\
& \text { in let } a=3 \\
& \text { in }((p a) ; a)
\end{aligned}
$$

The call semantics:

$$
\begin{aligned}
& \rho, \sigma_{0} \vdash E_{1} \vdash\left(x, E, \rho^{\prime}\right), \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2} \\
& {[x \mapsto l] \rho^{\prime},[l \mapsto v] \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3}} \\
& \rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3} \\
& l \operatorname{Dom}\left(\sigma_{2}\right)
\end{aligned}
$$

Call-by-value parameter-passing:

- The formal parameter refers to a new location containing the value of the actual parameter.
- The most commonly used form of parameter-passing.

Call-By-Reference Parameter-Passing

The location of the caller's variable is passed, rather than the contents of the variable.

- Extend the syntax:

- Extend the semantics:
$\frac{\rho, \sigma_{0} \vdash E_{1} \vdash\left(x, E, \rho^{\prime}\right), \sigma_{1} \quad[x \mapsto \rho(y)] \rho^{\prime}, \sigma_{1} \vdash E \Rightarrow v^{\prime}, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1}\langle y\rangle \Rightarrow v^{\prime}, \sigma_{2}}$

Examples

- let $p=\operatorname{proc}(x)(\operatorname{set} x=4)$

$$
\begin{aligned}
& \text { in let } a=3 \\
& \quad \text { in }((p<a\rangle) ; a)
\end{aligned}
$$

- let $f=\operatorname{proc}(x)($ set $x=44)$
in let $g=\operatorname{proc}(y)(f<y>)$
in let $z=55$ in ($(\mathrm{g}\langle\mathrm{z}\rangle) ; \mathrm{z})$
- let swap $=$ proc (x) proc (y)

$$
\text { let temp }=\mathrm{x}
$$

$$
\text { in (set } x=y ; \text { set } y=\text { temp) }
$$

$$
\text { in let } \mathrm{a}=33
$$

$$
\text { in let } \mathrm{b}=44
$$

$$
\text { in }(((\text { swap <a>)); (a-b)) }
$$

Variable Aliasing

More than one call-by-reference parameter may refer to the same location:

```
let b = 3
in let p = proc (x) proc (y)
    (set x = 4; y)
    in ((p <b>) <b>)
```

- A variable aliasing is created: x and y refer to the same location
- With aliasing, reasoning about program behavior is very difficult, because an assignment to one variable may change the value of another.

cf) Eager vs. Lazy Evaluation

```
letrec infinite-loop (x) = infinite-loop (x)
in let f = proc (x) (1)
    in (f (infinite-loop 0))
```

- In eager evaluation, procedure arguments are completely evaluated before passing them to the procedure.
- In lazy evaluation, evaluation of arguments is delayed until it is needed by the procedure body.
- Shortcoming of lazy evaluation?

Summary

Our current language:

- Explicit and implicit supports for effects.
- Parameter-passing variations: call-by-value, call-by-reference

