AAA616: Program Analysis

Lecture 10 — Data-Flow Analysis

Hakjoo Oh
2022 Fall

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 1/30

Data-Flow Analysis

A collection of program analysis techniques that derive information about
the flow of data along program execution paths, enabling safe code
optimization, bug detection, etc.

@ Reaching definitions analysis
@ Live variables analysis

@ Available expressions analysis
@ Constant propagation analysis

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 2/30

Reaching Definitions Analysis

@ A definition d reaches a point p if there is a path from the definition
point to p such that d is not “killed” along that path.

x is not “killed”

@ For each program point, RDA finds definitions that can reach the
program point along some execution paths.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 3/30

Example: Reaching Definitions Analysis

ENTRY

Blld1: i = m-1 IN(B1) = {}
d2: j =n
d3: a = ul 0UT(B1) = {d1,d2,d3}
i+l IN(B2) = {d1,d2,d3,d5,d6,d7}
j-1 OUT(B2) = {d3,d4,d5,d6}

IN(B3) = {d3,d4,d5,d6}
0UT(B3) = {d4,d5,d6}

IN(B4) = {d3,d4,d5,d6}
0UT(B4) = {d3,d5,d6,d7}

IN(EXIT) = {d3,d5,d6,d7}
EXIT
OUT(EXIT) = {d3,d5,d6,d7}

:

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 4/30

Applications

Reaching definitions analysis has many applications, e.g.,
@ Simple constant propagation

» For a use of variable v in statement n:
» |f the definitions of v that reach n are all of the form

» Replace the use of v in n by c
@ Uninitialized variable detection

» Put a definition at the program entry.
» For a use of variable x in statement n:

If d reaches n, x is potentially uninitialized.

v

@ Loop optimization
» If all of the reaching definitions of the operands of n are outside of the
loop, then n can be moved out of the loop (“loop-invariant code
motion”)
» while (...) {...; n: z=x+1y; ... }

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 5/30

Reaching Definitions Analysis

The goal is to compute

in : Block — 2Definitions
out : Block — 2Deﬁm’tions

@ Compute gen/Kkill sets.
@ Derive transfer functions for each block in terms of gen/kill sets.
© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 6/30

1. Compute Gen/Kill Sets

gen : Block — 2Definitions
kil : Block — 2Definitions

e gen(B): the set of definitions “generated” at block B
o kill(B): the set of definitions "killed" at block B

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 7/30

Example

—
nnn
c o3

iR

Y

—

[
+

o
nn
—. -
I
[N

gen(Bl) = {d1,d2,d3}
kill(B1) = {d4,d5,d6,d7}

gen(B2) = {d4,d5}
kill(B2) = {d1,d2,d7}

gen(B3) = {d6}
kill(B3) = {d3}

gen(B4) = {d7}
kill(B4) = {d1,d4}

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022

8/30

Exercise
Compute the gen and kill sets for the basic block B:

dli: a =3
d2: a 4

e gen(B) =
o kill(B) =

In general, when we have k definitions in a block B:
dl; d2; ...; d_k
e gen(B) = gen(B) =
gen(di) U (gen(di—1) — kill(di)) U (gen(di—2 — kill(d—1) —
kill(di)) U --- U (gen(d1) — kill(d2) — kill(dg) — - - - — kill(dg))
e kill(B) = kill(B) = kill(d1) U kill(d2) U - - - U kill(dy)

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 9/30

2. Transfer Functions

@ The transfer function is defined for each basic block B:

.fB . 2Deﬁnztzons N 2Deﬁnztwns

@ The transfer function for a block B encodes the semantics of the
block B, i.e., how the block transfers the input to the output.

i+l {d1,d2,d3,d5,d6,d7}

i-1 {d3,d4,ds, d6}

d4: i
B2d5: j

@ The semantics of B is defined in terms of gen(B) and kill(B):

fB(X) = gen(X) U (X — kill(X))

gen(B2) = {d4,d5}
kilu(B2) = {d1,d2,d7}

(SIS
— R
Inn
U

+
[

o o

B2

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 10 /30

3. Derive Data-Flow Equations

in(Bl)
out(B1)

in(Bz)
Out(Bz)

in(B3)
out(B3)

in(B4)
out(B4)

Hakjoo Oh AAA616 2022 Fall, Lecture 10

0
fB, (in(B1))

out(B1) U out(By4)
fB5(in(B2))

out(B2)
fB3(in(Bs))

out(Bz2) U out(B3)
FB4(in(Ba))

October 25, 2022

11/30

Data-Flow Equations

In general, the data-flow equations can be written as follows:

in(B;) = | out(P)

P—B;
out(B;) = fB,(in(B;))
= gen(B;) U (in(B;) — kill(B;))

where (<) is the control-flow relation.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 12 /30

4. Solve the Equations

@ The desired solution is the least in and out that satisfies the
equations (why least?):

in(Bi) = Upc,p, out(P)
out(B;) = gen(B;)U (in(B;) — kill(B;))

@ The solution is defined as fix F', where F' is defined as follows:

F(in,out) = (AB. [out(P),AB.fp(in(B))
P—B

The least fixed point fix F' is computed by

U F*(AB.0, AB.0)

i>0

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 13 /30

The Fixpoint Algorithm

The equations are solved by the iterative fixed point algorithm:

For all 4,in(B;) = out(B;) = 0
while (changes to any in and out occur) {
For all 2, update

in(B;) = Up, p, out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 14 /30

Liveness Analysis

@ A variable is live at program point p if its value could be used in the
future (along some path starting at p).

p x is live p x is dead

x is not used
along all paths
from p to EXIT

w =X EXIT

@ Liveness analysis aims to compute the set of live variables for each
basic block of the program.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 15 /30

Example: Liveness of Variables

We analyze liveness from the future to the past.

6
return ¢

@ The live range of b: {2 — 3,3 — 4}
@ The live range of a: {1 — 2,4 — 5 — 2} (not from 2 — 3 — 4)
@ The live range of c¢: the entire code

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 16 /30

Example: Liveness of Variables

1 IN = {c}

a==o ouT = {a,c}
IN = {a,c}
OuUT = {b,c}
IN = {b,c}
ouT = {b,c}
IN = {b,c}
ouT = {a,c}
IN = {a,c}
ouT = {a,c}

6 IN = {c}

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 17 /30

Applications

@ Deadcode elimination
» Problem: Eliminate assignments whose computed values never get used.
» Solution: How?
» Suppose we have a statement: .
» When z is dead at n, we can eliminate n.
@ Uninitialized variable detection
» Problem: Detect uninitialized use of variables
» Solution: How? Any variables live at the program entry (except for
parameters) are potentially uninitialized
@ Register allocation
» Problem: Rewrite the intermediate code to use no more temporaries
than there are machine registers

» Example:
a:=c+d rl :=r2 + r3
e :=a+b rl :=rl +r4d
f :=e -1 rl :=r1 -1

» Solution: How? Compute live ranges of variables. If two variables a
and b never live at the same time, assign the same register to them.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 18 /30

Liveness Analysis

The goal is to compute

in : Block — 2Vor
out : Block — 2Ver

@ Compute def/use sets.
@ Derive transfer functions for each basic block in terms of def/use sets.
© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 19 /30

Def/Use Sets

Hakjoo Oh AAA616 2022 Fall, Lecture 10

«—

AN [&— T [&— 0 &+— o [«— Il

l

return c

def
use

def
use

def
use

def
use

def
use

def
use

{a}
{+

{b}
{a}

{c}
{b,c}

{a}
{b}

{+
{a}

{}
{c}

October 25, 2022

20/30

cf) Def/Use sets are only dynamically computable

!

*a = 0 ‘

)

xb = *xa + 1 ‘

l

3‘**c=**c+*b‘

l

¥a = *b * 2 ‘

'

’

6
‘ return xxc ‘

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 21/30

Data-Flow Equations

Intuitions:
© If a variable is in use(B), then it is live on entry to block B.

@ If a variable is live at the end of block B, and not in def(B), then
the variable is also live on entry to B.

© If a variable is live on enty to block B, then it is live at the end of
predecessors of B.

Equations:
in(B) = use(B) U (out(B) — def(B))
out(B) = U in(S)

B—S

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 22/30

Fixed Point Computation

For all 4,in(B;) = out(B;) = 0
while (changes to any in and out occur) {
For all 2, update
in(B;) = use(B) U (out(B) — def(B))
out(B;) = Upo,sin(S)

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 23/30

Example

def = {a}
use = {}

def = {b}
use = {a}

def = {c}
use = {b,c}

def = {a}
use = {b}

def = {}
use = {a}

6 def = {}
it

Hakjoo Oh AAA616 2022 Fall, Lecture 10

October 25, 2022

1st 2nd 3rd
use def out in out in out in
6| {c} 0 0 {c} 0 {c} 0 {c}
5| {a} 0 {c} Aa,c} | {a,c} {a,c}|{a,c} {a,c}
4| {6} A{a} || {a,c} {b,c} | {a,c} {b,c} | {a,c} {b,c}
3 | {b,c} {c} {b,c} A{b,c} | {b,c} {b,c} | {b,c} {b,c}
2 {a} {b} {b,c} A{a,c} | {b,c} {a,c} | {b;c} {a,c}
1 0 {a} || {a;c} A{c} |{a,c} A{c} |A{a,c} A{c}

24 /30

Available Expressions Analysis

@ An expression x + y is available at a point p if every path from the
entry node to p evaluates « + y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to x or y.

ENTRY

o] [=] [=]

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 25/30

Available Expressions Analysis

@ An expression x + y is available at a point p if every path from the
entry node to p evaluates & + y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to x or y.

ENTRY

] o] [c=mv]

p

@ Application: common subexpression elimination (i.e., given a program
that computes e more than once, eliminate one of the duplicate
computations)

ENTRY

[tl = x+y‘ |t1 = x+y‘ [tl = x+y‘

t2 = x+y

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 25 /30

Available Expressions Analysis

The goal is to compute

in : Block — 2E=pr
out : Block — 2%Ezpr

© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 26 /30

Gen/Kill Sets

e gen(B): the set of expressions evaluated and not subsequently killed
@ kill(B): the set of expressions whose variables can be killed

@ What expressions are generated and killed by each of statements?

Statement s gen(s) | kill(s)
r=y+z {y + z} — kill(s) expressions containing
x = alloc(n) 0 expressions containing &
x = y[i] {y[i]} — kill(s) expressions containing x
z[i]l =y 0 expressions of the form x[k]

Basically, * = y + z generates y + z, but y = y 4+ z does not because y
is subsequently killed.

@ What expressions are generated and killed by the block?

a=b+c¢c
b=a—-d
c=b+ec
d=a—-—d

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 27 /30

1. Set up a set of data-flow equations

Intuitions:
© At the entry, no expressions are available.

@ An expression is available at the entry of a block only if it is available
at the end of all its predecessors.

Lo J L2 || o |

Equations:

in(ENTRY) =0
out(B) = gen(B) U (in(B) — kill(B))

in(B) = () out(B)

P—B

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 28 /30

2. Solve the equations

@ We are interested in the largest set satisfying the equation

@ Need to find the greatest solution (i.e., greatest fixed point) of the
equation.
in(ENTRY) =0
For other B;,in(B;) = out(B;) = Expr
while (changes to any in and out occur) {
For all 2, update
in(B;) = Npe,p, out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 29/30

Summary

@ Code optimization requires static analysis, data-flow analysis.
@ Every static analysis follows two steps:
© Set up a set of abstract semantic equations.
* about dynamics of program executions (e.g., how definitions flow)
@ Solve the equations using the iterative fixed point algorithm.
* naive tabulation algorithm, worklist algorithm, etc

Hakjoo Oh AAA616 2022 Fall, Lecture 10 October 25, 2022 30/30

