AAA616: Program Analysis

Lecture 8 — Pointer Analysis

Hakjoo Oh
2022 Fall

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 1/31



Topics

Pointer analysis

Constraint-based analysis

(]

o

@ Interprocedural analysis

@ Analysis of higher-order programs
o

Context-sensitivity

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 2/31



Motivating Example

Reasoning about any real programs needs pointer reasoning: e.g.,

x = 1;
y =2
*p=3;
*q=4;

What is the value of x + y after the last statement?
o p=&x and g = &y:
o p = &x and q # &y:
o p # &x and q = &y:
o p # &x and q # &y:

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 3/31



Pointer Analysis

@ Static program analysis that computes the set of memory locations
(objects) that a pointer variable may point to at runtime.

@ One of the most important static analyses: all interesting questions on
program reasoning eventually need pointer analysis.
» E.g., control-flows, data-flows, types, information-flows, etc

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 4/31



Allocation-Site Abstraction

Memory locations are unbounded. Consider the program:

Object id (Object p) { return p; }

void £ {
Object x = new A() // 11
Object y = id(x);

}

void g() {
Object a = new B(O); // 12
Object b = id(a);

}

void main () { while (...) { £O; gO; } }

@ In program execution, new objects are allocated repeatedly.
@ In pointer analysis, objects get abstracted to their allocation sites.
@ Thus, a pointer analysis would produce the result:

x— {1}, y = {h},a = {l2}, b= {l2},p — {l1,12}
Sober T8 308



Pointer Analysis in Datalog

@ Pointer analysis is expressed as subset constraints. The analysis is to
compute the smallest solution of the constraints. E.g.,

a = new AQ;
b = a;

@ We use the Datalog language to express such constraints.

o Datalog is a declarative logic programming language, which has
application in many fields, e.g., database, information extraction,
networking, program analysis, security, etc.

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 6/31



Syntax of Datalog
@ A Datalog program is a sequence of constraints:
P:=c

@ A constraint consists of a head of a literal and a body of a list of
literals:
cu=1:-1

A constraint represents a horn clause (a disjunction of literals with at
most one positive, unnegated, literal):

Iv=aliv=alaVee o Val, < L+ 1L AN AN,
@ A literal is a relation with arguments:
l::=r(a)

where an argument is either a variable or constant.

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 7/31



Example

parent (bill, mary).

parent (mary, john).

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 8/31



Semantics of Datalog
@ A Datalog program denotes a set of ground literals:
[P] € o(G)

where G is the set of ground literals (literals without variables).
o A Datalog rule l :- 14, ...,1, denotes the function:

fret,gn (X)) ={o(lo) | o(lx) € X for1 < k < n}

where o is a variable substitution.
@ The semantics of P is defined as the least fixed point of Flp:

[P] = ifpFp where Fp(X) = X U | fo(X)
ceP

@ The semantics is monotone:
P C P, = [P] C [P]

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 9/31



Programs as Relations

Without procedures, a program can be represented by a set of the
relations:

Arvoc (var : V, heap : H)
MoOVE (to : V, from : V)
LoaD(to : V, base : V, fld : F)
STORE(base : V, fid : F, from : V')
domains:
@ V is a set of program variables
@ H is a set of heap abstractions (i.e. allocation sites)
o F'is a set of fields

a = new AQ;
b = new BQ);
c = a;

a.f = b;

d =c.f;

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 10 /31



Simple Pointer Analysis

Pointer analysis computes the set of points-to relations:

VARPOINTSTO (var : V, heap : H)
FLDPOINTSTO (baseH : H, fld : F, heap : H)

Analysis rules:

VARPOINTSTO(var, heap) <— ArLLoc(var, heap)

VARPOINTSTO(to, heap) <+
MovEe(to, from), VARPOINTSTO(from, heap)

FrLpPoiNnTsTo(baseH , fid, heap) <+
STORE(base, fld, from), VARPOINTSTO(from, heap),
VARPOINTSTO(base, baseH ).

Exercise) Define the rule for LOAD.

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 11/31



Interprocedural Analysis

Domains:

V is a set of program variables

H is a set of heap abstractions (i.e. allocation sites)

F is a set of fields

M is a set of method identifiers

S is a set of method signatures (including name, type signature)
I is a set of instructions

T is a set of class types

N is the set of natural numbers

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 12 /31



Interprocedural Analysis (First-Order)

@ Input relations:
Avrvoc (var : V, heap : H, inMeth : M)
MoVE (to : V, from : V)
LoaD(to : V, base : V, fid : F)
STORE(base : V, fild : F, from : V')
CALLGRAPH(#nvo : I, meth : M)
REACHABLE(meth : M)
FORMALARG(meth : M,i : N,arg : V)
ACTUALARG(invo : I, : N,arg : V)
FORMALRETURN(meth : M, ret : V')
ACTUALRETURN(¢nvo : I,var : V)

@ OQutput relations:
VARPOINTSTO (var : V, heap : H)
FLDPOINTSTO (baseH : H, fld : F, heap : H)
INTERPROCASSIGN (to : V, from : V)

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 13 /31



Analysis Rules

VARPoOINTSTO(var, heap) <+
REACHABLE(meth), ALLOC(var, heap, meth)

VArRPOINTSTO(to, heap) <+
MovE(to, from), VARPOINTSTO(from, heap)

FLpPoiNTsTo(baseH , fld, heap) «+—
STORE(base, fid, from), VARPOINTSTO(from, heap),
VArPoOINTSTO(base, baseH ).

VARPOINTSTO(to, heap) <
LoaAD(to, base, fild), VARPOINTSTO(base, baseH ),
FLpPoinTsTo(baseH, fild, heap).

INTERPROCASSIGN(to, from) <— CALLGRAPH(invo, meth),
FORMALARG(meth, n, to), ACTUALARG (invo, n, from).

INTERPROCASSIGN(t0, from) <~ CALLGRAPH(invo, meth),
FORMALRETURN(meth, from), ACTUALRETURN (invo, to).

VArPOINTSTO(to, heap) <+
INTERPROCASSIGN(to, from), VARPOINTSTO(from, heap).

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 14 /31



Example

Object f(0bject p) {
return p;

}
a = new AQ;
b = f(a);

Hakjoo Oh AAA616 2022 Fall, Lecture 8



Interprocedural Analysis (Higher-Order)

@ Input relations:
Arvoc (var : V, heap : H, inMeth : M)
MoVE (to : V, from : V)
LoaAD(to : V, base : V, fid : F)
STORE(base : V, fid : F, from : V')
VCaALL(base : V, sig : S, invo : I, inMeth : M)
FORMALARG(meth : M,i : N,arg : V)
ACTUALARG(invo : I,4: N,arg : V)
FORMALRETURN(meth : M, ret : V')
ACTUALRETURN(%nvo : I, var : V)
THISVAR(meth : M, this : V')
HEAPTYPE(heap : H, type : T')
LookUp(type : T, sig : S, meth : M)

@ Output relations:

VARPOINTSTO (var : V, heap : H)
FLDPOINTSTO (baseH : H, fid : F, heap : H)
INTERPROCASSIGN (to : V, from : V')
CALLGRAPH (énwvo : I, meth : M)
REACHABLE (meth : M)

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 16 /31



Analysis Rules

A new rule for VCALL whose main job is to update call-graph:

REACHABLE(toMeth),

VARPOINTSTO(this, heap),

CALLGRAPH(invo, toMeth) <
VCaLL(base, sig, invo, inMeth), REACHABLE(inMeth),
VArRPoINTSTO(base, heap),
HEAPTYPE(heap, heapT), LookUp(heapT, sig, toMeth),
THISVAR(toMeth, this).

The analysis performs on-the-fly call-graph construction.

@ Pointer analysis and call-graph construction are closed inter-connected
in object-oriented and higher-order languages. For example, to resolve
call obj.fun(), we need pointer analysis. To compute points-to set
of ain £(0bject a){...2}, we need call-graph.

@ This global fixed point computation increases precision of both.

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 17 /31



Example

class C {
Object id(Object v){ return v; }
}
class B {
void m ()
C c = new CQO;
c.id(new D());

D
E c.id(new EQ));

® Q0
]

}
}
public class A {
void £ {
B b = new BQ;
b.mQ;
b.m(Q);
}
}

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 18 /31



Need for Context-Sensitivity

@ Our current analysis is context-insensitive:

class C { Object id(Object v){ return v; } }
class B {
void m Of
C c = new CO;
D d = c.id(new DQ));
E e = c.id(new EQ); }}
public class A {
void £(){
B b = new BQ);
b.m();
b.m(O; }}

@ To achieve more precision, we can quality the analysis results with context
information. Two kinds of contexts:

» Calling context for qualifying local variables
» Heap context for qualifying heap abstractions

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 19/31



Domains for Context-Sensitive Analysis

@ V is a set of program variables

H is a set of heap abstractions (i.e. allocation sites)

M is a set of method identifiers

S is a set of method signatures (including name, type signature)
F'is a set of fields

I is a set of instructions

T is a set of class types

N is the set of natural numbers

C is a set of calling contexts

HC is a set of heap contexts

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 20/31



Output Relations for Context-Sensitive Analysis
The output relations are modified to add contexts:

VARPOINTSTO(var : V, ctx : C, heap : H, hctz : HO)
CALLGRAPH(invo : I, callerCtz : C, meth : M, calleeCtz : C)
FLDPOINTSTO(baseH : H, baseHCtz : HC, fid : F, heap : H, hctz : HC)
INTERPROCASSIGN(to : V, toCtz : C, from : V, fromCtz : C)
REACHABLE(meth : M, ctz : C)

Context constructors:

Record (heap : H, ctz : C) = newHCtz : HC
Merge (heap : H, hctz : HC, invo : I, ctz : C') = newCtz : C

@ Record generates heap contexts.
o Merge generates calling contexts.

o Different choices of them yield different context-sensitivity flavors.

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 21/31



Analysis Rules

Record (heap, ctz) = hetz,
VARPOINTSTO(var, ctz, heap, hctz)
REACHABLE(meth, ctz), ALLOC(var, heap, meth).

VARPOINTSTO(to, ctz, heap, hetr)
MovE(to, from), VARPOINTSTO(from, ctz, heap, hetr).

FLDPOINTSTO(baseH, baseHCtz, fid, heap, hctz)
STORE(base, fld, from), VARPOINTSTO(from, ctz, heap, hetz),
VARPOINTSTO(base, ctz, baseH, baseHCtz).

VARPOINTSTO(to, ctz, heap, hetz)

LoAD(to, base, fid), VARPOINTSTO(base, ctz, baseH, baseHCtz),
FLDPOINTSTO(baseH, baseHCtz, fid, heap, hctz).

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 22/31



Analysis Rules

Merge (heap, hctz, invo, callerCtz) = calleeCtz,
REACHABLE(toMeth, calleeCiz),
VARPOINTSTO(this, calleeCtz, heap, hctr),
CALLGRAPH (invo, callerCtz, toMeth, calleeCtz) <
VCALL(base, sig, invo, inMeth), REACHABLE(inMeth, callerCtz),
VARPOINTSTO(base, callerCtz, heap, hctz),
HEAPTYPE(heap, heapT), LOOKUP(heapT, sig, toMeth),
THISVAR(toMeth, this).

INTERPROCASSIGN(to, calleeCtz, from, callerCtz)
CALLGRAPH(invo, callerCtz, meth, calleeCtz),
FORMALARG (meth, n, to), ACTUALARG (invo, n, from).

INTERPROCASSIGN(to, callerCtz, from, calleeCtz) <
CALLGRAPH(invo, callerCtz, meth, calleeCtz),
FORMALRETURN(meth, from), ACTUALRETURN(invo, to).

VARPOINTSTO(to, toCta, heap, hctz) <

INTERPROCASSIGN(to, toCtz, from, fromCtz),
VARPOINTSTO(from, fromCtz, heap, hetz).

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 23/31



Call-Site-Sensitivity (aka., k-CFA)

@ The best-known flavor of context-sensitivity. It uses call-sites as
contexts.

@ In k-CFA, a method gets analyzed with the context that is a sequence
of the last k call-sites (the current call-site of the method, the
call-site of the caller method, the call-site of the caller method'’s
caller, etc, up to a pre-defined depth, k).

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 24 /31



Call-Site-Sensitivity
@ 1-call-site sensitive with context-insensitive heap:

C=1I, HC={x}
Record(heap, ctx) =
Merge(heap, hctx, invo, ctx) = invo

@ 1-call-site sensitive with context-sensitive heap:

c=1, HC =1
Record(heap, ctr) = ctz
Merge(heap, hcte, invo, ctx) = invo

@ 2-call-site sensitive with 1-call-site-sensitive heap:

C=IxI, HC=I
Record(heap, ctx) = first(ctx)
Merge(heap, hctx, invo, ctx) = pair(invo, first(ctx))

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 25/31



Example

class C { Object id(Object v){ return v; } }

class B {
void m (){
C ¢ = new CQ);
Dd = c.id(new DQ));
E e = c.id(new EQ));
}
+
public class A {
void f(O){
B b = new BQ;
b.mQ);
b.m(Q);
}
}

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 26 /31



Object-Sensitivity

@ The dominant flavor of context-sensitivity for object-oriented
languages.

@ It uses object abstractions (i.e. allocation sites) as contexts, qualifying
a method’s local variables with the allocation site of the receiver
object of the method call.

class A { void m() { return; } }

b = new B();
b.m(Q);

The context of m is the allocation site of b.

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 27/31



Exercise

class S {
Object id(Object a) { return a; }
Object id2(Object a) { return id(); }
}
class C extends S {
void fun1() {
Object al = new A1Q);
Object bl = id2(al);
7
class D extends S {
void fun2() {
Object a2
Object b2
i3

@ What is the result of 1-call-site-sensitive analysis?

new A2(Q);
id2(a2);

@ What is the result of 1-object-sensitive analysis?
@ Explain the strength of object-sensitivity over call-site-sensitivity.

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 28 /31



Object-Sensitivity
@ l-object-sensitive with context-insensitive heap:

C=H, HC = {*}
Record(heap, ctx) =
Merge(heap, hetx, invo, ctx) = heap

@ 2-object-sensitive with 1-context-sensitive heap:

C=HxH, HC=H
Record(heap, ctx) = first(ctz)
Merge(heap, hcte, invo, ctx) = pair(heap, hetx)

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 29/31



Example

class D{} class E{}
class C { Object id(Object v) { return v; } }
class B {
Object id(Object v) {
Cc =mnew CQO; // 13, heap objects: ([11],13), ([12],13)
return c.id(v); // calling contexts: [13,11], [13,12]
}
+
class A {
void m () {
B bl = new BQ; // 11
B b2 = new BQ; // 12
D d = bl.id (new D()); // calling contexts: 11
E e = b2.id (new E()); // calling contexts: 12

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 30/31



Summary

We have covered a number of key concepts in program analysis:
@ Pointer analysis
@ Constraint-based analysis
@ Interprocedural analysis
@ Analysis of higher-order programs
o Context-sensitivity
For more details, see

@ Yannis Smaragdakis and George Balatsouras. Pointer Analysis.
Foundations and Trends in Programming Languages. 2(1). 2015.

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 31/31



