
AAA616: Program Analysis

Lecture 6 — Abstract Interpretation Framework

Hakjoo Oh
2024 Fall

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 1 / 25



Abstract Interpretation Framework

A powerful framework for designing correct static analysis

“framework”: correct static analysis comes out, reusable

“powerful”: all static analyses are understood in this framework

“simple”: prescription is simple

“eye-opening”: any static analysis is an abstract interpretation

CC77 CC79

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 2 / 25



Step 1: Define Concrete Semantics

The concrete semantics describes the real executions of the program.
Described by semantic domain and function.

A semantic domain D, which is a CPO:
▶ D is a partially ordered set with a least element ⊥.
▶ Any increasing chain d0 ⊑ d1 ⊑ . . . in D has a least upper bound⊔

n≥0 dn in D.

A semantic function F : D → D, which is continuous: for all chains
d0 ⊑ d1 ⊑ . . . ,

F (
⊔
n≥0

di) =
⊔
n≥0

F (dn).

Then, the concrete semantics (or collecting semantics) is defined as the
least fixed point of semantic function F : D → D:

fixF =
⊔
i∈N

F i(⊥).

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 3 / 25



Step 2: Define Abstract Semantics

Define the abstract semantics of the input program.

Define an abstract semantic domain CPO D̂.
▶ Intuition: D̂ is an abstraction of D

Define an abstract semantic function F̂ : D̂ → D̂.
▶ Intuition: F̂ is an abstraction of F .
▶ F̂ must be monotone:

∀x̂, ŷ ∈ D̂. x̂ ⊑ ŷ =⇒ F̂ (x̂) ⊑ F̂ (ŷ)

(or extensive: ∀x ∈ D̂. x ⊑ F̂ (x))

Then, static analysis is to compute an upper bound of:⊔
i∈N

F̂ i(⊥)

How can we ensure that the result soundly approximate the concrete
semantics?

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 4 / 25



Requirement 1: Galois Connection

D and D̂ must be related with Galois-connection:

D −−→←−−α
γ

D̂

That is, we have

abstraction function: α ∈ D → D̂
▶ represents elements in D as elements of D̂

concretization function: γ ∈ D̂ → D
▶ gives the meaning of elements of D̂ in terms of D

∀x ∈ D, x̂ ∈ D̂. α(x) ⊑ x̂ ⇐⇒ x ⊑ γ(x̂)
▶ α and γ respect the orderings of D and D̂
▶ If an element x ∈ D is safely described by x̂ ∈ D̂, i.e., α(d) ⊑ d̂,

then the element described by x̂ is also safe w.r.t. x, i.e., x ⊑ γ(x̂)

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 5 / 25



Galois-Connection

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 6 / 25



Example: Sign Abstraction

℘(Z) −−→←−−α
γ

({⊥,+, 0,−,⊤},⊑)

α(Z) =


⊥ Z = ∅
+ ∀z ∈ Z. z > 0
0 Z = {0}
− ∀z ∈ Z. z < 0
⊤ otherwise

γ(⊥) = ∅
γ(⊤) = Z
γ(+) = {z ∈ Z | z > 0}
γ(0) = {0}
γ(−) = {z ∈ Z | z < 0}

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 7 / 25



Example: Interval Abstraction

℘(Z) −−→←−−α
γ
{⊥} ∪ {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}}

γ(⊥) = ∅
γ([a, b]) = {z ∈ Z | a ≤ z ≤ b}

α(∅) = ⊥
α(X) = [minX,maxX]

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 8 / 25



cf) Alternate Formulation

D and D̂ are related with Galois-connection:

D −−→←−−α
γ

D̂

iff (α, γ) satisfies the following conditions:

α and γ are monotone functions

γ ◦ α is extensive, i.e., γ ◦ α ⊒ λx.x
▶ abstraction typically loses precision
▶ (γ ◦ α)({1, 3}) = {1, 2, 3}

α ◦ γ is reductive: i.e., α ◦ γ ⊑ λx.x
▶ If α ◦ γ = λx.x, Galois-insertion.
▶ With Galois-insertion, no two abstract elements describe the same

concrete element, which may be true with Galois-connection.

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 9 / 25



Proof (⇒)

If we have a Galois-connection:

∀x ∈ D, x̂ ∈ D̂. α(x) ⊑ x̂ ⇐⇒ x ⊑ γ(x̂)

then

λx.x ⊑ γ ◦ α: α(x) ⊑ α(x) and hence x ⊑ γ(α(x)) by
Galois-connection.

α ◦ γ ⊑ λx.x: γ(x̂) ⊑ γ(x̂) and hence α(γ(x̂)) ⊑ x̂ by
Galois-connection.

γ is monotone: if x̂ ⊑ ŷ, then α(γ(x̂)) ⊑ ŷ. Hence γ(x̂) ⊑ γ(ŷ)
by Galois-connection.

α is monotone: if x ⊑ y, then x ⊑ γ(α(y)). Hence α(x) ⊑ α(y)
by Galois-connection.

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 10 / 25



Proof (⇐)

Assume α(x) ⊑ x̂. Since γ is monotone, γ(α(x)) ⊑ γ(x̂).
Because γ ◦ α is extensive, we have x ⊑ γ(x̂).

Assume x ⊑ γ(x̂). Since α is monotone, α(x) ⊑ α(γ(x̂)).
Because α ◦ γ is reductive, we have α(x) ⊑ x̂.

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 11 / 25



Properties of Galois-Connection (1)

Given D −−→←−−α
γ

D̂, we have:

γ ◦ α ◦ γ = γ
▶ From α ◦ γ ⊑ λx.x and monotonicity of γ, we have γ ◦ α ◦ γ ⊑ γ.

We have γ ◦ α ◦ γ ⊒ γ from γ ◦ α ⊒ λx.x.

α ◦ γ ◦ α = α

α ◦ γ and γ ◦ α are idempotent:

(α ◦ γ)2 = α ◦ γ, (γ ◦ α)2 = γ ◦ α

γ uniquely determines α(D, D̂ complete lattices):

α(d) =
l
{d̂ | d ⊑ γ(d̂)}

which implies that α(d) is the best abstraction of d.

α uniquely determines γ:

γ(d̂) =
⊔
{d | α(d) ⊑ d̂}

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 12 / 25



Properties of Galois-Connection (2)

α is strict, i.e., α(⊥) = ⊥̂. Proof. From ⊥ ⊑ γ(⊥̂), we have
α(⊥) ⊑ ⊥̂ by Galois-connection.

α is continuous: for any chain S in D,

α(
⊔
x∈S

x) =
⊔
x∈S

α(x).

Proof. Since α is monotonic,⊔
x∈S

α(x) ⊑ α(
⊔
x∈S

x).

Since λx.x ⊑ γ ◦ α and γ is monotonic,⊔
x∈S

x ⊑
⊔
x∈S

γ(α(x)) ⊑ γ(
⊔
x∈S

α(x))

By Galois-connection, we have

α(
⊔
x∈S

x) ⊑
⊔
x∈S

α(x)

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 13 / 25



Deriving Galois-Connections

Pointwise lifting: Given D −−→←−−α
γ

D̂ and a set S, then

S → D −−−→←−−−
α′

γ′

S → D̂

with α′(f) = λs ∈ S.α(f(s)) and γ(f) = λs ∈ S.γ(f(s)).

Composition: Given X1 −−−→←−−−α1

γ1

X2 −−−→←−−−α2

γ2

X3, we have

X1 −−−−−→←−−−−−
α2◦α1

γ1◦γ2

X3

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 14 / 25



Requirement 2: F̂ and F

F̂ is a sound abstraction of F :

F ◦ γ ⊑ γ ◦ F̂ (α ◦ F ⊑ F̂ ◦ α)

or, alternatively,

α(x) ⊑ x̂ =⇒ α(F (x)) ⊑ F̂ (x̂)

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 15 / 25



Best Abstract Semantics

From D −−→←−−α
γ

D̂ and F ◦ γ ⊑ γ ◦ F̂ , we have

α ◦ F ◦ γ ⊑ α ◦ γ ◦ F̂ α is monotone

⊑ F̂ α ◦ γ ⊑ λx.x

The result means that α ◦ F ◦ γ is the best abstraction of F and any
sound abstraction F̂ of F is greater than α ◦ F ◦ γ.

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 16 / 25



Composition

When F, F ′ are concrete operators and F̂ , F̂ ′ are abstract operators, if F̂
and F̂ ′ are sound abstractions of F and F ′, respectively, then F̂ ◦ F̂ ′ is a
sound abstraction of F ◦ F ′.

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 17 / 25



Fixpoint Transfer Theorems

Theorem (Fixpoint Transfer)

Let D and D̂ be related by Galois-connection D −−→←−−α
γ

D̂. Let F : D → D be

a continuous function and F̂ : D̂ → D̂ be a monotone function such that
α ◦ F ⊑ F̂ ◦ α. Then,

α(fixF ) ⊑
⊔
i∈N

F̂ i(⊥̂).

Theorem (Fixpoint Transfer2)

Let D and D̂ be related by Galois-connection D −−→←−−α
γ

D̂. Let F : D → D be

a continuous function and F̂ : D̂ → D̂ be a monotone function such that
α(x) ⊑ x̂ =⇒ α(F (x)) ⊑ F̂ (x̂). Then,

α(fixF ) ⊑
⊔
i∈N

F̂ i(⊥̂).

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 18 / 25



Proof of Fixpoint Transfer

From α ◦ F ⊑ F̂ ◦ α, we can derive

∀n ∈ N. α ◦ Fn ⊑ F̂n ◦ α (∀n ∈ N. α(Fn(⊥)) ⊑ F̂n(⊥̂))

by induction as follows:

α ◦ Fn+1 = α ◦ F ◦ Fn

⊑ α ◦ F ◦ γ ◦ α ◦ Fn · · ·α ◦ F is mono. and λx.x ⊑ γ ◦ α

⊑ α ◦ F ◦ γ ◦ F̂n ◦ α · · ·α ◦ F ◦ γ is mono. and by I.H.

⊑ F̂ ◦ F̂n ◦ α · · ·α ◦ F ◦ γ ⊑ F̂

Since α, F, F̂ are monotone, {α(F i(⊥))}i and {F̂ i(⊥̂)}i are chains, and⊔
i∈N

α(F i(⊥)) ⊑
⊔
i∈N

F̂ i(⊥̂) (1)

Since α and F are continuous,⊔
i∈N

α(F i(⊥)) = α(
⊔
i∈N

(F i(⊥))) = α(fixF )

By replacing the left-hand side of (1), we have

α(fixF ) ⊑
⊔
i∈N

F̂ i(⊥̂)

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 19 / 25



Computing
⊔

i∈N F̂ i(⊥̂)
If the abstract domain D̂ has finite height (i.e., all chains are finite),
we can directly calculate ⊔

i∈N

F̂ i(⊥̂).

If the domain D̂ has infinite height, the computation may not
terminate. In this case, we find a finite chain
X̂0 ⊑ X̂1 ⊑ X̂2 ⊑ . . . such that⊔

i∈N

F̂ i(⊥̂) ⊑ lim
i∈N

X̂i

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 20 / 25



Fixpoint Accerlation with Widening

Define finite chain X̂i by an widening operator
`

: D̂ × D̂ → D̂:

X̂0 = ⊥̂
X̂i = X̂i−1 if F̂ (X̂i−1) ⊑ X̂i−1

= X̂i−1
`

F̂ (X̂i−1) otherwise

(2)

Conditions on
`
:

∀a, b ∈ D̂. (a ⊑ a
`

b) ∧ (b ⊑ a
`

b)

For all increasing chains (xi)i, the increasing chain (yi)i defined as

yi =

{
x0 if i = 0
yi−1

`
xi if i > 0

eventually stabilizes (i.e., the chain is finite).

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 21 / 25



Decreasing Iterations with Narrowing

We can refine the widening result limi∈N X̂i by a narrowing operatora
: D̂ × D̂ → D̂.

Compute chain (Ŷi)i

Ŷi =

{
limi∈N X̂i if i = 0

Ŷi−1
a

F̂ (Ŷi−1) if i > 0
(3)

Conditions on
a

▶ ∀a, b ∈ D̂. a ⊑ b =⇒ a ⊑ a
a

b ⊑ b
▶ For all decreasing chain (xi)i, the decreasing chain (yi)i defined as

yi =

{
xi if i = 0
yi−1

a
xi if i > 0

eventually stabilizes.

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 22 / 25



Safety of Widening and Narrowing

Theorem (Widening’s Safety)

Let D̂ be a CPO, F̂ : D̂ → D̂ a monotone function,
`

: D̂ × D̂ → D̂
a widening operator. Then, chain (X̂i)i defined as (2) eventually stabilizes
and ⊔

i∈N

F̂ i(⊥̂) ⊑ lim
i∈N

X̂i.

Theorem (Narrowing’s Safety)

Let D̂ be a CPO, F̂ : D̂ → D̂ a monotone function,
a

: D̂ × D̂ → D̂
a narrowing operator. Then, chain (Ŷi)i defined as (3) eventually
stabilizes and ⊔

i∈N

F̂ i(⊥̂) ⊑ lim
i∈N

Ŷi.

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 23 / 25



Proof of Widening’s Safety

We first show that {F̂ (X̂i)}i is an increasing chain (if so, by the second
condition of widening, the widening sequence {X̂i}i eventually stabilizes). Note
that, by (2), F̂ (X̂i+1) is either F̂ (X̂i) or F̂ (X̂i

`
F̂ (X̂i)). Since

X̂i ⊑ X̂i

`
F̂ (X̂i) and F̂ is monotone, for all i we have

F̂ (X̂i) ⊑ F̂ (X̂i+1)

We next show that ∀i ∈ N. F̂ i(⊥̂) ⊑ X̂i.

▶ Base case. F̂ 0(⊥)̂ = ⊥̂ ⊑ X̂0.
▶ Inductive case. From the induction hypothesis (I.H.), i.e., F̂ i(⊥̂) ⊑ X̂i, and

the monotonicity of F̂ , we have

F̂ i+1(⊥̂) ⊑ F̂ (X̂i) (4)

There are two cases to consider:

1 When F̂ (X̂i) ⊑ X̂i and X̂i+1 = X̂i: we have F̂ (X̂i) ⊑ X̂i+1 and
therefore F̂ i+1(⊥̂) ⊑ X̂i+1.

2 When F̂ (X̂i) ̸⊑ X̂i and X̂i+1 = X̂i

`
F̂i(X̂i): by the condition of`

, F̂ (X̂i) ⊑ X̂i

`
F̂i(X̂i) = X̂i+1. Thus, F̂ (X̂i) ⊑ X̂i+1 for all

i ∈ N. By (4), we have F̂ i+1(⊥̂) ⊑ X̂i+1.

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 24 / 25



Proof of Narrowing’s Safety

We first show that {F̂ (Ŷi)}i is a decreasing chain (if so, by the second condition
of narrowing, the narrowing sequence {Ŷi}i eventually stabilizes). We can show
that {F̂ (Ŷi)}i is a decreasing chain by showing the following

∀i ∈ N. Ŷi ⊒ F̂ (Ŷi). (5)

This is because, from (5), we have Ŷi ⊒ Ŷi

a
F̂ (Ŷi) ⊒ F̂ (Ŷi) and by the mono.

of F̂ , we have
F̂ (Ŷi) ⊒ F̂ (Ŷi

i
F̂ (Ŷi)) = F̂ (Ŷi+1)

Proof of (5): exercise.

We next show that ∀i ∈ N. F̂ i(⊥̂) ⊑ Ŷi by induction (exercise).

Hakjoo Oh AAA616 2024 Fall, Lecture 6 October 17, 2024 25 / 25


