COSE212: Programming Languages

Lecture 1 - Inductive Definitions (1)

Hakjoo Oh
2015 Fall

Inductive Definitions

- A technique for formally defining a set.
- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.

Example

Definition

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

What is the set S ?

Example

Definition

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

What is the set S ?

- $\{0,3,6,9, \ldots\} \subseteq S$

Example

Definition

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

What is the set S ?

- $\{0,3,6,9, \ldots\} \subseteq S$
- $\{0,3,6,9, \ldots\} \supseteq S$

A Bottom-up Version

Definition

S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(0) $0 \in S$, and
(2) if $n \in S$, then $n+3 \in S$.

What is the set S ?

A Bottom-up Version

Definition

S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(1) $0 \in S$, and
(2) if $n \in S$, then $n+3 \in S$.

What is the set \boldsymbol{S} ?

- If the two conditions are satisfied, $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \subseteq \boldsymbol{S}$.

A Bottom-up Version

Definition

S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(1) $0 \in S$, and
(3) if $n \in S$, then $n+3 \in S$.

What is the set \boldsymbol{S} ?

- If the two conditions are satisfied, $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \subseteq \boldsymbol{S}$.
- \boldsymbol{S} is the smallest such a set.
- The smallest set is unique.

Rules of Inference

$$
\frac{A}{B}
$$

- A: hypothesis (antecedent)
- \boldsymbol{B} : conclusion (consequent)
- "if \boldsymbol{A} is true then \boldsymbol{B} is also true".
- \bar{B} : axiom.

Defining a Set by Rules of Inferences

Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"

Defining a Set by Rules of Inferences

Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"
ex) $\mathbf{3} \in S$ because

$\overline{0 \in S}$ $\overline{3 \in S}$ the axiom

Defining a Set by Rules of Inferences

Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"
ex) $\mathbf{3} \in S$ because

$$
\begin{aligned}
& \overline{\mathbf{0 \in S}} \\
& \overline{3 \in S}
\end{aligned} \text { the axiom }
$$

Note that this interpretation enforces that S is the smallest set closed under the inference rules.

Summary

In inductive definitions, a set is defined in terms of itself. Three styles:

- Top-down
- Bottom-up
- Rules of inference

In PL, we mainly use the rules-of-inference method.

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x}{x+y}
$$

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{s}{s()} \quad \frac{s}{() s} \quad \frac{s}{(s)}
$$

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x y}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{s}{s()} \quad \frac{s}{() s} \quad \frac{s}{(s)}
$$

(3) Define the following set as rules of inference:

$$
S=\{a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b, \ldots\}
$$

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{s}{s()} \quad \frac{s}{() s} \quad \frac{s}{(s)}
$$

(3) Define the following set as rules of inference:

$$
S=\{a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b, \ldots\}
$$

(9) Define the following set as rules of inference:

$$
S=\left\{x^{n} y^{n+1} \mid n \in \mathbb{N}\right\}
$$

