COSE212: Programming Languages

Lecture 5 - Expressions (1)

Hakjoo Oh
2015 Fall

Plan

- Part 1 (Preliminaries): inductive definition, basics of OCaml programming, recursive and higher-order programming
- Part 2 (Basic concepts): syntax, semantics, naming, binding, scoping, environment, interpreters, states, side-effects, store, reference, mutable variables, parameter passing
- Part 3 (Advanced concepts): type system, typing rules, type checking, soundness/completeness, type inference, polymorphism, modules, module procedures, typed modules, objects, classes, methods, inheritance, typed object-oriented languages

Overview

We learn the language concepts by defining and implementing small languages:

Defining a Programming Language

We need to specify syntax and semantics of the language:

- Syntax: how to write programs
- Semantics: the meaning of the programs

Both are formally specified by inductive definitions and implemented in OCaml.

Let \subseteq Expression

Syntax

$$
\begin{array}{lll}
P & \rightarrow E \\
E & \rightarrow & n \\
& \boldsymbol{x} \\
& E+E \\
& E-E \\
& \text { zero? } \boldsymbol{E} \\
& \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E}
\end{array}
$$

Semantics

How can we express the meaning of while loop?
whlie B do C

- Informal semantics: "The command C is executed repeatedly so long as the value of the expression B remains true. The test takes place before each execution of the command".
- intuitive and suitable for humans
- ambiguous and not suitable for rigorous reasoning
- Formal semantics: The meaning is defined in mathematics:

$$
\begin{array}{ll}
& \frac{M \vdash E \Rightarrow \text { false }}{M \vdash \text { while } E \text { do } C \Rightarrow M} \\
M \vdash E \Rightarrow \text { true } & M \vdash C \Rightarrow M_{1} \quad M_{1} \vdash \text { while } E \text { do } C \Rightarrow M_{2} \\
M \vdash \text { while } E \text { do } C \Rightarrow M_{2}
\end{array}
$$

- no confusion
- a basis for reasoning about program behaviors

Values and Environments

To define the semantics, we define values and environments.

- The set of values that the language manipulates, e.g., in Let,

$$
\text { Val }=\mathbb{Z}+\text { Bool }
$$

- Environments maintains variable bindings:

$$
E n v=\operatorname{Var} \rightarrow V a l
$$

Notations:

- $\boldsymbol{\rho}$ ranges over environments, i.e., $\boldsymbol{\rho} \in \boldsymbol{E n v}$.
- []: the empty environment.
- $[\boldsymbol{x} \mapsto \boldsymbol{v}] \rho$: the extension of $\boldsymbol{\rho}$ where \boldsymbol{x} is bound to \boldsymbol{v} :

$$
([x \mapsto v] \rho)(y)= \begin{cases}v & \text { if } x=y \\ \rho(y) & \text { otherwise }\end{cases}
$$

- $\left[x_{1} \mapsto v_{1}, x_{2} \mapsto v_{2}\right] \rho$: the extension of ρ where x_{1} is bound to v_{1}, x_{2} to v_{2} :

$$
\left[x_{1} \mapsto v_{1}, x_{2} \mapsto v_{2}\right] \rho=\left[x_{1} \mapsto v_{1}\right]\left(\left[x_{2} \mapsto v_{2}\right] \rho\right)
$$

Semantics

$\rho \vdash e \Rightarrow \boldsymbol{v}$: the value of \boldsymbol{e} in ρ is \boldsymbol{v}.

$$
\begin{array}{cc}
\frac{\rho \vdash n \Rightarrow n}{\rho \vdash x \Rightarrow \rho(x)} \\
\frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}} & \frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}-E_{2} \Rightarrow n_{1}-n_{2}} \\
\frac{\rho \vdash E \Rightarrow 0}{\rho \vdash \text { zero? } E \Rightarrow \text { true }} & \frac{\rho \vdash E \Rightarrow n}{\rho \vdash \text { zero? } E \Rightarrow \text { false }} n \neq 0 \\
\frac{\rho \vdash E_{1} \Rightarrow \text { true } \quad \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v} & \frac{\rho \vdash E_{1} \Rightarrow \text { false } \quad \rho \vdash E_{3} \Rightarrow v}{\rho \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v} \\
\frac{\rho \vdash E_{1} \Rightarrow v_{1}}{\rho \vdash \operatorname{let} x=E_{1} \text { in } E_{2} \Rightarrow v}
\end{array}
$$

A program e has semantics w.r.t. ρ iff we can derive $\rho \vdash e \Rightarrow \boldsymbol{v}$ for some value \boldsymbol{v} starting from the axioms and applying the inference rules finitely many times.

Example: Arithmetic Expressions

- In $\rho=[i \mapsto 1, v \mapsto 5, x \mapsto 10]$, program $(x-3)-(v-i)$ has semantics and its value is $\mathbf{3}$, because

$$
\frac{\overline{\rho \vdash x \Rightarrow 10} \quad \overline{\rho \vdash 3 \Rightarrow 3}}{\frac{\rho \vdash x-3 \Rightarrow 7}{\rho \vdash(x-3)-(v-i) \Rightarrow 3}}
$$

- But expression $\boldsymbol{y}-\mathbf{3}$ does not have semantics because

$$
\rho \vdash y-3 \Rightarrow v
$$

cannot be derived for any value \boldsymbol{v}.

- In $\rho=[x \mapsto$ true $]$, the semantics of $x+1$ is not defined because

$$
\rho \vdash x+1 \Rightarrow v
$$

cannot be derived for any \boldsymbol{v}.

Example: Conditional Expression

$$
\ln \rho=[x \mapsto 33, y \mapsto 22]
$$

$$
\text { if zero? }(x-11) \text { then } y-2 \text { else } y-4
$$

is well-defined and its value is 18 :

$$
\begin{array}{cc}
\frac{\rho \vdash x \Rightarrow 33}{\rho \vdash} \overline{\rho \vdash 11 \Rightarrow 11} \\
\frac{\rho \vdash x-11 \Rightarrow 22}{\rho \vdash \text { zero? }(x-11) \Rightarrow \text { false }} \frac{}{\rho \vdash \text { if zero? }(x-11) \text { then } y-2 \text { else } y-4 \Rightarrow 18} & \frac{\rho \vdash y \Rightarrow 22}{\rho \vdash y-4 \Rightarrow 18}
\end{array}
$$

Example: Let Expression

A let expression creates a new variable binding in the environment: e.g.,

$$
[] \vdash 5 \Rightarrow 5 \frac{\overline{[x \mapsto 5] \vdash x \Rightarrow 5} \quad \overline{[x \mapsto 5] \vdash 3 \Rightarrow 3}}{[x \mapsto 5] \vdash x-3 \Rightarrow 2}
$$

- In $[x \mapsto 7, y \mapsto 2]$, the program

$$
\text { let } y=(\text { let } x=x-1 \text { in } x-y) \text { in } x-8-y
$$

evaluates to $\mathbf{- 5}$:

$$
\frac{\frac{\cdots}{[x \mapsto 7, y \mapsto 2] \vdash x-1 \Rightarrow 6} \quad \frac{\cdots}{[x \mapsto 6, y \mapsto 2] \vdash x-y \Rightarrow 4}}{[x \mapsto 7, y \mapsto 2] \vdash \operatorname{let} x=x-1 \text { in } x-y \Rightarrow 4} \quad \frac{}{[x \mapsto 7, y \mapsto 4] \vdash}
$$

Implementation: Syntax

Syntax in OCaml:

```
type program = exp
and exp =
    | CONST of int
    | VAR of var
    | ADD of exp * exp
    | SUB of exp * exp
    | ISZERO of exp
    | IF of exp * exp * exp
    | LET of var * exp * exp
and var = string
```

Examples:
\# ADD (CONST 1, VAR "x");;

- : exp = ADD (CONST 1, VAR "x")
\# IF (ISZERO (CONST 1), ADD (CONST 1, VAR "x"), CONST 3);
- : exp = IF (ISZERO (CONST 1), ADD (CONST 1, VAR "x"), CONST 3)

Implementation: Values and Environments

Values:

type value = Int of int | Bool of bool
Environments:
type env = var -> value
let extend_env (x, v) e = fun $y ~->~ i f ~ x ~=~ y ~ t h e n ~ v ~ e l s e ~(e ~ y) ~$
let apply_env e x = e x

Implementation: Semantics

```
let rec eval : exp -> env -> value
=fun exp env ->
    match exp with
    | CONST n -> Int n
    | VAR x -> apply_env env x
    | ADD (e1,e2) ->
        let v1 = eval e1 env in
        let v2 = eval e2 env in
        (match v1,v2 with
        | Int n1, Int n2 -> Int (n1 + n2)
        | _ -> raise (Failure "Type Error: non-numeric values"))
        | SUB (e1,e2) ->
        let v1 = eval e1 env in
        let v2 = eval e2 env in
            (match v1,v2 with
            | Int n1, Int n2 -> Int (n1 - n2)
            | _ -> raise (Failure "Type Error: non-numeric values"))
```


Code Reuse by Higher-Order Functions

The common pattern in ADD and SUB can be extracted by

```
let rec eval_bop: (int -> int -> int) -> exp -> exp -> env -> value
```

=fun op e1 e2 env ->
let v1 = eval e1 env in
let v 2 = eval e2 env in
(match v1,v2 with
| Int n1, Int n2 -> Int (op n1 n2)
| _ -> raise (Failure "Type Error: non-numeric values for +"))

With eval_bop,

```
| ADD (e1,e2) -> eval_bop (+) e1 e2 env
| SUB (e1,e2) -> eval_bop (-) e1 e2 env
```


Implementation: Semantics

```
let rec eval : exp -> env -> value
=fun exp env ->
| ISZERO e ->
    (match eval e env with
    | Int n when n = 0 -> Bool true
    | _ -> Bool false)
| IF (e1,e2,e3) ->
(match eval e1 env with
| Bool true -> eval e2 env
| Bool false -> eval e3 env
| _ -> raise (Failure "Type Error: condition must be Bool type".
| LET (x,e1,e2) ->
let v1 = eval e1 env in
    eval e2 (extend_env (x,v1) env)
```


Example

Running the program:
let run : program -> value
=fun pgm -> eval pgm empty_env
Examples:
\# let e1 = LET ("x", CONST 1, ADD (VAR "x", CONST 2)); ;
val e1 : exp = LET ("x", CONST 1, ADD (VAR "x", CONST 2))
\# run e1; ;

- : value = Int 3

Summary

Designed and implemented Let:

$$
\begin{array}{lll}
P & \rightarrow & \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow & n \\
& \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \\
& \boldsymbol{E}-\boldsymbol{E} \\
& \text { zero? } \boldsymbol{E} \\
& \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E}
\end{array}
$$

- how to formally specify syntax and semantics of programming languages
- key language concepts: environment and binding
- how to implement the language specification

Homework

- Download let.ml, the implementation of Let.
- Represent and Evaluate the following programs:
- let $\mathrm{x}=7$
in let $\mathrm{y}=2$
in let $\mathrm{y}=$ let $\mathrm{x}=\mathrm{x}-1$ in $\mathrm{x}-\mathrm{y}$
in ($x-8$)-y
- let $\mathrm{z}=5$
in let $\mathrm{x}=3$
in let $\mathrm{y}=\mathrm{x}-1$
in let $\mathrm{x}=4$
in $z-(x-y)$

