COSE212: Programming Languages
 Lecture 13 - Lambda Calculus (1)

Hakjoo Oh
2015 Fall

Origins of Computers and Programming Languages

- What is the original model of computers?
- What is the original model of programming languages?
- Which one came first?
cf) Church-Turing thesis:
Lambda calculus $=$ Turing machine

Lambda Calculus

- The first, yet turing-complete, programming language
- Developed by Alonzo Church in 1936
- The core of functional programming languages (e.g., Lisp, ML, Haskell, Scala, etc)

Syntax of Lambda Calculus

\boldsymbol{e}	\rightarrow	\boldsymbol{x}	variables
\mid	$\lambda x . e$	abstraction	
	$\boldsymbol{e} \boldsymbol{e}$	application	

- Examples:

- Conventions when writing $\boldsymbol{\lambda}$-expressions:
(1) Application associates to the left, e.g., $s t u=(s t) u$
(2) The body of an abstraction extends as far to the right as possible, e.g., $\lambda x . \lambda y . x y x=\lambda x .(\lambda y \cdot((x y) x))$

Bound and Free Variables

- An occurrence of variable \boldsymbol{x} is said to be bound when it occurs inside $\boldsymbol{\lambda} \boldsymbol{x}$, otherwise said to be free.
- $\lambda y . x y$
- $\lambda x . x$
- $\lambda z \cdot \lambda x \cdot \lambda x \cdot(y z)$
- $(\lambda x . x) x$
- Expressions without free variables is said to be closed expressions or combinators.

Evaluation

To evaluate $\boldsymbol{\lambda}$-expression \boldsymbol{e},
(1) Find a sub-expression of the form:

$$
\left(\lambda x \cdot e_{1}\right) e_{2}
$$

Expressions of this form are called "redex" (reducible expression).
(2) Rewrite the expression by substituting the \boldsymbol{e}_{2} for every free occurrence of \boldsymbol{x} in e_{1} :

$$
\left(\lambda x . e_{1}\right) e_{2} \rightarrow\left[x \mapsto e_{2}\right] e_{1}
$$

This rewriting is called $\boldsymbol{\beta}$-reduction
Repeat the above until there are no redexes.

Evaluation

- $\lambda x . x$
- $(\lambda x . x) y$
- $(\lambda x . x y)$
- $(\lambda x . x y) z$
- $(\lambda x .(\lambda y . x)) z$
- $(\lambda x .(\lambda x . x)) z$
- $(\lambda x .(\lambda y . x)) y$
- $(\lambda x .(\lambda y . x y))(\lambda x . x) z$

Formal Definition of Substitution

The substitution $\left[x \mapsto e_{1}\right] e_{2}$ is inductively defined on the structure of e_{2} :

$$
\begin{array}{lll}
{\left[x \mapsto e_{1}\right] x} & = & \\
{\left[x \mapsto e_{1}\right] y} & = & \text { if } x \neq y \\
{\left[x \mapsto e_{1}\right](\lambda x . e)} & = & \\
{\left[x \mapsto e_{1}\right](\lambda y . e)} & = & \text { if } x \neq y \\
{\left[x \mapsto e_{1}\right]\left(e_{2} e_{3}\right)=} &
\end{array}
$$

Examples:

$$
\begin{aligned}
{[x \mapsto y] \lambda x . x } & \neq \lambda x . y \\
{[x \mapsto y] \lambda x . x } & =\lambda z \cdot[x \mapsto y][x \mapsto z] x \\
& =\lambda z \cdot z \\
{[y \mapsto x] \lambda x . y } & \neq \lambda x . x \\
{[y \mapsto x] \lambda x \cdot y } & =\lambda z \cdot[y \mapsto x][x \mapsto z] x \\
& =\lambda z \cdot x
\end{aligned}
$$

Evaluation Strategy

- In a lambda expression, multiple redexes may exist. Which redex to reduce next?

$$
\lambda x . x(\lambda x . x(\lambda z .(\lambda x . x) z))=i d(i d(\lambda z . i d z))
$$

redexes:

$$
\begin{aligned}
& \frac{i d(i d(\lambda z . i d z))}{i d(i d(\lambda z . i d z))} \\
& i d(i d(\lambda z . i d z))
\end{aligned}
$$

- Evaluation strategies:
- Full beta-reduction
- Normal order
- Call-by-name
- Call-by-value

Full beta-reduction strategy

Any redex may be reduced at any time:

$$
\begin{aligned}
& i d(i d(\lambda z . \underline{i d z})) \\
\rightarrow & i d(i d(\lambda z . z)) \\
\rightarrow & i d(\lambda z . z) \\
\rightarrow & \frac{\lambda z . z}{} \\
\rightarrow &
\end{aligned}
$$

Normal order strategy

Reduce the leftmost, outermost redex first:

$$
\begin{aligned}
& \quad \frac{i d(i d(\lambda z . i d z))}{\rightarrow} \frac{\underline{i d(\lambda z . i d z))}}{\lambda z . \underline{i d z}} \\
& \rightarrow \lambda z . \bar{z} \\
& \rightarrow
\end{aligned}
$$

Call-by-name strategy

Follow the normal order reduction, not allowing reductions inside abstractions:

Call-by-value strategy

Reduce the outermost redex whose right-hand side has a value:

$$
\begin{aligned}
& i d(\underline{i d(\lambda z . i d z)}) \\
\rightarrow & i d(\overline{\lambda z . i d z)}) \\
\rightarrow & \frac{\lambda z . i d z}{\rightarrow}
\end{aligned}
$$

Normal Terms

- A lambda expression is said to have normal term if evaluating the expression terminates under an evaluation strategy.
- Does every lambda expression have normal term? e.g.,

$$
(\lambda x . x x)(\lambda x . x x)
$$

- The normal order strategy guarantees to reach the normal terms (if exists): e.g.,

$$
(\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))
$$

Summary

- λ-calculus is a simple and minimal language.
- Syntax: $e \rightarrow x|\lambda x . e| e e$
- Semantics: $\boldsymbol{\beta}$-reduction
- Yet, $\boldsymbol{\lambda}$-calculus is Turing-complete.
- E.g., ordinary values (e.g., boolean, numbers, pairs, etc) can be encoded in λ-calculus (see in the next class).
- Church-Turing thesis:

