
Homework 3

COSE212, Fall 2015

Hakjoo Oh

Due: 10/23, 24:00

Problem 1 A binary mobile consists of two branches, a left branch and a
right branch. Each branch is a rod of a certain length, from which hangs either
a weight or another binary mobile. In OCaml datatype, a binary mobile can be
defined as follows:

type mobile = branch * branch (* left and rigth branches *)

and branch = SimpleBranch of length * weight

| CompoundBranch of length * mobile

and length = int

and weight = int

A branch is either a simple branch, which is constructed from a length together
with a weight, or a compound branch, which is constructed from a length to-
gether with another mobile. For instance, the mobile

is represented by the following:

(CompoundBranch (3,

(CompoundBranch (2, (SimpleBranch (1, 1), SimpleBranch (1, 1))),

SimpleBranch (1, 4))),

SimpleBranch (6, 3))

Define the function

balanced : mobile -> bool

that tests whether a binary mobile is balanced. A mobile is said to be balanced if
the torque applied by its top-left branch is equal to that applied by its top-right

1



branch (that is, if the length of the left rod multiplied by the weight hanging
from that rod is equal to the corresponding product for the right side) and if
each of the submobiles hanging off its branches is balanced. For example, the
example mobile above is balanced.

Problem 2 Consider the following language:

type exp = V of var

| P of var * exp

| C of exp * exp

and var = string

In this language1, a program is simply a variable, a procedure, or a procedure
call.

Write a checker function

check : exp -> bool

that checks if a given program is well-formed. A program is said to be well-
formed if and only if the program does not contain free variables; i.e., every
variable name is bound by some procedure that encompasses the variable. For
example, well-formed programs are:

• P ("a", V "a")

• P ("a", P ("a", V "a"))

• P ("a", P ("b", C (V "a", V "b")))

• P ("a", C (V "a", P ("b", V "a")))

Ill-formed ones are:

• P ("a", V "b")

• P ("a", C (V "a", P ("b", V "c")))

• P ("a", P ("b", C (V "a", V "c")))

1This language is called “lambda calculus”. Even though it is very simple, the language is
Turing-complete and all OCaml programs can be reduced to an equivalent program in lambda
calculus.

2



Problem 3 Write an interpreter for the LETREC language:

P → E

E → n
| x
| E + E
| E − E
| zero? E
| if E then E else E
| let x = E in E
| letrec f(x) = E in E
| proc x E
| E E

The semantics of the language is defined in Figure 1. In OCaml, the program
syntax and the semantic domain for the language can be defined as follows:

type program = exp

and exp =

| CONST of int

| VAR of var

| ADD of exp * exp

| SUB of exp * exp

| ISZERO of exp

| IF of exp * exp * exp

| LET of var * exp * exp

| LETREC of var * var * exp * exp

| PROC of var * exp

| CALL of exp * exp

and var = string

type value = Int of int | Bool of bool

| Procedure of var * exp * env

| RecProcedure of var * var * exp * env

and env = var -> value

Define the function run:

run : program -> value

For instance, the program

letrec double (x) =

if iszero x then 0

else (double (x-1)) + 1

in double 6

is represented by the OCaml representation:

3



Domain:

Val = Z + Bool + Procedure + RecProcedure
Procedure = Var × E × Env

RecProcedure = Var ×Var × E × Env
Env = Var → Val

Semantics rules:

ρ ` n⇒ n ρ ` x⇒ ρ(x)

ρ ` E1 ⇒ n1 ρ ` E2 ⇒ n2
ρ ` E1 + E2 ⇒ n1 + n2

ρ ` E1 ⇒ n1 ρ ` E2 ⇒ n2
ρ ` E1 − E2 ⇒ n1 − n2

ρ ` E ⇒ 0

ρ ` zero? E ⇒ true

ρ ` E ⇒ n

ρ ` zero? E ⇒ false
n 6= 0

ρ ` E1 ⇒ true ρ ` E2 ⇒ v

ρ ` if E1 then E2 else E3 ⇒ v

ρ ` E1 ⇒ false ρ ` E3 ⇒ v

ρ ` if E1 then E2 else E3 ⇒ v

ρ ` E1 ⇒ v1 [x 7→ v1]ρ ` E2 ⇒ v

ρ ` let x = E1 in E2 ⇒ v

[f 7→ (f, x,E1, ρ)]ρ ` E2 ⇒ v

ρ ` letrec f(x) = E1 in E2 ⇒ v

ρ ` proc x E ⇒ (x,E, ρ)

ρ ` E1 ` (x,E, ρ′) ρ ` E2 ⇒ v [x 7→ v]ρ′ ` E ⇒ v′

ρ ` E1 E2 ⇒ v′

ρ ` E1 ⇒ (f, x,E, ρ′) ρ ` E2 ⇒ v [x 7→ v, f 7→ (f, x,E, ρ′)]ρ′ ` E ⇒ v′

ρ ` E1 E2 ⇒ v′

Figure 1: Semantics of the LETREC language.

4



let pgm =

LETREC ("double", "x", IF (ISZERO (VAR "x"),

CONST 0,

ADD (CALL (VAR "double", SUB (VAR "x", CONST 1)) ,

CONST 2)),

CALL (VAR "double", CONST 6))

The result of run pgm should be Int 12.

5



Problem 4 Consider the Proc language:

type program = exp

and exp =

| CONST of int

| VAR of var

| ADD of exp * exp

| SUB of exp * exp

| ISZERO of exp

| IF of exp * exp * exp

| LET of var * exp * exp

| PROC of var * exp

| CALL of exp * exp

and var = string

The nameless representation of the language (“Nameless Proc”) can be defined
as follows:

type nl_program = nl_exp

and nl_exp =

| NL_CONST of int

| NL_VAR of int

| NL_ADD of nl_exp * nl_exp

| NL_SUB of nl_exp * nl_exp

| NL_ISZERO of nl_exp

| NL_IF of nl_exp * nl_exp * nl_exp

| NL_LET of nl_exp * nl_exp

| NL_PROC of nl_exp

| NL_CALL of nl_exp * nl_exp

Define the function

translate : program -> nl program

that transforms a given Proc program into its nameless representation. For
instance, the program

LET ("x", CONST 37,

PROC ("y", LET ("z", SUB (VAR "y", VAR "x"),

SUB (VAR "x", VAR "y"))))

should be translated to the nameless program:

NL_LET (NL_CONST 37,

NL_PROC (NL_LET (NL_SUB (NL_VAR 0, NL_VAR 1),

NL_SUB (NL_VAR 2, NL_VAR 1))))

6



Problem 5 Write an interpreter for “Nameless Proc”:

nl run : nl program -> nl value

The values and environments are defined as follows:

type nl_value = NL_Int of int

| NL_Bool of bool

| NL_Procedure of nl_exp * nl_env

and nl_env = nl_value list

The semantics of Nameless Proc is formalized in lecture slides.
With the interpreter for Nameless Proc, you can run an ordinary Proc pro-

gram by first translating it into an equivalent nameless program and then run-
ning the resulting program using nl run. For instance, the Proc program

let pgm = LET ("x", CONST 1, VAR "x")

can be evaluated as follows:

nl_run (translate pgm)

which should produce NL Int 1.

How to submit

1. Download the homework 3 template file (hw3.ml) from the course web-
page: http://prl.korea.ac.kr/~hakjoo/home/courses/cose212/2015

2. Replace all (* TODO *) in hw3.ml by your own code. You can define any
helper functions in hw3.ml.

3. Submit the single file hw3.ml via Blackboard.

7


