Homework 1
 COSE212, Fall 2015

Hakjoo Oh

Due: 09/25, 24:00

Problem 1 Consider the following triangle (it is called Pascal's triangle):

> \left.| | 1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 1 | 1 | | |
| | 1 | 2 | 1 | | | |
| | 1 | 3 | 3 | 1 | | |$\right)$

...
where the numbers at the edge of the triangle are all 1 , and each number inside the triangle is the sum of the two numbers above it. Write a function

```
pascal: int * int -> int
```

that computes elements of Pascal's triangle. For example, pascal should behave as follows:

$$
\begin{aligned}
& \text { pascal }(0,0)=1 \\
& \text { pascal }(1,0)=1 \\
& \text { pascal }(1,1)=1 \\
& \text { pascal }(2,1)=2 \\
& \text { pascal }(4,2)=6
\end{aligned}
$$

Problem 2 Write a function
sigma : (int -> int) -> int -> int -> int
such that sigma $f a b$ computes

$$
\sum_{i=a}^{b} f(i)
$$

For instance,

$$
\text { sigma (fun x -> x) } 110
$$

evaulates to 55 and

$$
\text { sigma (fun } x \text {-> } x * x \text {) } 17
$$

evaluates to 140 .

Problem 3 Write two functions

```
max: int list -> int
min: int list -> int
```

that find maximum and minimum elements of a given list, respectively. For example max $[1 ; 3 ; 5 ; 2]$ should evaluate to 5 and min $[1 ; 3 ; 2]$ should be 1 .

Problem 4 We can define the propositional formula as follows:

```
type formula =
    True
    | False
    | Neg of formula
    | Or of formula * formula
    | And of formula * formula
    | Imply of formula * formula
    | Equiv of formula * formula
```

Write a function
eval : formula -> bool
that evaluates a given propositional formula.

Problem 5 Natural numbers can be defined as follows:

```
type nat = ZERO | SUCC of nat
```

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two functions that add and multiply natural numbers:

```
natadd : nat -> nat -> nat
natmul : nat -> nat -> nat
```

For example,

```
# let two = SUCC (SUCC ZERO);;
val two : nat = SUCC (SUCC ZERO)
# let three = SUCC (SUCC (SUCC ZERO));;
val three : nat = SUCC (SUCC (SUCC ZERO))
# natmul two three;;
- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))
# natadd two three;;
- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))
```


How to submit

1. Download the homework 1 template file (hw1.ml) from the course webpage: http://prl.korea.ac.kr/~hakjoo/home/courses/cose212/2015
2. Replace all (* TODO *) in hw1.ml by your own code.
3. Submit the single file hw1.ml via Blackboard.
