
AAA616: Program Analysis

Lecture 10 — Data-Flow Analysis

Hakjoo Oh
2022 Fall

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 1 / 30



Data-Flow Analysis

A collection of program analysis techniques that derive information about
the flow of data along program execution paths, enabling safe code
optimization, bug detection, etc.

Reaching definitions analysis

Live variables analysis

Available expressions analysis

Constant propagation analysis

...

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 2 / 30



Reaching Definitions Analysis

A definition d reaches a point p if there is a path from the definition
point to p such that d is not “killed” along that path.

For each program point, RDA finds definitions that can reach the
program point along some execution paths.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 3 / 30



Example: Reaching Definitions Analysis

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 4 / 30



Applications

Reaching definitions analysis has many applications, e.g.,
Simple constant propagation

I For a use of variable v in statement n: n : x = ...v...

I If the definitions of v that reach n are all of the form d : v = c
I Replace the use of v in n by c

Uninitialized variable detection
I Put a definition d: x = any at the program entry.

I For a use of variable x in statement n: n : x = ...v...
I If d reaches n, x is potentially uninitialized.
I ...

if (...) x = 1;

...

a = x

Loop optimization
I If all of the reaching definitions of the operands of n are outside of the

loop, then n can be moved out of the loop (“loop-invariant code
motion”)

I while (...) {...; n: z = x + y; ... }

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 5 / 30



Reaching Definitions Analysis

The goal is to compute

in : Block → 2 Definitions

out : Block → 2 Definitions

1 Compute gen/kill sets.

2 Derive transfer functions for each block in terms of gen/kill sets.

3 Derive the set of data-flow equations.

4 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 6 / 30



1. Compute Gen/Kill Sets

gen : Block → 2Definitions

kill : Block → 2Definitions

gen(B): the set of definitions “generated” at block B

kill(B): the set of definitions “killed” at block B

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 7 / 30



Example

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 8 / 30



Exercise

Compute the gen and kill sets for the basic block B:

d1: a = 3

d2: a = 4

gen(B) =

kill(B) =

In general, when we have k definitions in a block B:

d1; d2; ...; d_k

gen(B) = gen(B) =
gen(dk) ∪ (gen(dk−1)− kill(dk)) ∪ (gen(dk−2 − kill(dk−1)−
kill(dk)) ∪ · · · ∪ (gen(d1)− kill(d2)− kill(d3)− · · · − kill(dk))

kill(B) = kill(B) = kill(d1) ∪ kill(d2) ∪ · · · ∪ kill(dk)

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 9 / 30



2. Transfer Functions

The transfer function is defined for each basic block B:

fB : 2Definitions → 2Definitions

The transfer function for a block B encodes the semantics of the
block B, i.e., how the block transfers the input to the output.

B2

The semantics of B is defined in terms of gen(B) and kill(B):

fB(X) = gen(X) ∪ (X − kill(X))

B2

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 10 / 30



3. Derive Data-Flow Equations

in(B1) = ∅
out(B1) = fB1(in(B1))

in(B2) = out(B1) ∪ out(B4)
out(B2) = fB2(in(B2))

in(B3) = out(B2)
out(B3) = fB3(in(B3))

in(B4) = out(B2) ∪ out(B3)
out(B4) = fB4(in(B4))

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 11 / 30



Data-Flow Equations

In general, the data-flow equations can be written as follows:

in(Bi) =
⋃

P ↪→Bi

out(P )

out(Bi) = fBi(in(Bi))

= gen(Bi) ∪ (in(Bi)− kill(Bi))

where (↪→) is the control-flow relation.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 12 / 30



4. Solve the Equations

The desired solution is the least in and out that satisfies the
equations (why least?):

in(Bi) =
⋃

P ↪→Bi
out(P )

out(Bi) = gen(Bi) ∪ (in(Bi)− kill(Bi))

The solution is defined as fixF , where F is defined as follows:

F (in, out) = (λB.
⋃

P ↪→B

out(P ), λB.fB(in(B))

The least fixed point fixF is computed by⋃
i≥0

F i(λB.∅, λB.∅)

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 13 / 30



The Fixpoint Algorithm

The equations are solved by the iterative fixed point algorithm:

For all i, in(Bi) = out(Bi) = ∅
while (changes to any in and out occur) {

For all i, update
in(Bi) =

⋃
P ↪→Bi

out(P )

out(Bi) = gen(Bi) ∪ (in(Bi)− kill(Bi))
}

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 14 / 30



Liveness Analysis

A variable is live at program point p if its value could be used in the
future (along some path starting at p).

Liveness analysis aims to compute the set of live variables for each
basic block of the program.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 15 / 30



Example: Liveness of Variables

We analyze liveness from the future to the past.

The live range of b: {2→ 3, 3→ 4}
The live range of a: {1→ 2, 4→ 5→ 2} (not from 2→ 3→ 4)

The live range of c: the entire code
Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 16 / 30



Example: Liveness of Variables

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 17 / 30



Applications

Deadcode elimination
I Problem: Eliminate assignments whose computed values never get used.
I Solution: How?
I Suppose we have a statement: n: x = y + z .
I When x is dead at n, we can eliminate n.

Uninitialized variable detection
I Problem: Detect uninitialized use of variables
I Solution: How? Any variables live at the program entry (except for

parameters) are potentially uninitialized

Register allocation
I Problem: Rewrite the intermediate code to use no more temporaries

than there are machine registers
I Example:

a := c + d r1 := r2 + r3

e := a + b r1 := r1 + r4

f := e - 1 r1 := r1 - 1
I Solution: How? Compute live ranges of variables. If two variables a

and b never live at the same time, assign the same register to them.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 18 / 30



Liveness Analysis

The goal is to compute

in : Block → 2 Var

out : Block → 2 Var

1 Compute def/use sets.

2 Derive transfer functions for each basic block in terms of def/use sets.

3 Derive the set of data-flow equations.

4 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 19 / 30



Def/Use Sets

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 20 / 30



cf) Def/Use sets are only dynamically computable

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 21 / 30



Data-Flow Equations

Intuitions:

1 If a variable is in use(B), then it is live on entry to block B.

2 If a variable is live at the end of block B, and not in def(B), then
the variable is also live on entry to B.

3 If a variable is live on enty to block B, then it is live at the end of
predecessors of B.

Equations:

in(B) = use(B) ∪ (out(B)− def(B))

out(B) =
⋃

B↪→S

in(S)

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 22 / 30



Fixed Point Computation

For all i, in(Bi) = out(Bi) = ∅
while (changes to any in and out occur) {

For all i, update
in(Bi) = use(B) ∪ (out(B)− def(B))
out(Bi) =

⋃
B↪→S in(S)

}

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 23 / 30



Example

1st 2nd 3rd
use def out in out in out in

6 {c} ∅ ∅ {c} ∅ {c} ∅ {c}
5 {a} ∅ {c} {a, c} {a, c} {a, c} {a, c} {a, c}
4 {b} {a} {a, c} {b, c} {a, c} {b, c} {a, c} {b, c}
3 {b, c} {c} {b, c} {b, c} {b, c} {b, c} {b, c} {b, c}
2 {a} {b} {b, c} {a, c} {b, c} {a, c} {b, c} {a, c}
1 ∅ {a} {a, c} {c} {a, c} {c} {a, c} {c}

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 24 / 30



Available Expressions Analysis

An expression x+ y is available at a point p if every path from the
entry node to p evaluates x+ y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to x or y.

Application: common subexpression elimination (i.e., given a program
that computes e more than once, eliminate one of the duplicate
computations)

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 25 / 30



Available Expressions Analysis

An expression x+ y is available at a point p if every path from the
entry node to p evaluates x+ y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to x or y.

Application: common subexpression elimination (i.e., given a program
that computes e more than once, eliminate one of the duplicate
computations)

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 25 / 30



Available Expressions Analysis

The goal is to compute

in : Block → 2 Expr

out : Block → 2 Expr

1 Derive the set of data-flow equations.

2 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 26 / 30



Gen/Kill Sets

gen(B): the set of expressions evaluated and not subsequently killed

kill(B): the set of expressions whose variables can be killed

What expressions are generated and killed by each of statements?

Statement s gen(s) kill(s)
x = y + z {y + z} − kill(s) expressions containing x
x = alloc(n) ∅ expressions containing x
x = y[i] {y[i]} − kill(s) expressions containing x
x[i] = y ∅ expressions of the form x[k]

Basically, x = y + z generates y + z, but y = y + z does not because y
is subsequently killed.

What expressions are generated and killed by the block?

a = b+ c
b = a− d
c = b+ c
d = a− d

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 27 / 30



1. Set up a set of data-flow equations

Intuitions:

1 At the entry, no expressions are available.

2 An expression is available at the entry of a block only if it is available
at the end of all its predecessors.

Equations:

in(ENTRY ) = ∅
out(B) = gen(B) ∪ (in(B)− kill(B))

in(B) =
⋂

P→B

out(B)

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 28 / 30



2. Solve the equations

We are interested in the largest set satisfying the equation

Need to find the greatest solution (i.e., greatest fixed point) of the
equation.

in(ENTRY ) = ∅
For other Bi, in(Bi) = out(Bi) = Expr
while (changes to any in and out occur) {

For all i, update
in(Bi) =

⋂
P ↪→Bi

out(P )

out(Bi) = gen(Bi) ∪ (in(Bi)− kill(Bi))
}

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 29 / 30



Summary

Code optimization requires static analysis, data-flow analysis.

Every static analysis follows two steps:
1 Set up a set of abstract semantic equations.

F about dynamics of program executions (e.g., how definitions flow)

2 Solve the equations using the iterative fixed point algorithm.
F naive tabulation algorithm, worklist algorithm, etc

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 30 / 30


