
AAA616: Program Analysis

Lecture 3 — Operational Semantics

Hakjoo Oh
2024 Fall

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 1 / 37

Plan

Notation

Big-step operational semantics for IMP

Small-step operational semantics for IMP

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 2 / 37

Logical Notation

For statements A and B,

A & B: A and B, the conjunction of A and B

A =⇒ B: A implies B, if A then B

A ⇐⇒ B: A iff B, the logical equivalence of A and B

¬A: not A

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 3 / 37

Logical Notation

Logical quantifiers ∃ and ∀:
∃x. P (x): for some x, P (x)

∀x. P (x): for all x, P (x)

Abbreviations:
▶ ∃x, y, . . . , z. P (x, y, . . . , z) ≡ ∃x∃y . . . ∃z. P (x, y, . . . , z)
▶ ∀x, y, . . . , z. P (x, y, . . . , z) ≡ ∀x∀y . . . ∀z. P (x, y, . . . , z)
▶ ∀x ∈ X. P (x) ≡ ∀x. x ∈ X =⇒ P (x)
▶ ∃x ∈ X. P (x) ≡ ∃x. x ∈ X & P (x)
▶ ∃!x. P (x) ≡ (∃x. P (x)) & (∀y, z. P (y) & P (z) =⇒ y = z)

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 4 / 37

Sets

A set is a collection of objects (also called elements or members)

a ∈ X: a is an element of the set X

A set X is a subset of a set Y , X ⊆ Y , iff every element of X is an
element of Y :

X ⊆ Y ⇐⇒ ∀z ∈ X. z ∈ Y.

Sets X and Y are equal, X = Y , iff X ⊆ Y and Y ⊆ X.

∅: empty set

ω: the set of natural numbers 0, 1, 2, . . .

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 5 / 37

Constructions on Sets

Comprehension: If X is a set and P (x) is a property, the set

{x ∈ X | P (x)}

denotes the subset of X consisting of all elements x of X which
satisfy P (x).

Powerset: the set of all subsets of a set:

℘(X) = {Y | Y ⊆ X}.

Indexed sets: Suppose I is a set and that for any i ∈ I there is a
unique object xi. Then

{xi | i ∈ I}

is a set. The elements xi is indexed by the elements i ∈ I.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 6 / 37

Constructions on Sets

Union and intersection:

X ∪ Y = {a | a ∈ X or a ∈ Y }
X ∩ Y = {a | a ∈ X & a ∈ Y }

Big union and intersection: When X is a set of sets,⋃
X = {a | ∃x ∈ X. a ∈ x}⋂
X = {a | ∀x ∈ X. a ∈ x}

When X = {xi | i ∈ I} for some index set I,⋃
i∈I

xi =
⋃

X

⋂
i∈I

xi =
⋂

X

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 7 / 37

Constructions on Sets

Disjoint union:

X ⊎ Y = ({0} × X) ∪ ({1} × Y).

Product: For sets X and Y , their product is the set

X × Y = {(a, b) | a ∈ X & b ∈ Y }.

In general,

X1×X2×· · ·×Xn = {(x1, x2, . . . , xn) | ∀i ∈ [1, n]. xi ∈ Xi}.

Set difference:

X \ Y = {x | x ∈ X & x ̸∈ Y }.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 8 / 37

Relations and Functions

A binary relation R between X and Y is an element of ℘(X × Y),
R ∈ ℘(X × Y), or R ⊆ X × Y .

When R is a binary relation R ⊆ X ⊆ Y , we write xRy for
(x, y) ∈ R.

A partial function f from X to Y is a relation f ⊆ X ×Y such that

∀x, y, y′. (x, y) ∈ f & (x, y′) ∈ f =⇒ y = y′.

We use the notation f(x) = y when there is y such that (x, y) ∈ f
and say f(x) is defined, and otherwise f(x) is undefined.

A total function from X to Y is a partial function such that f(x) is
defined for all x ∈ X.

(X ↪→ Y): the set of all partial functions from X to Y

(X → Y): the set of all total functions from X to Y

λx. e: the lambda notation for functions

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 9 / 37

Relations and Functions

Composition: When R ⊆ X × Y and S ⊆ Y × Z are binary
relations, their composition is a relation of type X × Z defined as,

S ◦ R = {(x, z) ∈ X × Z | ∃y ∈ Y. (x, y) ∈ R & (y, z) ∈ S}

IdX = {(x, x) | x ∈ X}

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 10 / 37

Relations and Functions

An equivalence relation on X is a relation R ⊆ X × X which is
▶ reflexive: ∀x ∈ X. xRx,
▶ symmetric: ∀x, y ∈ X. xRy =⇒ yRx, and
▶ transitive: ∀x, y, z ∈ X. xRy & yRz =⇒ xRz.

Example: = on numbers, the relation “has the same age” on people

We sometime write x ≡ y (mod R) for (x, y) ∈ R.

The equivalence class of x under R, denoted {x}R or [x]R:

[x]R = {y ∈ X | xRy}.

Quotient set: the set of all equivalence classes of X by R:

X/R = {[x]R | x ∈ X}.

For any equivalence relation R, X/R is a partition of X.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 11 / 37

Relations and Functions

Let R be a relation on a set X. Define R0 = IdX , and R1 = R,
and

Rn+1 = R ◦ Rn.

The transitive closure of R:

R+ =
⋃
n∈ω

Rn+1

The reflexive transitive closure of R:

R∗ =
⋃
n∈ω

Rn = IdX ∪ R+.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 12 / 37

Sequences

Given a set S, S+ denotes the set of all finite nonempty sequences of
elements of S

When σ is a finite sequence, σk denotes the (k + 1)th element of
the sequence, σ0 the first element, and σ⊣.

Given a sequence σ ∈ S+ and an element s ∈ S, σ · s denotes a
sequence obtained by appending s to σ.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 13 / 37

Syntax vs. Semantics

A programming language is defined with syntax and semantics.

The syntax is concerned with the grammatical structure of programs.
▶ Context-free grammar

The semantics is concerned with the meaning of grammatically
correct programs.

▶ Operational semantics: The meaning is specified by the computation
steps executed on a machine. It is of intrest how it is obtained.

▶ Denotational semantics: The meaning is modeled by mathematical
objects that represent the effect of executing the program. It is of
interest the effect, not how it is obtained.

▶ Axiomatic semantics: The meaning is given as proof rules within a
program logic. It is of interest how to prove program correctness.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 14 / 37

IMP: Abstract Syntax

n,m will range over numerals, N
t will range over truth values, T= { true, false }
X,Y will range over locations, Loc
a will range over arithmetic expressions, Aexp
b will range over boolean expressions, Bexp
c will range over statements, Com

a ::= n | X | a0 + a1 | a0 ⋆ a1 | a0 − a1

b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1
c ::= X := a | skip | c0; c1 | if b then c0 else c1 | while b do c

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 15 / 37

Example

The factorial program:

Y:=1; while ¬(X=1) do (Y:=Y⋆X; X:=X-1)

The abstract syntax tree:

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 16 / 37

States

The meaning of a program depends on the values bound to the
locations that occur in the program, e.g., X + 3.

A state is a function from locations to values:

σ, s ∈ Σ = Loc → N

Let σ be a state. Let m ∈ N. Let X ∈ Loc. We write σ[m/X] (or
σ[X 7→ m]) for the state obtained from σ by replacing its contents
in X by m, i.e.,

σ[m/X](Y) = σ[X 7→ m] =

{
m if Y = X
σ(Y) if Y ̸= X

Σ⊥ = Σ ∪ {⊥}

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 17 / 37

Operational Semantics

Operational semantics is concerned about how to execute programs and
not merely what the execution results are.

Big-step operational semantics describes how the overall results of
executions are obtained.

Small-step operational semantics describes how the individual steps of
the computations take place.

In both kinds, the semantics is specified by a transition system (S,→)
where S is the set of configurations with two types (for Aexp):

⟨a, σ⟩: a nonterminal configuration, i.e. the expression a is to be
evaluated in the state σ ∈ Σ = Loc → N

n: a terminal configuration

The transition relation (→) ⊆ S × S describes how the execution takes
place. The difference between the two approaches are in the definitions of
transition relation.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 18 / 37

Evaluation of Arithmetic Expressions

⟨n, σ⟩ → n

⟨X,σ⟩ → σ(X)

⟨a0, σ⟩ → n0 ⟨a1, σ⟩ → n1

⟨a0 + a1, σ⟩ → n0 + n1

⟨a0, σ⟩ → n0 ⟨a1, σ⟩ → n1

⟨a0 − a1, σ⟩ → n0 − n1

⟨a0, σ⟩ → n0 ⟨a1, σ⟩ → n1

⟨a0 ⋆ a1, σ⟩ → n0 ⋆ n1

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 19 / 37

Example

When σ(X) = 0,

⟨(X + 5) + (7 + 9), σ⟩ → 21

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 20 / 37

Semantic Equivalence of Arithmetic Expressions

a0 ∼ a1 iff (∀n ∈ N∀σ ∈ Σ. ⟨a0, σ⟩ → n ⇐⇒ ⟨a1, σ⟩ → n)

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 21 / 37

Evaluation of Boolean Expressions

⟨true, σ⟩ → true ⟨false, σ⟩ → false

⟨a0, σ⟩ → n0 ⟨a1, σ⟩ → n1

⟨a0 = a1, σ⟩ → true
n0 = n1

⟨a0, σ⟩ → n0 ⟨a1, σ⟩ → n1

⟨a0 = a1, σ⟩ → false
n0 ̸= n1

⟨a0, σ⟩ → n0 ⟨a1, σ⟩ → n1

⟨a0 ≤ a1, σ⟩ → true
n0 ≤ n1

⟨a0, σ⟩ → n0 ⟨a1, σ⟩ → n1

⟨a0 ≤ a1, σ⟩ → false
n0 > n1

⟨b, σ⟩ → true

⟨¬b, σ⟩ → false

⟨b, σ⟩ → false

⟨¬b, σ⟩ → true

⟨b0, σ⟩ → true ⟨b1, σ⟩ → true

⟨b0 ∧ b1, σ⟩ → true

⟨b0, σ⟩ → t0 ⟨b1, σ⟩ → t1

⟨b0 ∧ b1, σ⟩ → false
false ∈ {t0, t1}

⟨b0, σ⟩ → false ⟨b1, σ⟩ → false

⟨b0 ∨ b1, σ⟩ → false

⟨b0, σ⟩ → t0 ⟨b1, σ⟩ → t1

⟨b0 ∨ b1, σ⟩ → true
true ∈ {t0, t1}

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 22 / 37

Semantic Equivalence of Boolean Expressions

b0 ∼ b1 iff (∀t ∈ T∀σ ∈ Σ. ⟨b0, σ⟩ → t ⇐⇒ ⟨b1, σ⟩ → t)

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 23 / 37

Short-Circuit Evaluation

A more efficient evaluation strategy for b0 ∧ b1 is to first evaluate b0 and
then only in the case where its evaluation yields true to proceed with the
evaluation of b1.

⟨b0, σ⟩ → false

⟨b0 ∧ b1, σ⟩ → false

⟨b0, σ⟩ → true ⟨b1, σ⟩ → false

⟨b0 ∧ b1, σ⟩ → false

⟨b0, σ⟩ → true ⟨b1, σ⟩ → true

⟨b0 ∧ b1, σ⟩ → true

Exercise) Define short-circuit evaluation for b0 ∨ b1.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 24 / 37

Execution of Commands

⟨skip, σ⟩ → σ

⟨a, σ⟩ → m

⟨X := a, σ⟩ → σ[m/X]

⟨c0, σ⟩ → σ′′ ⟨c1, σ′′⟩ → σ′

⟨c0; c1, σ⟩ → σ′

⟨b, σ⟩ → true ⟨c0, σ⟩ → σ′

⟨if b then c0 else c1, σ⟩ → σ′

⟨b, σ⟩ → false ⟨c1, σ⟩ → σ′

⟨if b then c0 else c1, σ⟩ → σ′

⟨b, σ⟩ → false

⟨while b do c, σ⟩ → σ

⟨b, σ⟩ → true ⟨c, σ⟩ → σ′′ ⟨while b do c, σ′′⟩ → σ′

⟨while b do c, σ⟩ → σ′

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 25 / 37

cf) Non-Terminating Program

For any state σ, there is no state σ′ such that

⟨while true do skip, σ⟩ → σ′

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 26 / 37

Semantic Equivalence of Commands

c0 ∼ c1 iff (∀σ, σ′ ∈ Σ. ⟨c0, σ⟩ → σ′ ⇐⇒ ⟨c1, σ⟩ → σ′)

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 27 / 37

Example

Let w ≡ while b do c with b ∈ Bexp, c ∈ Com. Prove that

w ∼ if b then c;w else skip

Proof) To show:

∀σ, σ′ ∈ Σ. ⟨w, σ⟩ → σ′ ⇐⇒ ⟨if b then c;w else skip, σ⟩ → σ′

⇒: Suppose ⟨w, σ⟩ → σ′ for states σ, σ′. Then there must be a
derivation of ⟨w, σ⟩ → σ′, where the final rule is either

⟨b, σ⟩ → false

⟨w, σ⟩ → σ (1)

or
⟨b, σ⟩ → true ⟨c, σ⟩ → σ′′ ⟨w, σ′′⟩ → σ′

⟨w, σ⟩ → σ′ (2)

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 28 / 37

In case (1), the derivation must have the form

...
⟨b, σ⟩ → false

⟨w, σ⟩ → σ

which includes a derivation of ⟨b, σ⟩ → false. Using this derivation, we
can build the following derivation:

...
⟨b, σ⟩ → false ⟨skip, σ⟩ → σ

⟨if b then c;w else skip, σ⟩ → σ

In case (2), the derivation must have the form

...
⟨b, σ⟩ → true

...
⟨c, σ⟩ → σ′′

...
⟨w, σ′′⟩ → σ′

⟨w, σ⟩ → σ′

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 29 / 37

Using this, we can build the following derivation:

...
⟨b, σ⟩ → true

...
⟨c, σ⟩ → σ′′

...
⟨w, σ′′⟩ → σ′

⟨c;w, σ⟩ → σ′

⟨if b then c;w else skip, σ⟩ → σ′

In either case, (1) and (2), we obtain a derivation of

⟨if b then c;w else skip, σ⟩ → σ′

Thus,

∀σ, σ′ ∈ Σ. ⟨w, σ⟩ → σ′ ⇒ ⟨if b then c;w else skip, σ⟩ → σ′

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 30 / 37

⇐: Suppose ⟨if b then c;w else skip, σ⟩ → σ′ for states σ, σ′.
Then, there is a derivation with one of two possible forms:

...
⟨b, σ⟩ → false ⟨skip, σ⟩ → σ

⟨if b then c;w else skip, σ⟩ → σ (3)

...
⟨b, σ⟩ → true

...
⟨c;w, σ⟩ → σ′

⟨if b then c;w else skip, σ⟩ → σ′ (4)

From either derivation, we can construct a derivation of ⟨w, σ⟩ → σ′.
Consider the second case, (4), which has a derivation of ⟨c;w, σ⟩ → σ′

of the form
...

⟨c, σ⟩ → σ′′

...
⟨w, σ′′⟩ → σ′

⟨c;w, σ⟩ → σ′

for some state σ′′.
Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 31 / 37

Using the derivations of ⟨c, σ⟩ → σ′′, ⟨w, σ′′⟩ → σ′, and
⟨b, σ⟩ → true, we can produce the derivation

...
⟨b, σ⟩ → true

...
⟨c, σ⟩ → σ′′

...
⟨w, σ′′⟩ → σ′

⟨w, σ⟩ → σ′

Similarly, we can construct a derivation of ⟨w, σ⟩ → σ′ from (3). Thus,

∀σ, σ′ ∈ Σ. ⟨w, σ⟩ → σ′ ⇐ ⟨if b then c;w else skip, σ⟩ → σ′

We can now conclude that

∀σ, σ′ ∈ Σ. ⟨w, σ⟩ → σ′ ⇐⇒ ⟨if b then c;w else skip, σ⟩ → σ′

and hence
w ∼ if b then c;w else skip

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 32 / 37

Small-step Operational Semantics

⟨a0, σ⟩ →1 ⟨a′
0, σ⟩

⟨a0 + a1, σ⟩ →1 ⟨a′
0 + a1, σ⟩

⟨a1, σ⟩ →1 ⟨a′
1, σ⟩

⟨n + a1, σ⟩ →1 ⟨n + a′
1, σ⟩

⟨n + m,σ⟩ →1 ⟨p, σ⟩ p is the sum of n and m

Exercise) Complete the rules for Aexp and Bexp.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 33 / 37

Small-step Operational Semantics

⟨skip, σ⟩ →1 σ

⟨X := n, σ⟩ →1 s[n/X]

⟨a, σ⟩ →1 ⟨a′, σ⟩
⟨X := a, σ⟩ →1 ⟨X := a′, σ⟩

⟨c0, σ⟩ →1 ⟨c′0, σ′⟩
⟨c0; c1, σ⟩ →1 ⟨c′0; c1, σ′⟩

⟨c0, σ⟩ →1 σ′

⟨c0; c1, σ⟩ →1 ⟨c1, σ′⟩

⟨b, σ⟩ → ⟨true, σ⟩
⟨if b then c0 else c1, σ⟩ →1 ⟨c0, σ⟩

⟨b, σ⟩ → ⟨false, σ⟩
⟨if b then c0 else c1, σ⟩ →1 ⟨c1, σ⟩

⟨b, σ⟩ → ⟨b′, σ⟩
⟨if b then c0 else c1, σ⟩ →1 ⟨if b′ then c0 else c1, σ⟩

⟨while b do c, σ⟩ →1 ⟨if b then c; while b do c else skip, σ⟩

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 34 / 37

Example

Consider the statement:

(z:=x; x:=y); y:=z

Let σ0 be the state that maps all variables except x and y and has
σ0(x) = 5 and σ0(y) = 7. We then have the derivation sequence:

⟨(z := x; x := y); y := z, σ0⟩
→1 ⟨x := y; y := z, σ0[z 7→ 5]⟩
→1 ⟨y := z, σ0[z 7→ 5, x 7→ 7]⟩
→1 σ0[z 7→ 5, x 7→ 7, y 7→ 5]

Each step has a derivation tree explaining why it takes place, e.g.,

⟨z := x, σ0⟩ →1 σ0[z 7→ 5]

⟨z := x; x := y, σ0⟩ →1 ⟨x := y, σ0[z 7→ 5]⟩
⟨(z := x; x := y); y := z, σ0⟩ →1 ⟨x := y; y := z, σ0[z 7→ 5]⟩

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 35 / 37

Example: Factorial

Assume that σ(x) = 3.

⟨y:=1; while ¬(x=1) do (y:=y⋆x; x:=x-1), σ⟩
→1 ⟨while ¬(x=1) do (y:=y⋆x; x:=x-1), σ[y 7→ 1]⟩
→1 ⟨if ¬(x=1) then ((y:=y⋆x; x:=x-1);while ¬(x=1) do (y:=y⋆x; x:=x-1))

else skip, σ[y 7→ 1]⟩
→1 ⟨(y:=y⋆x; x:=x-1);while ¬(x=1) do (y:=y⋆x; x:=x-1), σ[y 7→ 1]⟩
→1 ⟨x:=x-1;while ¬(x=1) do (y:=y⋆x; x:=x-1), σ[y 7→ 3]⟩
→1 ⟨while ¬(x=1) do (y:=y⋆x; x:=x-1), σ[y 7→ 3][x 7→ 2]⟩
→1 ⟨if ¬(x=1) then ((y:=y⋆x; x:=x-1);while ¬(x=1) do (y:=y⋆x; x:=x-1))

else skip, σ[y 7→ 3][x 7→ 2]⟩
→1 ⟨(y:=y⋆x; x:=x-1);while ¬(x=1) do (y:=y⋆x; x:=x-1), σ[y 7→ 3][x 7→ 2]⟩
→1 ⟨x:=x-1;while ¬(x=1) do (y:=y⋆x; x:=x-1), σ[y 7→ 6][x 7→ 2]⟩
→1 ⟨while ¬(x=1) do (y:=y⋆x; x:=x-1), σ[y 7→ 6][x 7→ 1]⟩
→1 s[y 7→ 6][x 7→ 1]

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 36 / 37

Summary

We have defined the operational semantics of IMP.

Big-step operational semantics describes how the overall results of
executions are obtained.

Small-step operational semantics describes how the individual steps of
the computations take place.

The big-step and small-step operational semantics are equivalent:

Theorem

∀c ∈ Com∀σ, σ′ ∈ Σ. ⟨c, σ⟩ → σ′ ⇐⇒ ⟨c, σ⟩ →∗
1 σ′.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 37 / 37

