
COSE212: Programming Languages Lecture 11 — Automatic Type Inference (2)

Hakjoo Oh 2015 Fall

Finding a Solution of Type Equations

Find values for the type variables that make all the equations true.

Such a solution can be found by the *unification algorithm*.

The calculation is split into equations to be solved and substitution found so far. Initially, the substitution is empty:

Equations	Substitution
$t_0 ~=~ t_f ightarrow t_1$	
$t_1 \;=\; t_x o t_2$	
t_3 = int	
t_4 = int	
t_2 = int	
$t_f \;=\; { m int} o t_3$	
$t_f = t_x o t_4$	

Consider each equation in turn. If the equation's left-hand side is a variable, move it to the substitution:

Equations	Substitution
$t_1 \;=\; t_x o t_2$	$t_0 = t_f \rightarrow t_1$
t_3 = int	
t_4 = int	
t_2 = int	
$t_f \;=\; { m int} o t_3$	
$t_f \;=\; t_x o t_4$	

Move the next equation to the substitution and propagate the information to the existing substitution (i.e., substitute the right-hand side for each occurrence of t_1):

		Equations		0	Substitution
t_3	=		t_0	=	$t_f \to (t_x \to t_2)$
t_4	=	int	t_1	=	$t_x ightarrow t_2$
t_2	=	int			
t_{f}	=	$int \to t_3$			
t_{f}	=	$t_x ightarrow t_4$			

Same for the next three equations:

Equations	Substitution
t_4 = int	$t_0 = t_f ightarrow (t_x ightarrow t_2)$
t_2 = int	$t_1 = t_x ightarrow t_2$
$t_f = ext{int} o t_3$	$t_3 = int$
$t_f = t_x o t_4$	
Equations	Substitution
$t_2 = \text{int}$	$t_0 = t_f ightarrow (t_x ightarrow t_2)$
$t_f \;\;=\;\; { m int} o t_3$	$t_1 \hspace{.1in} = \hspace{.1in} t_x ightarrow t_2$
$t_f = t_x ightarrow t_4$	$t_3 = \text{int}$
-	t_4 = int
Equations	Substitution
$t_f = \operatorname{int} ightarrow t_3$	$t_0 = t_f ightarrow (t_x ightarrow ext{int})$
$t_f = t_x ightarrow t_4$	$t_1 = t_x o ext{int}$
	$t_3 = int$
	$egin{array}{rcl} t_4&=& ext{int}\ t_2&=& ext{int} \end{array}$
	$t_2 = int$

Consider the next equation $t_f = \text{int} \rightarrow t_3$. The equation contains t_3 , which is already bound to int in the substitution. Substitute int for t_3 in the equation. This is called *applying* the substitution to the equation.

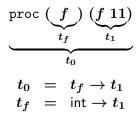
Equations	Substitution
$t_f = \text{int} ightarrow ext{int}$	$t_0 = t_f ightarrow (t_x ightarrow ext{int})$
$t_f \;\;=\;\; t_x o t_4$	$t_1 \;\;=\;\; t_x o { ext{int}}$
	t_3 = int
	t_4 = int
	$\begin{array}{rcl} t_0 &=& t_f \rightarrow (t_x \rightarrow \operatorname{int}) \\ t_1 &=& t_x \rightarrow \operatorname{int} \\ t_3 &=& \operatorname{int} \\ t_4 &=& \operatorname{int} \\ t_2 &=& \operatorname{int} \end{array}$

Move the resulting equation to the substitution and update it.

Equations	Substitution	
$t_f = t_x o t_4$	$t_0 = (\text{int} \rightarrow \text{int}) \rightarrow (t_x \rightarrow \text{int})$	-
	$t_1 = t_x ightarrow ext{int}$	
	$t_3 = \text{int}$	
	$t_4 = \text{int}$	
	$t_2 = \text{int}$	
	$\begin{array}{rcl}t_{0} & (\operatorname{int} f \operatorname{int} f) & f(t_{x} + \operatorname{int} f) \\ t_{1} & = & t_{x} \to \operatorname{int} \\ t_{3} & = & \operatorname{int} \\ t_{4} & = & \operatorname{int} \\ t_{2} & = & \operatorname{int} \\ t_{f} & = & \operatorname{int} \to \operatorname{int} \end{array}$	

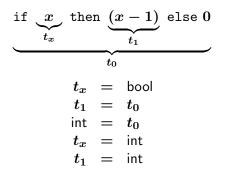
Apply the substitution to the equation:

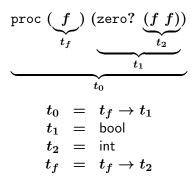
Equations	Substitution
$int o int = t_x o t_4$	$t_0 = (\operatorname{int} ightarrow \operatorname{int}) ightarrow (t_x ightarrow \operatorname{int})$
	$t_1 = t_x ightarrow ext{int}$
	$t_3 = \text{int}$
	t_4 = int
	$t_2 = int$
	$\begin{array}{rcl}t_0 &=& (\operatorname{int} \to \operatorname{int}) \to (t_x \to \operatorname{int})\\t_1 &=& t_x \to \operatorname{int}\\t_3 &=& \operatorname{int}\\t_4 &=& \operatorname{int}\\t_2 &=& \operatorname{int}\\t_f &=& \operatorname{int} \to \operatorname{int}\end{array}$


If neither side of the equation is a variable, simplify the equation by yielding two new equations:

Equations			Substitution
int = t_x	t_0	=	$(\text{int} \rightarrow \text{int}) \rightarrow (t_x \rightarrow \text{int})$
int = int	t_1	=	$t_x ightarrow$ int
	t_3	=	int
	t_4	=	int
	t_2	=	int
	t_{f}	=	$\begin{array}{l} (\operatorname{int} \to \operatorname{int}) \to (t_x \to \operatorname{int}) \\ t_x \to \operatorname{int} \\ \operatorname{int} \\ \operatorname{int} \\ \operatorname{int} \\ \operatorname{int} \to \operatorname{int} \end{array}$

Switch the sides of the first equation and move it to the substitution:


Equations		Substitution			
int	=	int	t_0	=	$(\text{int} \rightarrow \text{int}) \rightarrow (t_x \rightarrow \text{int})$ $\text{int} \rightarrow \text{int}$ int int int $\text{int} \rightarrow \text{int}$ int int
			t_1	=	int \rightarrow int
			t_3	=	int
			t_4	=	int
			t_2	=	int
			t_{f}	=	int \rightarrow int
			t_x	=	int


The final substitution is the solution of the original equations.

1 Substitution Equations $t_0 = t_f \rightarrow t_1$ $t_f = \text{int} \rightarrow t_1$ 2 Equations Substitution $t_f = \text{int} \rightarrow t_1$ $t_0 = t_f \rightarrow t_1$ 3 Equations Substitution $egin{array}{rcl} t_0 &=& (\operatorname{int}
ightarrow t_1)
ightarrow t_1 \ t_f &=& \operatorname{int}
ightarrow t_1 \end{array}$

The type is *polymorphic* in t_1 .

Exercises

For each following expression, perform the type inference and find its type, or determine that no such type exists.

$$\textcircled{0} \texttt{ let } x = 4 \texttt{ in } (x \texttt{ 3})$$

2 let
$$f = \text{proc}(z) \ z \text{ in proc}(x) \ ((f \ x) - 1))$$

() let p = zero? 1 in if p then 88 else 99

• let $f = \operatorname{proc}(x) x$ in if $(f (\operatorname{zero}?0))$ then $(f \ 11)$ else $(f \ 22)$

Summary

Automatic type inference:

- derive type equations from the program text, and
- solve the equations by unification.