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Plan

@ Notation
@ Big-step operational semantics for IMP

@ Small-step operational semantics for IMP
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Logical Notation

For statements A and B,
o A & B: A and B, the conjunction of A and B
e A —> B: A implies B, if A then B
e A <= B: A iff B, the logical equivalence of A and B
@ "A:not A
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Logical Notation

Logical quantifiers 3 and V:
e Jx. P(x): for some x, P(x)
e Vx. P(x): for all , P(x)
@ Abbreviations:
» 3x,y,...,2. P(x,y,...,2) = JzJy...3z. P(x,y,...,2)
» Ve,y,...,z. P(x,y,...,2) =VaVy...Vz. P(x,y,...,2)
» Ve € X. P(x) =Ve. 2 € X — P(x)
» Jx € X. P(z)=3Jz. z € X & P(x)
Az, P(z) = (Fz. P(x)) & (Vy, 2. P(y) & P(z) — y = 2)

v
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Sets

@ A set is a collection of objects (also called elements or members)
@ a € X: ais an element of the set X

@ Aset X isasubsetof aset Y, X CY, iff every element of X is an
element of Y:

XCY < Vze X.zcY.

@ Sets X and Y areequal, X =Y,iff X CY and Y C X.
@ (: empty set

@ w: the set of natural numbers 0,1, 2,...
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Constructions on Sets
e Comprehension: If X is a set and P(x) is a property, the set
{z e X | P(x)}

denotes the subset of X consisting of all elements & of X which
satisfy P(x).

@ Powerset: the set of all subsets of a set:
p(X)={Y |Y C X}

@ Indexed sets: Suppose I is a set and that for any ¢ € I there is a
unique object x;. Then

{z: | i €I}

is a set. The elements x; is indexed by the elements ¢ € I.
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Constructions on Sets

@ Union and intersection:

XUY = {ala€eXoracY}
XNY = {a|laeX &acY}

@ Big union and intersection: When X is a set of sets,

UX = {a|3FzeX. a€x}
NX = {a|VreX.acx}

When X = {x; | © € I} for some index set I,

U= Ux

i€l

(zi=X

el
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Constructions on Sets
@ Disjoint union:
XWY ={0} x X)U ({1} xY).
@ Product: For sets X and Y, their product is the set
XXY ={(a,b) |lae X &be Y}
In general,
XixXoX-- XXy, = {(x1,%2,...,2n) | Vi € [1,n]. x; € X;}.
o Set difference:

X\Y={z|lzeX&zgY}
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Relations and Functions

o A binary relation R between X and Y is an element of (X X Y),
Rep(X XY),or RCX XY.

@ When R is a binary relation R C X C Y, we write xRy for
(z,y) € R

@ A partial function f from X to Y is a relation f C X X Y such that

Vo, y,y. (z,y) Ef & (zy)€f = y=1v'
@ We use the notation f(x) = y when there is y such that (z,y) € f

and say f(x) is defined, and otherwise f(x) is undefined.

@ A total function from X to Y is a partial function such that f(x) is
defined for all x € X.

@ (X — Y): the set of all partial functions from X to Y
@ (X — Y): the set of all total functions from X to Y

@ A\z. e: the lambda notation for functions
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Relations and Functions

@ Composition: When R C X XY and S CY X Z are binary
relations, their composition is a relation of type X X Z defined as,

SoR={(z,2) X xZ|Jy €Y. (z,y) € R& (y,2) € S}

o Idx = {(xz,xz) |z € X}
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Relations and Functions

@ An equivalence relation on X is a relation R C X X X which is
» reflexive: Ve € X. xRz,
» symmetric: Ve,y € X. xRy —> yRx, and
> transitive: Va,y,z € X. xRy & yRz —> xR-=z.

Example: = on numbers, the relation “has the same age” on people

We sometime write x = y (mod R) for (z,y) € R.

The equivalence class of & under R, denoted {z}r or [z]R:

[z]r = {y € X | zRy}.

Quotient set: the set of all equivalence classes of X by R:

X/R={[z]r | x € X}.

For any equivalence relation R, X/R is a partition of X.
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Relations and Functions

@ Let R be a relation on a set X. Define R® = Idx, and R = R,
and
R"t1 = Ro R".

@ The transitive closure of R:

Rt = U Rt

new

@ The reflexive transitive closure of R:

R*=|J R"=1Idx UR".

new
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Sequences

o Given a set S, ST denotes the set of all finite nonempty sequences of
elements of S

@ When o is a finite sequence, o denotes the (k 4 1)th element of
the sequence, g the first element, and o .

@ Given a sequence 0 € ST and an element s € S, o - s denotes a
sequence obtained by appending s to o.
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Syntax vs. Semantics

A programming language is defined with syntax and semantics.
@ The syntax is concerned with the grammatical structure of programs.
» Context-free grammar

@ The semantics is concerned with the meaning of grammatically
correct programs.

» Operational semantics: The meaning is specified by the computation
steps executed on a machine. It is of intrest how it is obtained.

» Denotational semantics: The meaning is modeled by mathematical
objects that represent the effect of executing the program. It is of
interest the effect, not how it is obtained.

» Axiomatic semantics: The meaning is given as proof rules within a
program logic. It is of interest how to prove program correctness.
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IMP: Abstract Syntax

n, m will range over numerals, N

t will range over truth values, T= { true, false }
X, Y will range over locations, Loc

a will range over arithmetic expressions, Aexp

b will range over boolean expressions, Bexp

c will range over statements, Com

a 2= n|X|ay+ai|agxai|ap— a1
true|false|a0:a1|a0§a1|—|b|b0/\b1|bovb1
2= X :=a|skip| cojc1 | if b then ¢g else ¢1 | while bdo ¢

(=)
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Example

The factorial program:
Y:=1; while = (X=1) do (Y:=Y*X; X:=X-1)

The abstract syntax tree:
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States

@ The meaning of a program depends on the values bound to the
locations that occur in the program, e.g., X + 3.

@ A state is a function from locations to values:
og,s € X =Loc - N

@ Let o be a state. Let m € N. Let X € Loc. We write o[m/X] (or
o[X — m)]) for the state obtained from o by replacing its contents
in X by m, ie.,

m ifY =X

om/X|(Y) = o[X — m| = { oY) fY #X

o3, =X U{l}
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Operational Semantics

Operational semantics is concerned about how to execute programs and
not merely what the execution results are.

o Big-step operational semantics describes how the overall results of
executions are obtained.

@ Small-step operational semantics describes how the individual steps of
the computations take place.

In both kinds, the semantics is specified by a transition system (S, —)
where S is the set of configurations with two types (for Aexp):

e (a,o): a nonterminal configuration, i.e. the expression a is to be
evaluated in the state 0 € ¥ = Loc —+ N

@ n: a terminal configuration

The transition relation (—) C S X S describes how the execution takes
place. The difference between the two approaches are in the definitions of
transition relation.

Hakjoo Oh AAA616 2024 Fall, Lecture 3 September 3, 2024 18 /37



Evaluation of Arithmetic Expressions

(n,o) > n

(X, 0) = o(X)

(ag,0) — ng (a1,0) = nq
(ap + a1, 0) = ng +ny

<a0,0'> — N <a1,0'> — N1
(ap — a1,0) = ng —ny

(ao, 0') — N (al, 0') — N1
<a0*0,1,0'> — Ng * N1
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Example
When o(X) = 0,

(X +5)+ (T+9),0) — 21
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Semantic Equivalence of Arithmetic Expressions

ag ~ a; iff (Vn € NVo € X. (ag,0) > n <= (a1,0) = n)
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Evaluation of Boolean Expressions

(true, o) — true (false, o) — false

(apg, o) — no (a1,0) = n1 (ap, o) = no (a1,0) = ni
no = n1 0 #mni
(ap = a1,0) — true {(ap = a1,0) — false
(a0,0'> — Nno <a1, o') — N1 <a0, o') — o (al, o‘) — ni
no < ni ne > ni

(ap < a1,0) — true (ao < a1,0) — false

(b, o) — true (b, o) — false

(—b, o) — false (=b, o) — true

(bo, o) — true (b1, 0) — true (bo, o) — to (b1,0) = t1
(bo A b1,0) — true (bo A by, o) — false

false € {to,t1}

(bo, o) — false (b1, 0) — false (bo, o) — to (b1,0) = t1
(bo V b1,0) — false (bo V b1,0) — true

true € {to,t1}
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Semantic Equivalence of Boolean Expressions

bg ~ by iff (VtETVUE 3. <b0,0’> — 1t < <b1,0'> —)t)
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Short-Circuit Evaluation

A more efficient evaluation strategy for bg A by is to first evaluate bg and

then only in the case where its evaluation yields true to proceed with the
evaluation of bj.

(bo, o) — false
(bo A by, 0) — false

(bo, o) — true (b1, 0) — false
(bo A b1, 0) — false
(b, o) — true (b1,0) — true

(bo A\ b1,0) — true

Exercise) Define short-circuit evaluation for by V by.
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Execution of Commands

(a,0) &> m
(skip,0) — o (X :=a,0) > om/X]

(co,0) — o’ (c1,0") = o’
(co;c1,0) — o’

(b, o) — true (co,0) — o’
(if b then ¢g else ¢1,0) — o’

(b, o) — false (c1,0) — o’
(if b then cg else ¢1,0) — o’

(b, o) — false
(while bdo ¢,0) —> o

(b,0) — true (c,0) = o (while b do ¢, 0"") — o’
(while b do ¢,0) — o’
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cf) Non-Terminating Program

For any state o, there is no state o’ such that

(while true do skip,o) — o’
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Semantic Equivalence of Commands

co ~ c iff (Vo,0’ € X. {co,0) = 0’ <= (c1,0) = ')
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Example

Let w = while b do c with b € Bexp, ¢ € Com. Prove that
w ~ if b then c; w else skip

Proof) To show:

Vo,0’ € . (w,0) — 0/ <= (if b then c; w else skip,o) — o’

=>: Suppose (w, o) — o’ for states o, o’. Then there must be a
derivation of (w, o) — o’, where the final rule is either

(b, o) — false

(w,0) = 0o (1)
or
(b,o) — true (e,o) = o” (w, 0"y = o’
(w,0) — o’ (2)
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In case (1), the derivation must have the form

(b, o) —) false
(w,o0) > o

which includes a derivation of (b, ) — false. Using this derivation, we
can build the following derivation:

(b, o) — false (skip,0) = o
(if b then c; w else skip,o0) — o

In case (2), the derivation must have the form

(b,o) — true (e,o) = o” (w,0”) = o’

(w, o) — o’
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Using this, we can build the following derivation:

(e,o) > 0" (w,0") = o'
(b,o) — true (c;w,o) — o’
(if b then c;w else skip, o) — o’

In either case, (1) and (2), we obtain a derivation of
(if b then c;w else skip,o) — o’
Thus,

Vo,o0’ € 3. (w,0) — o’ = (if b then c; w else skip,o) — o’
P
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<=: Suppose (if b then c;w else skip, o) — o’ for states o, o”.
Then, there is a derivation with one of two possible forms:

(b,o) — false (skip,o) — o
(if b then c; w else skip,o) — o (3)

(b,o) — true (c;w,o) — o’
(if b then c;w else skip, o) — o’ (4)

From either derivation, we can construct a derivation of (w, o) — o’.
Consider the second case, (4), which has a derivation of (¢; w, o) — o’
of the form

(e,o) = " (w,o")y — o’

(sw,o) — o’

for some state o”’.
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Using the derivations of (¢, o) — o”, (w,0”) — o/, and
(b, o) — true, we can produce the derivation

(b, o) — true (e,o) > o” (w, 0"y = o’
(w,o) — o’

Similarly, we can construct a derivation of (w, o) — o’ from (3). Thus,
Vo,0' € . (w,0) — o’ < (if b then c;w else skip,o) — o’

We can now conclude that

Vo,0’ € . (w,0) — 0/ <= (if b then c;w else skip,o) — o’

and hence
w ~ if b then c;w else skip
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Small-step Operational Semantics

(ag, o) —1 (a(), o)

(ap + a1, 0) —1 (ay + a1, 0)
)
)

—1 <a,17 o)
—1 (n+ all’ o)

(a1,0
o

<’I’L + aq,

is th f
n £ m, o) o1 (p,0) p is the sum of n and m

Exercise) Complete the rules for Aexp and Bexp.
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Small-step Operational Semantics

(skip, o) =1 0

(a,0) =1 {a’,0)
(X :=n,o0) —1 s[n/X] (X :=a,0) 51 (X :=d',0)

(o, ) =1 (co,0”) (co,0) =1 0’

(coje1,0) =1 (cose1,0")  (coje1,0) =1 (e1,07)

(b, o) — (true, o)

(if b then c¢o else ¢1,0) —1 (co, o)

(b, o) — (false, o)

(if b then co else ¢1,0) —1 (c1,0)

(byo) = (b, o)

(if b then co else ¢1,0) —»1 (if b’ then co else c1,0)

(while b do ¢, o) —1 (if b then c;while b do ¢ else skip, o)
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Example

Consider the statement:
(z:=x; x:=y); y:=z

Let og be the state that maps all variables except x and y and has
oo(x) = 5 and og(y) = 7. We then have the derivation sequence:

(2 = x3% 1= ¥);y 1= 2, 00)
—1 (x:=y;y := 2,00[z — 5])
—1 (y = z,00[z — 5, — T])
—1 00[z — 5,z — T,y — 5]

Each step has a derivation tree explaining why it takes place, e.g.,

(z := x,00) —1 00[z — 5]
(z:=x3x:=y,00) =1 (x :=y,00[z — 5])
((z:=x3x:=y);y := 2,00) —1 (X :=y;y := 2,00[z — 5])
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Example: Factorial
Assume that o(x) = 3.

(y:=1; while —(x=1) do (y:=y*x; x:=x-1),0)

—1 (while —(x=1) do (y:=y*x; x:=x-1),0y — 1])

—1 (if —(x=1) then ((y:=y*x; x:=x-1);while —(x=1) do (y:=y*x; x:=x-1))
else skip, o[y — 1])

—1 ((y:=yxx; x:=x-1);while —(x=1) do (y:=y*x; x:=x-1),0[y — 1])

—1 (x:=x-1;while —(x=1) do (y:=yxx; x:=x-1),0y — 3])

—1 (while —(x=1) do (y:=y*x; x:=x-1),0[y — 3][z — 2])

—1 (if —(x=1) then ((y:=y*x; x:=x-1);while —(x=1) do (y:=y*x; x:=x-1))
else skip, oy — 3][z — 2])

—1 ((y:=yxx; x:=x-1);while —(x=1) do (y:=y*x; x:=x-1),0[y — 3][x — 2])

—1 (x:=x-1;while —(x=1) do (y:=y*x; x:=x-1),0[y — 6][x — 2])

—1 (while —(x=1) do (y:=y*x; x:=x-1), 0y — 6][z — 1])

—1 s[y — 6][x — 1]
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Summary

We have defined the operational semantics of IMP.

@ Big-step operational semantics describes how the overall results of
executions are obtained.

o Small-step operational semantics describes how the individual steps of
the computations take place.

The big-step and small-step operational semantics are equivalent:

Theorem
Ve € ComVo,o0’ € 3. (c,0) - 0’ <= (c,0) =] o’. J
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