
COSE212: Programming Languages

Lecture 2 — Inductive Definitions (2)

Hakjoo Oh
2015 Fall

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 1 / 20

Contents

More examples of inductive definitions
I natural numbers, strings, booleans
I lists, binary trees
I arithmetic expressions, propositional logic

Structural induction
I three example proofs

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 2 / 20

Natural Numbers

The set of natural numbers:

N = {0, 1, 2, 3, . . .}

is inductively defined:

0
n

n+ 1

The inference rules can be expressed by a grammar:

n→ 0 | n+ 1

Interpretation:

0 is a natural number.

If n is a natural number then so is n+ 1.

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 3 / 20

Strings

The set of strings over alphabet {a, . . . , z}, e.g., ε, a, b, . . . , z, aa, ab,
. . . , az, ba, . . . az, aaa, . . . , zzz, and so on. Inference rules:

ε
α
aα

α
bα · · ·

α
zα

or simply,

ε
α
xα x ∈ {a, . . . , z}

In grammar:
α → ε
| xα (x ∈ {a, . . . , z})

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 4 / 20

Boolean Values

The set of boolean values:

B = {true, false}.

If a set is finite, just enumerate all of its elements by axioms:

true false

In grammar:
b→ true | false

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 5 / 20

Lists

Examples of lists of integers:

1 nil

2 14 · nil
3 3 · 14 · nil
4 −7 · 3 · 14 · nil

Inference rules:

nil
l

n · l n ∈ Z

In grammar:
l → nil
| n · l (n ∈ Z)

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 6 / 20

Lists

A proof that −7 · 3 · 14 · nil is a list of integers:

nil
14 · nil ∈ L 14 ∈ Z

3 · 14 · nil 3 ∈ Z
−7 · 3 · 14 · nil −7 ∈ Z

The proof tree is also called derivation tree or deduction tree.

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 7 / 20

Binary Trees

Examples of binary trees:

1 leaf

2 (2, leaf, leaf)

3 (1, (2, leaf, leaf), leaf)

4 (1, (2, leaf, leaf), (3, (4, leaf, leaf), leaf))

Inference rules:

leaf

t1 t2
(n, t1, t2)

n ∈ Z

In grammar:
t → leaf
| (n, t, t) (n ∈ Z)

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 8 / 20

Binary Trees

A proof that

(1, (2, leaf, leaf), (3, (4, leaf, leaf), leaf))

is a binary tree:

leaf
(2, leaf, leaf)

2 ∈ Z

leaf
(4, leaf, leaf)

4 ∈ Z

(3, (4, leaf, leaf), leaf)
3 ∈ Z

(1, (2, leaf, leaf), (3, (4, leaf, leaf), leaf))
1 ∈ Z

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 9 / 20

Binary Trees: a different version

Binary tree examples: 1, (1, nil), (1, 2), ((1, 2), nil), ((1, 2), (3, 4)).
Inference rules:

n n ∈ Z
t

(t, nil)
t

(nil, t)

t1 t2
(t1, t2)

In grammar:
t → n (n ∈ Z)
| (t, nil)
| (nil, t)
| (t, t)

A proof that ((1, 2), (3, nil)) is a binary tree:

1 2
(1, 2)

3
(3, nil)

((1, 2), (3, nil))

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 10 / 20

Expressions

Expression examples: 2, −2, 1 + 2, 1 + (2 ∗ (−3)), etc.
Inference rules:

n n ∈ Z
e
−e

e1 e2
e1 + e2

e1 e2
e1 ∗ e2

In grammar:
e → n (n ∈ Z)
| −e
| e+ e
| e ∗ e

Example:

1

2
3

(−3)
(2 ∗ (−3))

(1 + (2 ∗ (−3)))

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 11 / 20

Propositional Logic

Examples:

T , F

T ∧ F
T ∨ F
(T ∧ F) ∧ (T ∨ F)

T ⇒ (F ⇒ T)

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 12 / 20

Propositional Logic

Syntax:
f → T | F
| ¬f
| f ∧ f
| f ∨ f
| f ⇒ f

Semantics ([[f]]):

[[T]] = true
[[F]] = false

[[¬f]] = not [[f]]
[[f1 ∧ f2]] = [[f1]] andalso [[f2]]
[[f1 ∨ f2]] = [[f1]] orelse [[f2]]

[[f1 ⇒ f2]] = [[f1]] implies [[f2]]

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 13 / 20

Propositional Logic

[[(T ∧ (T ∨ F))⇒ F]] = [[T ∧ (T ∨ F)]] implies [[F]]
= ([[T]] andalso [[T ∨ F]]) implies false
= (true andalso [[T]] orelse [[F]]) implies false
= (true andalso true orelse false) implies false
= false

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 14 / 20

Structural Induction

A technique for proving properties about inductively defined sets.

To prove that a proposition P (s) is true for all structures s, prove the
following:

1 (Base case) P is true on simple structures (those without
substructures)

2 (Inductive case) If P is true on the substructures of s, then it is
true on s itself. The assumption is called induction hypothesis
(I.H.).

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 15 / 20

Example 1

Let S be the set defined by the following inference rules:

3
x y
x+ y

Prove that for all x ∈ S, x is divisible by 3.
Proof. By structural induction.

(Base case) The base case is when x is 3. Obviously, x is divisible by 3.

(Inductive case) The induction hypothesis (I.H.) is

x is divisible by 3, y is divisible by 3.

Let x = 3k1 and y = 3k2. Using I.H., we derive

x+ y is divisible by 3

as follows:
x+ y = 3k1 + 3k2 · · · by I.H.

= 3(k1 + 3k2)

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 16 / 20

Example 2

Let S be the set defined by the following inference rules:

()
x
(x)

x y
xy

Prove that every element of the set has the same number of (’s and)’s.
Proof Restate the claim formally:

If x ∈ S then l(x) = r(x)

where l(x) and r(x) denote the number of (’s and)’s, respectively.
We prove it by structural induction:

(Base case): The base case is when x = (). Then
l(x) = 1 = r(x).

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 17 / 20

Example 2

(Inductive case): There are two inductive cases:

x
(x)

x y
xy

Induction hypotheses (I.H.):

l(x) = r(x), l(y) = r(y).

I The first case. We prove l((x)) = r((x)):

l((x)) = l(x) + 1 · · · by definition of l((x))
= r(x) + 1 · · · by I.H.
= r((x)) · · · by definition of r((x))

I The second case. We prove l(xy) = r(xy):

l(xy) = l(x) + l(y) · · · by definition of l(xy)
= r(x) + r(y) · · · by I.H.
= r(xy) · · · by definition of r(xy)

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 18 / 20

Example 3

Let T be the set of binary trees:

leaf

t1 t2
(n, t1, t2)

n ∈ Z

Prove that for all such trees, the number of leaves is always one more than
the number of internal nodes.
Proof. Restate the claim more formally:

If t ∈ T then l(t) = i(t) + 1

where l(t) and i(t) denote the number of leaves and internal nodes, respectively.
We prove it by structural induction:

(Base case): The base case is when t = leaf, where l(t) = 1 and i(t) = 0.

(Inductive case): The induction hypothesis:

l(t1) = i(t1) + 1, l(t2) = i(t2) + 1

Using I.H., we prove l((n, t1, t2)) = i((n, t1, t2)) + 1:

l((n, t1, t2)) = l(t1) + l(t2)
= i(t1) + 1 + i(t2) + 1 by induction hypothesis
= i(n, t1, t2) + 1

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 19 / 20

Summary

Computer science is full of inductive definitions.
I primitive values: booleans, characters, integers, strings, etc
I compound values: lists, trees, graphs, etc
I language syntax and semantics

Structural induction
I a general technique for reasoning about inductively defined sets

Hakjoo Oh COSE212 2015 Fall, Lecture 2 September 4, 2015 20 / 20

