
AAA616: Program Analysis

Lecture 7 — Abstract Interpretation Example

Hakjoo Oh
2024 Fall

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 1 / 12

Concrete Semantics

Program representation:
▶ P is represented by control flow graph (C,→, c0)
▶ Each program point c is associated with a command cmd(c)

cmd → skip | x := e
e → n | x | e + e | e− e.

Concrete memory states: M = Var→ Z
Concrete semantics:

[[c]] : M→ M

[[skip]](m) = m
[[x := e]](m) = m[x 7→ [[e]](s)]

[[e]] : M→ Z

[[n]](m) = n
[[x]](m) = m(x)

[[e1 + e2]](m) = [[e1]](m) + [[e2]](m)
[[e1 − e2]](m) = [[e1]](m) + [[e2]](m)

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 2 / 12

Concrete Semantics

Program states: S = C×M
A trace σ ∈ S+ is a (partial) execution sequence of the program:

σ0 ∈ I ∧ ∀k.σk ; σk+1

where I ⊆ S is the initial program states

I = {(c0,m0) | m0 ∈ M}

and (;) ⊆ S× S is the relation for the one-step execution:

(ci, si) ; (cj, sj) ⇐⇒ ci → cj ∧ sj = [[cmd(cj)]](si)

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 3 / 12

Concrete Semantics

The collecting semantics of program P is defined as the set of all finite
traces of the program:

[[P]] = {σ ∈ S+ | σ0 ∈ I ∧ ∀k.σk ; σk+1}

The semantic domain:
D = ℘(S+)

The semantic function:

F : ℘(S+)→ ℘(S+)

F (Σ) = I ∪ {σ · (c,m) | σ ∈ Σ ∧ σ⊣ ; (c,m)}

Lemma

[[P]] = fixF .

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 4 / 12

Partitioning Abstraction

Galois-connection: ℘(S+) −−−→←−−−α1

γ1

C→ ℘(M)

α1(Σ) = λc.{m ∈ M | ∃σ ∈ Σ ∧ ∃i.σi = (c,m)}

Semantic function:

F̂1 : (C→ ℘(M))→ (C→ ℘(M))

F̂1(X) = α1(I) ⊔ λc ∈ C. fc(
⋃

c′→c

X(c′))

where fc : ℘(M)→ ℘(M) is a transfer function at program point c:

fc(M) = {m′ | m ∈M ∧ m′ = [[cmd(c)]](m)}

Lemma (Soundness of Partitioning Abstraction)

α1(fixF) ⊑
⊔

i∈N F̂ i
1(⊥).

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 5 / 12

Memory State Abstraction

Galois-connection:
C→ ℘(M) −−−→←−−−α2

γ2

C→ M̂

α2(f) = λc. αm(f(c))

γ1(f̂) = λc. γm(f̂(c))

where we assume
℘(M) −−−−→←−−−−

αm

γm

M̂

Semantic function F̂ : (C→ M̂)→ (C→ M̂):

F̂ (X) = (α2 ◦ α1)(I) ⊔ λc ∈ C. f̂c(
⊔

c′→c

X(c′))

where abstract transfer function f̂c : M̂→ M̂ is given such that

αm ◦ fc ⊑ f̂c ◦ αm (1)

Theorem (Soundness)

α(fixF) ⊑
⊔

i∈N F̂ i(⊥) where α = α2 ◦ α1.

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 6 / 12

Sign Analysis

Memory state abstraction:

℘(M) −−−−→←−−−−
αm

γm

M̂

αm(M) = λx ∈ Var. αs({m(x) | m ∈M})
where αs is the sign abstraction:

℘(Z) −−−→←−−−αs

γs

Ẑ

The transfer function f̂c : M̂→ M̂:

f̂c(m̂) = m̂ c = skip

f̂c(m̂) = m̂[x 7→ V̂(e)(m̂)] c = x := e

V̂(n)(m̂) = αs({n})
V̂(x)(m̂) = m̂(x)

V̂(e1 + e2) = V̂(e1)(m̂) +̂ V̂(e2)(m̂)

V̂(e1 - e2) = V̂(e1)(m̂) −̂ V̂(e2)(m̂)

Lemma

αm ◦ fc ⊑ f̂c ◦ αm

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 7 / 12

Interval Analysis

Memory state abstraction:

αm(M) = λx ∈ Var. αn({m(x) | m ∈M})
where αn is the interval abstraction:

℘(Z) −−−→←−−−
αn

γn

Ẑ

Ẑ = {⊥} ∪ {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}
The transfer function f̂c : M̂→ M̂:

f̂c(m̂) = m̂ c = skip

f̂c(m̂) = m̂[x 7→ V̂(e)(m̂)] c = x := e

V̂(n)(m̂) = αs({n})
V̂(x)(m̂) = m̂(x)

V̂(e1 + e2) = V̂(e1)(m̂) +̂ V̂(e2)(m̂)

V̂(e1 - e2) = V̂(e1)(m̂) −̂ V̂(e2)(m̂)

Lemma

αm ◦ fc ⊑ f̂c ◦ αm

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 8 / 12

Widening/Narrowing Example

1 i = 0;

2 while (i<10)

3 i++;

Abstract equation (F̂):

X1 = [0, 0]
X2 = (X1 ⊔X3] ⊓ [−∞, 9]

X3 = X2 +̂ [1, 1]
X4 = (X1 ⊔X3) ⊓ [10,+∞]

Abstract domain D̂ = Interval× Interval× Interval× Interval

Semantic function F̂ : D̂ → D̂ such that

(X1, X2, X3, X4) = F̂ (X1, X2, X3, X4)

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 9 / 12

Widening/Narrowing Example

X1 = [0, 0]
X2 = (X1 ⊔X3] ⊓ [−∞, 9]

X3 = X2 +̂ [1, 1]
X4 = (X1 ⊔X3) ⊓ [10,+∞]⊔

i∈N F̂ i(⊥̂):

0 1 2 3 4 5 6 . . .

X1 ⊥̂ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

X2 ⊥̂ ⊥̂ [0, 0] [0, 0] [0, 1] [0, 1] [0, 2] [0, 9]

X3 ⊥̂ ⊥̂ ⊥̂ [1, 1] [1, 1] [1, 2] [1, 2] [1, 10]

X4 ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ [10, 10]

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 10 / 12

Widening/Narrowing Example

A simple widening operator for the Interval domain:

[a, b]
`
⊥ = [a, b]

⊥
`

[c, d] = [c, d]

[a, b]
`

[c, d] = [(c < a?−∞ : a), (b < d? +∞ : b)]

A simple narrowing operator:

[a, b]
a
⊥ = ⊥

⊥
a

[c, d] = ⊥
[a, b]

a
[c, d] = [(a = −∞?c : a), (b = +∞?d : b)]

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 11 / 12

Widening/Narrowing Example
Widening iteration:

0 1 2 3 4 5 6 7

X1 ⊥̂ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

X2 ⊥̂ ⊥̂ [0, 0] [0, 0] [0,+∞] [0,+∞] [0,+∞] [0,+∞]

X3 ⊥̂ ⊥̂ ⊥̂ [1, 1] [1, 1] [1,+∞] [1,+∞] [1,+∞]

X4 ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ [10,+∞] [10,+∞]

Narrowing iteration:

0 1 2 3 4
X1 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
X2 [0,+∞] [0, 9] [0, 9] [0, 9] [0, 9]
X3 [1,+∞] [1,+∞] [1, 10] [1, 10] [1, 10]
X4 [10,+∞] [10,+∞] [10,+∞] [10, 10] [10, 10]

Hakjoo Oh AAA616 2024 Fall, Lecture 7 October 17, 2024 12 / 12

