AAA616: Program Analysis

Lecture 2 - Operational Semantics

Hakjoo Oh
2022 Fall

Reference

- Chapters 1-3 of "Semantics with Applications":

Plan

- Big-step operational semantics for While
- Small-step operational semantics for While
- Implementing Interpreters

Syntax vs. Semantics

A programming language is defined with syntax and semantics.

- The syntax is concerned with the grammatical structure of programs.
- Context-free grammar
- The semantics is concerned with the meaning of grammatically correct programs.
- Operational semantics: The meaning is specified by the computation steps executed on a machine. It is of intrest how it is obtained.
- Denotational semantics: The meaning is modelled by mathematical objects that represent the effect of executing the program. It is of interest the effect, not how it is obtained.

The While Language: Abstract Syntax

n will range over numerals, Num
\boldsymbol{x} will range over variables, Var
a will range over arithmetic expressions, Aexp
b will range over boolean expressions, Bexp
c, S will range over statements, Stm

$$
\begin{aligned}
a & \rightarrow n|x| a_{1}+a_{2}\left|a_{1} \star a_{2}\right| a_{1}-a_{2} \\
b & \rightarrow \text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2} \\
c & \rightarrow x:=a \mid \text { skip }\left|c_{1} ; c_{2}\right| \text { if } b c_{1} c_{2} \mid \text { while } b c
\end{aligned}
$$

Example

The factorial program:

$$
y:=1 ; \text { while } \neg(x=1) \text { do (} y:=y \star x ; x:=x-1)
$$

The abstract syntax tree:

Semantics of Arithmetic Expressions

- The meaning of an expression depends on the values bound to the variables that occur in the expression, e.g., $\boldsymbol{x}+\mathbf{3}$.
- A state is a function from variables to values:

$$
\text { State }=\operatorname{Var} \rightarrow \mathbb{Z}
$$

- The meaning of arithmetic expressions is a function:

$$
\begin{aligned}
& \mathcal{A}: \text { Aexp } \rightarrow \text { State } \rightarrow \mathbb{Z} \\
& \mathcal{A} \llbracket a \rrbracket: \text { State } \rightarrow \mathbb{Z} \\
& \mathcal{A} \llbracket n \rrbracket(s)=n \\
& \mathcal{A} \llbracket x \rrbracket(s)=s(x) \\
& \mathcal{A} \llbracket a_{1}+a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s)+\mathcal{A} \llbracket a_{2} \rrbracket(s) \\
& \mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s) \times \mathcal{A} \llbracket a_{2} \rrbracket(s) \\
& \mathcal{A} \llbracket a_{1}-a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s)-\mathcal{A} \llbracket a_{2} \rrbracket(s)
\end{aligned}
$$

Semantics of Boolean Expressions

- The meaning of boolean expressions is a function:

$$
\mathcal{B}: \operatorname{Bexp} \rightarrow \text { State } \rightarrow \text { T }
$$

where $\mathbf{T}=\{$ true, false $\}$.

$$
\begin{aligned}
\mathcal{B} \llbracket b \rrbracket & : \text { State } \rightarrow \mathbf{T} \\
\mathcal{B} \llbracket \text { true } \rrbracket(s) & =\text { true } \\
\mathcal{B} \llbracket \mathrm{f} \mathrm{al} \mathrm{se} \rrbracket(s) & =\text { false } \\
\mathcal{B} \llbracket a_{1}=a_{2} \rrbracket(s) & =\mathcal{A} \llbracket a_{1} \rrbracket(s)=\mathcal{A} \llbracket a_{2} \rrbracket(s) \\
\mathcal{B} \llbracket a_{1} \leq a_{2} \rrbracket(s) & =\mathcal{A} \llbracket a_{1} \rrbracket(s) \leq \mathcal{A} \llbracket a_{2} \rrbracket(s) \\
\mathcal{B} \llbracket \neg b \rrbracket(s) & =\mathcal{B} \llbracket b \rrbracket(s)=\text { false } \\
\mathcal{B} \llbracket b_{1} \wedge b_{2} \rrbracket(s) & =\mathcal{B} \llbracket b_{1} \rrbracket(s) \wedge \mathcal{B} \llbracket b_{2} \rrbracket(s)
\end{aligned}
$$

Free Variables

The free variables of an arithmetic expression \boldsymbol{a} are defined to be the set of variables occurring in it:

$$
\begin{aligned}
F V(n) & =\emptyset \\
F V(x) & =\{x\} \\
F V\left(a_{1}+a_{2}\right) & =\boldsymbol{F V}\left(a_{1}\right) \cup \boldsymbol{F V}\left(a_{2}\right) \\
F V\left(a_{1} \star a_{2}\right) & =\boldsymbol{F V}\left(a_{1}\right) \cup \boldsymbol{F} \boldsymbol{V}\left(a_{2}\right) \\
\boldsymbol{F V}\left(a_{1}-a_{2}\right) & =\boldsymbol{F V}\left(a_{1}\right) \cup \boldsymbol{F} \boldsymbol{V}\left(a_{2}\right)
\end{aligned}
$$

Exercise) Define free variables of boolean expressions.

Property of Free Variables

Only the free variables influence the value of an expression.

Lemma

Let s and s^{\prime} be two states satisfying that $s(x)=s^{\prime}(x)$ for all $x \in \boldsymbol{F V}(a)$. Then, $\mathcal{A} \llbracket a \rrbracket(s)=\mathcal{A} \llbracket a \rrbracket\left(s^{\prime}\right)$.

Lemma

Let s and s^{\prime} be two states satisfying that $s(x)=s^{\prime}(x)$ for all $x \in \boldsymbol{F} \boldsymbol{V}(\boldsymbol{b})$. Then, $\mathcal{B} \llbracket b \rrbracket(s)=\mathcal{B} \llbracket b \rrbracket\left(s^{\prime}\right)$.

Substitution

- $\boldsymbol{a}\left[\boldsymbol{y} \mapsto \boldsymbol{a}_{0}\right]$: the arithmetic expression that is obtained by replacing each occurrence of \boldsymbol{y} in \boldsymbol{a} by \boldsymbol{a}_{0}.

$$
\begin{aligned}
n\left[y \mapsto a_{0}\right] & =n \\
x\left[y \mapsto a_{0}\right] & = \begin{cases}a_{0} & \text { if } x=y \\
x & \text { if } x \neq y\end{cases} \\
\left(a_{1}+a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right)+\left(a_{2}\left[y \mapsto a_{0}\right]\right) \\
\left(a_{1} \star a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right) \star\left(a_{2}\left[y \mapsto a_{0}\right]\right) \\
\left(a_{1}-a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right)-\left(a_{2}\left[y \mapsto a_{0}\right]\right)
\end{aligned}
$$

- $s[\boldsymbol{y} \mapsto \boldsymbol{v}]$: the state s except that the value bound to \boldsymbol{y} is \boldsymbol{v}.

$$
(s[y \mapsto v])(x)= \begin{cases}\boldsymbol{v} & \text { if } x=y \\ s(x) & \text { if } x \neq y\end{cases}
$$

Lemma (The two concepts of substitutions are related)
 $\mathcal{A} \llbracket a\left[y \mapsto a_{0} \rrbracket \rrbracket(s)=\mathcal{A} \llbracket a \rrbracket\left(s\left[y \mapsto \mathcal{A} \llbracket a_{0} \rrbracket(s) \rrbracket\right)\right.\right.$ for all states s.

Operational Semantics

Operational semantics is concerned about how to execute programs and not merely what the execution results are.

- Big-step operational semantics describes how the overall results of executions are obtained.
- Small-step operational semantics describes how the individual steps of the computations take place.
In both kinds, the semantics is specified by a transition system $(\mathbb{S}, \rightarrow)$ where \mathbb{S} is the set of states (configurations) with two types:
- $\langle\boldsymbol{S}, s\rangle$: a nonterminal state (i.e. the statement \boldsymbol{S} is to be executed from the state s)
- s : a terminal state

The transition relation $(\rightarrow) \subseteq \mathbb{S} \times \mathbb{S}$ describes how the execution takes place. The difference between the two approaches are in the definitions of transition relation.

Big-step Operational Semantics

The transition relation specifies the relationship between the initial state and the final state:

$$
\langle S, s\rangle \rightarrow s^{\prime}
$$

Transition relation is defined with inference rules of the form: A rule has the general form

$$
\frac{\left\langle S_{1}, s_{1}\right\rangle \rightarrow s_{1}^{\prime}, \ldots,\left\langle S_{n}, s_{n}\right\rangle \rightarrow s_{n}^{\prime}}{\langle S, s\rangle \rightarrow s^{\prime}} \text { if } \ldots
$$

- S_{1}, \ldots, S_{n} are statements that constitute \boldsymbol{S}.
- A rule has a number of premises and one conclusion.
- A rule may also have a number of conditions that have to be fulfilled whenever the rule is applied.
- Rules without premises are called axioms.

Big-step Operational Semantics for While

$$
\begin{gathered}
\overline{\langle x:=a, s\rangle \rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket(s)]} \\
\overline{\langle\text { skip }, s\rangle \rightarrow s} \\
\frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime} \quad\left\langle S_{2}, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime \prime}} \\
\frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b S_{1} S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { true } \\
\frac{\left\langle S_{2}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b S_{1} S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { false } \\
\frac{\langle S, s\rangle \rightarrow s^{\prime} \quad\left\langle\text { while } b S, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\langle\text { while } b S, s\rangle \rightarrow s^{\prime \prime}} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { true } \\
\frac{\langle\text { while } b S, s\rangle \rightarrow s}{} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { false }
\end{gathered}
$$

Example

Consider the statement:

$$
(z:=x ; x:=y) ; y:=z
$$

Let $s_{\mathbf{0}}$ be the state that maps all variables except x and y and has $s_{0}(\mathrm{x})=5$ and $s_{0}(\mathrm{y})=7$.

$$
\frac{\left\langle\mathrm{z}:=\mathrm{x}, s_{0}\right\rangle \rightarrow s_{1} \quad\left\langle\mathrm{x}:=\mathrm{y}, s_{1}\right\rangle \rightarrow s_{2}}{\frac{\left\langle\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}, s_{0}\right\rangle \rightarrow s_{2}}{\left\langle(\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}) ; \mathrm{y}:=\mathrm{z}, s_{0}\right\rangle \rightarrow s_{3}} \quad\left\langle\mathrm{y}:=\mathrm{z}, s_{2}\right\rangle} \rightarrow s_{3}
$$

where we have used the abbreviations:

$$
\begin{aligned}
& s_{1}=s_{0}[z \mapsto 5] \\
& s_{2}=s_{1}[x \mapsto 7] \\
& s_{3}=s_{2}[y \mapsto 5]
\end{aligned}
$$

Exercise

Let s be a state with $s(x)=\mathbf{3}$. Find s^{\prime} such that

$$
(\mathrm{y}:=1 ; \text { while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s) \rightarrow s^{\prime}
$$

Execution Types

We say the execution of a statement S on a state s

- terminates if and only if there is a state s^{\prime} such that $\langle S, s\rangle \rightarrow s^{\prime}$ and
- loops if and only if there is no state s^{\prime} such that $\langle S, s\rangle \rightarrow s^{\prime}$.

We say a statement S always terminates if its execution on a state s terminates for all states s, and always loops if its execution on a state s loops for all states s.
Examples:

- while true do skip
- while $\neg(x=1)$ do ($y:=y \star x ; x:=x-1)$

Semantic Equivalence

We say S_{1} and S_{2} are semantically equivalent, denoted $S_{1} \equiv S_{2}$, if the following is true for all states s and s^{\prime} :

$$
\left\langle\boldsymbol{S}_{1}, s\right\rangle \rightarrow s^{\prime} \quad \text { if and only if } \quad\left\langle\boldsymbol{S}_{2}, s\right\rangle \rightarrow s^{\prime}
$$

Example:
while \boldsymbol{b} do $\boldsymbol{S} \equiv$ if \boldsymbol{b} then (\boldsymbol{S}; while \boldsymbol{b} do \boldsymbol{S}) else skip

Semantic Function for Statements

The semantic function for statements is the partial function:

$$
\begin{gathered}
\mathcal{S}_{b}: \operatorname{Stm} \rightarrow(\text { State } \hookrightarrow \text { State }) \\
\mathcal{S}_{b} \llbracket S \rrbracket(s)= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \rightarrow s^{\prime} \\
\text { undef } & \text { otherwise }\end{cases}
\end{gathered}
$$

Examples:

- $\mathcal{S}_{b} \llbracket \mathrm{y}:=1$; while $\neg(\mathrm{x}=1)$ do $(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1) \rrbracket(s[x \mapsto 3])$
- $\mathcal{S}_{b} \llbracket$ while true do skip $\rrbracket(s)$

Summary of While

The syntax is defined by the grammar:

$$
\begin{aligned}
a & \rightarrow n|x| a_{1}+a_{2}\left|a_{1} \star a_{2}\right| a_{1}-a_{2} \\
b & \rightarrow \text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2} \\
c & \rightarrow x:=a \mid \text { skip }\left|c_{1} ; c_{2}\right| \text { if } b c_{1} c_{2} \mid \text { while } b c
\end{aligned}
$$

The semantics is defined by the functions:

$$
\begin{aligned}
& \mathcal{A} \llbracket a \rrbracket: \\
& \mathcal{B} \llbracket b \rrbracket \text { State } \rightarrow \mathbb{Z} \\
& \mathcal{S}_{b} \llbracket c \rrbracket \text { State } \rightarrow \mathbf{T} \\
& \text { State } \hookrightarrow \text { State }
\end{aligned}
$$

Implementing Big-Step Interpreter in OCaml

```
type var = string
type aexp =
    | Int of int
    | Var of var
    | Plus of aexp * aexp
    | Mult of aexp * aexp
    | Minus of aexp * aexp
type bexp =
    | True
    | False
    | Eq of aexp * aexp
    Le of aexp * aexp
    | Neg of bexp
    | Conj of bexp * bexp
type cmd =
    | Assign of var * aexp
        Skip
        Seq of cmd * cmd
        If of bexp * cmd * cmd
        While of bexp * cmd
```


Implementing Big-Step Interpreter

```
let fact =
    Seq (Assign ("y", Int 1),
            While (Neg (Eq (Var "x", Int 1)),
            Seq (Assign("y", Mult(Var "y", Var "x")),
                Assign("x", Minus(Var "x", Int 1)))
            )
    )
module State = struct
    type t = (var * int) list
    let empty = []
    let rec lookup s x =
        match s with
            | [] -> raise (Failure (x ~ "is not bound in state"))
            | (y,v)::s' -> if x = y then v else lookup s' x
    let update s x v = (x,v)::s
end
let init_s = update empty "x" 3
```


Implementing Big-Step Interpreter

```
let rec eval_a : aexp -> State.t -> int
=fun a s ->
    match a with
    | Int n -> n
    | Var x -> State.lookup s x
    | Plus (a1, a2) -> (eval_a a1 s) + (eval_a a2 s)
    | Mult (a1, a2) -> (eval_a a1 s) * (eval_a a2 s)
    | Minus (a1, a2) -> (eval_a a1 s) - (eval_a a2 s)
let rec eval_b : bexp -> State.t -> bool
=fun b s ->
    match b with
    | True -> true
    | False -> false
    | Eq (a1, a2) -> (eval_a a1 s) = (eval_a a2 s)
    | Le (a1, a2) -> (eval_a a1 s) <= (eval_a a2 s)
    | Neg b' -> not (eval_b b' s)
    | Conj (b1, b2) -> (eval_b b1 s) && (eval_b b2 s)
```


Implementing Big-Step Interpreter

```
let rec eval_c : cmd -> State.t -> State.t
=fun c s ->
    match c with
    | Assign (x, a) -> State.update s x (eval_a a s)
    Skip -> s
    Seq (c1, c2) -> eval_c c2 (eval_c c1 s)
    If (b, c1, c2) -> eval_c (if eval_b b s then c1 else c2) s
    | While (b, c) ->
        if eval_b b s then eval_c (While (b,c)) (eval_c c s)
        else s
let _ =
    print_int (State.lookup (eval_c fact init_s) "y");
    print_newline ()
```


Small-step Operational Semantics

The individual computation steps are described by the transition relation of the form:

$$
\langle S, s\rangle \Rightarrow \gamma
$$

where γ either is non-terminal state $\left\langle S^{\prime}, s^{\prime}\right\rangle$ or terminal state s^{\prime}. The transition expresses the first step of the execution of S from state s.

- If $\gamma=\left\langle\boldsymbol{S}^{\prime}, s^{\prime}\right\rangle$, then the execution of \boldsymbol{S} from s is not completed and the remaining computation continues with $\left\langle S^{\prime}, s^{\prime}\right\rangle$.
- If $\gamma=s^{\prime}$, then the execution of S from s has terminated and the final state is s^{\prime}.
We say $\langle\boldsymbol{S}, s\rangle$ is stuck if there is no γ such that $\langle\boldsymbol{S}, s\rangle \Rightarrow \gamma$ (no stuck state for While).

Small-step Operational Semantics for While

$$
\begin{gathered}
\overline{\langle x:=a, s\rangle \Rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket(s)]} \\
\overline{\langle\operatorname{skip}, s\rangle \Rightarrow s} \\
\frac{\left\langle S_{1}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, s^{\prime}\right\rangle} \\
\frac{\left\langle S_{1}, s\right\rangle \Rightarrow s^{\prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s^{\prime}\right\rangle} \\
\frac{\text { if } \left.b S_{1} S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}, s\right\rangle}{} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { true } \\
\frac{\text { if } \left.b S_{1} S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s\right\rangle}{} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { false }
\end{gathered}
$$

$$
\overline{\langle\text { while } b} \boldsymbol{S}, s\rangle \Rightarrow\langle\text { if } \boldsymbol{b}(\boldsymbol{S} \text {; while } \boldsymbol{b} \boldsymbol{S}) \text { skip, } s\rangle
$$

Derivation Sequence

A derivation sequence of a statement S starting in state s is either

- A finite sequence

$$
\gamma_{0}, \gamma_{1}, \gamma_{2}, \cdots, \gamma_{k}
$$

which is sometimes written

$$
\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots \Rightarrow \gamma_{k}
$$

such that

$$
\gamma_{0}=\langle S, s\rangle, \quad \gamma_{i} \Rightarrow \gamma_{i+1} \text { for } 0 \leq i \leq k
$$

and $\gamma_{\boldsymbol{k}}$ is either a terminal configuration or a stuck configuration.

- An infinite sequence

$$
\gamma_{0}, \gamma_{1}, \gamma_{2}, \cdots
$$

which is sometimes written

$$
\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots
$$

consisting of configurations satisfying $\gamma_{0}=\langle S, s\rangle$ and $\gamma_{i} \Rightarrow \gamma_{i+1}$ for $\mathbf{0} \leq \boldsymbol{i}$.

Example

Consider the statement:

$$
(z:=x ; x:=y) ; y:=z
$$

Let $s_{\mathbf{0}}$ be the state that maps all variables except x and y and has $s_{0}(\mathrm{x})=\mathbf{5}$ and $s_{0}(\mathrm{y})=\mathbf{7}$. We then have the derivation sequence:

$$
\begin{aligned}
& \left\langle(\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}) ; \mathrm{y}:=\mathrm{z}, s_{0}\right\rangle \\
& \Rightarrow\left\langle\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}, s_{0}[z \mapsto 5]\right\rangle \\
& \Rightarrow\left\langle\mathrm{x}:=\mathrm{y}, s_{0}[z \mapsto 5, x \mapsto 7]\right\rangle \\
& \Rightarrow s_{0}[z \mapsto 5, x \mapsto 7, y \mapsto 5]
\end{aligned}
$$

Each step has a derivation tree explaining why it takes place, e.g.,

$$
\frac{\left\langle\mathrm{z}:=\mathrm{x}, s_{0}\right\rangle \Rightarrow s_{0}[z \mapsto 5]}{\frac{\left.\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}, s_{0}\right\rangle \Rightarrow\left\langle\mathrm{x}:=\mathrm{y}, s_{0}[z \mapsto 5]\right\rangle}{\left\langle(\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}) ; \mathrm{y}:=\mathrm{z}, s_{0}\right\rangle \Rightarrow\left\langle\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}, s_{0}[z \mapsto 5]\right\rangle}}
$$

Example: Factorial

Assume that $s(x)=3$.

$$
\begin{aligned}
& \langle\mathrm{y}:=1 \text {; while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s\rangle \\
& \Rightarrow\langle\text { while } \neg(\mathrm{x}=1) \text { do (} \mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[y \mapsto 1]\rangle \\
& \Rightarrow\langle\text { if } \neg(x=1) \text { then (}(y:=y \star x ; x:=x-1) \text {; while } \neg(x=1) \text { do (} y:=y \star x ; x:=x-1) \text {) } \\
& \text { else skip, } s[\boldsymbol{y} \mapsto 1]\rangle \\
& \Rightarrow\langle(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1) \text {; while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[\boldsymbol{y} \mapsto 1]\rangle \\
& \Rightarrow\langle\mathrm{x}:=\mathrm{x}-1 \text {; while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[\boldsymbol{y} \mapsto 3]\rangle \\
& \Rightarrow\langle\text { while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[\boldsymbol{y} \mapsto 3][\boldsymbol{x} \mapsto 2]\rangle \\
& \Rightarrow \text { 〈if } \neg(x=1) \text { then (}(y:=y \star x ; x:=x-1) \text {; while } \neg(x=1) \text { do (} y:=y \star x ; x:=x-1) \text {) } \\
& \text { else skip, } s[y \mapsto 3][x \mapsto 2]\rangle \\
& \Rightarrow\langle(y:=y \star x ; x:=x-1) \text {; while } \neg(x=1) \text { do (} \mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[y \mapsto 3][x \mapsto 2]\rangle \\
& \Rightarrow\langle\mathrm{x}:=\mathrm{x}-1 \text {; while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), \boldsymbol{s}[\boldsymbol{y} \mapsto 6][\boldsymbol{x} \mapsto 2]\rangle \\
& \Rightarrow\langle\text { while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[\boldsymbol{y} \mapsto 6][x \mapsto 1]\rangle \\
& \Rightarrow s[y \mapsto 6][x \mapsto 1]
\end{aligned}
$$

Other Notations

- We write $\gamma_{0} \Rightarrow^{i} \gamma_{i}$ to indicate that there are i steps in the execution from γ_{0} to γ_{i}.
- We write $\gamma_{0} \Rightarrow^{*} \gamma_{i}$ to indicate that there are a finite number of steps.
- We say that the execution of a statement \boldsymbol{S} on a state s terminates if and only if there is a finite derivation sequence starting with $\langle S, s\rangle$.
- The execution loops if and only if there is an infinite derivation sequence starting with $\langle S, s\rangle$.

Semantic Equivalence

We say \boldsymbol{S}_{1} and $\boldsymbol{S}_{\mathbf{2}}$ are semantically equivalent if for all states s,

- $\left\langle\boldsymbol{S}_{1}, s\right\rangle \Rightarrow^{*} \gamma$ if and only if $\left\langle\boldsymbol{S}_{\mathbf{2}}, s\right\rangle \Rightarrow^{*} \gamma$, whenever γ is a configuration that is either stuck or terminal, and
- there is an infinite derivation sequence starting in $\left\langle\boldsymbol{S}_{1}, s\right\rangle$ if and only if there is one starting in $\left\langle\boldsymbol{S}_{2}, s\right\rangle$.

Semantic Function

The semantic function \mathcal{S}_{s} for small-step semantics:
$\mathcal{S}_{s}: \mathrm{Stm} \rightarrow($ State \hookrightarrow State $)$

$$
\mathcal{S}_{s} \llbracket \boldsymbol{S} \rrbracket(s)= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \Rightarrow^{*} s^{\prime} \\ \text { undef }\end{cases}
$$

Implementing Small-Step Interpreter

```
type conf =
    | NonTerminated of cmd * State.t
    | Terminated of State.t
let rec next : conf -> conf
=fun conf ->
    match conf with
    | Terminated _ -> raise (Failure "Must not happen")
    | NonTerminated (c, s) ->
        match c with
        Assign (x, a) -> Terminated (State.update s x (eval_a a s))
        Skip -> Terminated s
        | Seq (c1, c2) -> (
            match (next (NonTerminated (c1,s))) with
            | NonTerminated (c', s') >> NonTerminated (Seq (c', c2), s')
            | Terminated s' -> NonTerminated (c2, s')
        )
        | If (b, c1, c2) ->
            if eval_b b s then NonTerminated (c1, s) else NonTerminated (c2, s)
        | While (b, c) -> NonTerminated (If (b, Seq (c, While (b,c)), Skip), s)
```


Implementing Small-Step Interpreter

```
let rec next_trans : conf -> State.t
=fun conf ->
    match conf with
    | Terminated s -> s
    | _ -> next_trans (next conf)
let _ =
    print_int (State.lookup (next_trans (NonTerminated (fact,init_s))) "y");
    print_newline ()
```


Summary of While

We have defined the operational semantics of While.

- Big-step operational semantics describes how the overall results of executions are obtained.
- Small-step operational semantics describes how the individual steps of the computations take place.
The big-step and small-step operational semantics are equivalent:

Theorem

For every statement S of While, we have $\mathcal{S}_{b} \llbracket S \rrbracket=\mathcal{S}_{s} \llbracket S \rrbracket$.

