AAA616: Program Analysis

Lecture 10 - Data-Flow Analysis

Hakjoo Oh
2022 Fall

Data-Flow Analysis

A collection of program analysis techniques that derive information about the flow of data along program execution paths, enabling safe code optimization, bug detection, etc.

- Reaching definitions analysis
- Live variables analysis
- Available expressions analysis
- Constant propagation analysis
- ...

Reaching Definitions Analysis

- A definition \boldsymbol{d} reaches a point \boldsymbol{p} if there is a path from the definition point to \boldsymbol{p} such that \boldsymbol{d} is not "killed" along that path.

- For each program point, RDA finds definitions that can reach the program point along some execution paths.

Example: Reaching Definitions Analysis

Applications

Reaching definitions analysis has many applications, e.g.,

- Simple constant propagation
- For a use of variable \boldsymbol{v} in statement $\boldsymbol{n}: \boldsymbol{n}: \boldsymbol{x}=\ldots \boldsymbol{v} \ldots$
- If the definitions of v that reach n are all of the form $d: v=c$
- Replace the use of \boldsymbol{v} in \boldsymbol{n} by \boldsymbol{c}
- Uninitialized variable detection
- Put a definition d: $x=$ any at the program entry.
- For a use of variable \boldsymbol{x} in statement $\boldsymbol{n}: \boldsymbol{n}: \boldsymbol{x}=\ldots \boldsymbol{v} . .$.
- If \boldsymbol{d} reaches $\boldsymbol{n}, \boldsymbol{x}$ is potentially uninitialized.

```
if (...) x = 1;
```

$\mathrm{a}=\mathrm{x}$

- Loop optimization
- If all of the reaching definitions of the operands of \boldsymbol{n} are outside of the loop, then \boldsymbol{n} can be moved out of the loop ("loop-invariant code motion")
- while (...) \{...; $\mathrm{n}: \mathrm{z}=\mathrm{x}+\mathrm{y}$; ... \}

Reaching Definitions Analysis

The goal is to compute

$$
\begin{aligned}
\text { in } & : \text { Block } \rightarrow 2^{\text {Definitions }} \\
\text { out } & : \text { Block } \rightarrow 2^{\text {Definitions }}
\end{aligned}
$$

(1) Compute gen/kill sets.
(2) Derive transfer functions for each block in terms of gen/kill sets.
(3) Derive the set of data-flow equations.
(9) Solve the equation by the iterative fixed point algorithm.

1. Compute Gen/Kill Sets

$$
\begin{aligned}
\text { gen } & : \text { Block } \rightarrow 2^{\text {Definitions }} \\
\text { kill }: & \text { Block } \rightarrow 2^{\text {Definitions }}
\end{aligned}
$$

- gen (\boldsymbol{B}) : the set of definitions "generated" at block \boldsymbol{B}
- kill (\boldsymbol{B}) : the set of definitions "killed" at block \boldsymbol{B}

Example

Exercise

Compute the gen and kill sets for the basic block \boldsymbol{B} :
d1: $\mathrm{a}=3$
d2: $\mathrm{a}=4$

- $\operatorname{gen}(B)=$
- $\operatorname{kill}(B)=$

In general, when we have \boldsymbol{k} definitions in a block \boldsymbol{B} :
d1; d2; ...; d_k

- $\operatorname{gen}(B)=\operatorname{gen}(B)=$ $\operatorname{gen}\left(d_{k}\right) \cup\left(\operatorname{gen}\left(d_{k-1}\right)-\operatorname{kill}\left(d_{k}\right)\right) \cup\left(\operatorname{gen}\left(d_{k-2}-\operatorname{kill}\left(d_{k-1}\right)-\right.\right.$ $\left.\operatorname{kill}\left(d_{k}\right)\right) \cup \cdots \cup\left(\operatorname{gen}\left(d_{1}\right)-\operatorname{kill}\left(d_{2}\right)-\operatorname{kill}\left(d_{3}\right)-\cdots-\operatorname{kill}\left(d_{k}\right)\right)$
- $\operatorname{kill}(B)=\operatorname{kill}(B)=\operatorname{kill}\left(d_{1}\right) \cup \operatorname{kill}\left(d_{2}\right) \cup \cdots \cup \operatorname{kill}\left(d_{k}\right)$

2. Transfer Functions

- The transfer function is defined for each basic block \boldsymbol{B} :

$$
f_{B}: \mathbf{2}^{\text {Definitions }} \rightarrow 2^{\text {Definitions }}
$$

- The transfer function for a block \boldsymbol{B} encodes the semantics of the block \boldsymbol{B}, i.e., how the block transfers the input to the output.

$$
\boldsymbol{B 2} \begin{aligned}
& \begin{array}{l}
d 4: \\
d 5: ~ \\
d=j+1 \\
\text { d }
\end{array} \\
& \{d 1, d 2, d 3, d 5, d 6, d 7\} \\
& \{d 3, d 4, d 5, d 6\}
\end{aligned}
$$

- The semantics of \boldsymbol{B} is defined in terms of $\operatorname{gen}(B)$ and $\operatorname{kill}(B)$:

$$
\begin{aligned}
& f_{B}(X)=\operatorname{gen}(X) \cup(X-\operatorname{kill}(X))
\end{aligned}
$$

3. Derive Data-Flow Equations

$$
\begin{aligned}
\operatorname{in}\left(B_{1}\right) & =\emptyset \\
\operatorname{out}\left(B_{1}\right) & =f_{B_{1}}\left(\operatorname{in}\left(B_{1}\right)\right) \\
\operatorname{in}\left(B_{2}\right) & =\operatorname{out}\left(B_{1}\right) \cup \operatorname{out}\left(B_{4}\right) \\
\operatorname{out}\left(B_{2}\right) & =f_{B_{2}}\left(\operatorname{in}\left(B_{2}\right)\right) \\
\operatorname{in}\left(B_{3}\right) & =\operatorname{out}\left(B_{2}\right) \\
\operatorname{out}\left(B_{3}\right) & =f_{B_{3}}\left(\operatorname{in}\left(B_{3}\right)\right) \\
\operatorname{in}\left(B_{4}\right) & =\operatorname{out}\left(B_{2}\right) \cup \operatorname{out}\left(B_{3}\right) \\
\operatorname{out}\left(B_{4}\right) & =f_{B_{4}}\left(\operatorname{in}\left(B_{4}\right)\right)
\end{aligned}
$$

Data-Flow Equations

In general, the data-flow equations can be written as follows:

$$
\begin{aligned}
\operatorname{in}\left(B_{i}\right) & =\bigcup_{P \hookrightarrow B_{i}} \operatorname{out}(P) \\
\operatorname{out}\left(B_{i}\right) & =f_{B_{i}}\left(\operatorname{in}\left(B_{i}\right)\right) \\
& =\operatorname{gen}\left(B_{i}\right) \cup\left(\operatorname{in}\left(B_{i}\right)-\operatorname{kill}\left(B_{i}\right)\right)
\end{aligned}
$$

where (\hookrightarrow) is the control-flow relation.

4. Solve the Equations

- The desired solution is the least in and out that satisfies the equations (why least?):

$$
\begin{aligned}
\operatorname{in}\left(B_{i}\right) & =\bigcup_{P \hookrightarrow B_{i}} \operatorname{out}(P) \\
\operatorname{out}\left(B_{i}\right) & =\operatorname{gen}\left(B_{i}\right) \cup\left(\operatorname{in}\left(B_{i}\right)-\operatorname{kill}\left(B_{i}\right)\right)
\end{aligned}
$$

- The solution is defined as fixF, where \boldsymbol{F} is defined as follows:

$$
F(\text { in, out })=\left(\lambda B . \bigcup_{P \hookrightarrow B} \operatorname{out}(P), \lambda B \cdot f_{B}(\text { in }(B))\right.
$$

The least fixed point fixF is computed by

$$
\bigcup_{i \geq 0} F^{i}(\lambda B . \emptyset, \lambda B . \emptyset)
$$

The Fixpoint Algorithm

The equations are solved by the iterative fixed point algorithm:

```
For all \(i, \operatorname{in}\left(B_{i}\right)=\operatorname{out}\left(B_{i}\right)=\emptyset\)
while (changes to any in and out occur) \{
    For all \(\boldsymbol{i}\), update
        \(\operatorname{in}\left(B_{i}\right)=\bigcup_{P \hookrightarrow B_{i}} \operatorname{out}(P)\)
        \(\operatorname{out}\left(B_{i}\right)=\operatorname{gen}\left(B_{i}\right) \cup\left(\operatorname{in}\left(B_{i}\right)-\operatorname{kill}\left(B_{i}\right)\right)\)
\}
```


Liveness Analysis

- A variable is live at program point \boldsymbol{p} if its value could be used in the future (along some path starting at \boldsymbol{p}).

- Liveness analysis aims to compute the set of live variables for each basic block of the program.

Example: Liveness of Variables

We analyze liveness from the future to the past.

- The live range of $b:\{2 \rightarrow 3,3 \rightarrow 4\}$
- The live range of $a:\{1 \rightarrow 2,4 \rightarrow 5 \rightarrow 2\}$ (not from $2 \rightarrow 3 \rightarrow 4$)
- The live range of \boldsymbol{c} : the entire code

Example: Liveness of Variables

Applications

- Deadcode elimination
- Problem: Eliminate assignments whose computed values never get used.
- Solution: How?
- Suppose we have a statement: $\mathrm{n}: \mathrm{x}=\mathrm{y}+\mathrm{z}$.
- When \boldsymbol{x} is dead at \boldsymbol{n}, we can eliminate \boldsymbol{n}.
- Uninitialized variable detection
- Problem: Detect uninitialized use of variables
- Solution: How? Any variables live at the program entry (except for parameters) are potentially uninitialized
- Register allocation
- Problem: Rewrite the intermediate code to use no more temporaries than there are machine registers
- Example:

$\mathrm{a}:=\mathrm{c}+\mathrm{d}$	$\mathrm{r} 1:=\mathrm{r} 2+\mathrm{r} 3$
$\mathrm{e}:=\mathrm{a}+\mathrm{b}$	$\mathrm{r} 1:=\mathrm{r} 1+\mathrm{r} 4$
$\mathrm{f}:=\mathrm{e}-1$	$\mathrm{r} 1:=\mathrm{r} 1-1$

- Solution: How? Compute live ranges of variables. If two variables \boldsymbol{a} and b never live at the same time, assign the same register to them.

Liveness Analysis

The goal is to compute

$$
\begin{aligned}
\text { in } & : \text { Block } \rightarrow \text { 2 }^{\text {Var }} \\
\text { out } & : \text { Block } \rightarrow \text { 2 }^{\text {Var }}
\end{aligned}
$$

(1) Compute def/use sets.
(2) Derive transfer functions for each basic block in terms of def/use sets.
(3) Derive the set of data-flow equations.
(9) Solve the equation by the iterative fixed point algorithm.

Def/Use Sets

cf) Def/Use sets are only dynamically computable

Data-Flow Equations

Intuitions:

(1) If a variable is in use (\boldsymbol{B}), then it is live on entry to block \boldsymbol{B}.
(2) If a variable is live at the end of block \boldsymbol{B}, and not in $\operatorname{def}(\boldsymbol{B})$, then the variable is also live on entry to \boldsymbol{B}.
(3) If a variable is live on enty to block \boldsymbol{B}, then it is live at the end of predecessors of \boldsymbol{B}.

Equations:

$$
\begin{aligned}
\operatorname{in}(B) & =\operatorname{use}(B) \cup(\operatorname{out}(B)-\operatorname{def}(B)) \\
\operatorname{out}(B) & =\bigcup_{B \hookrightarrow S} \operatorname{in}(S)
\end{aligned}
$$

Fixed Point Computation

```
For all \(i, \operatorname{in}\left(B_{i}\right)=\operatorname{out}\left(B_{i}\right)=\emptyset\)
while (changes to any in and out occur) \{
    For all \(\boldsymbol{i}\), update
        \(\operatorname{in}\left(B_{i}\right)=\operatorname{use}(B) \cup(\operatorname{out}(B)-\operatorname{def}(B))\)
        \(\operatorname{out}\left(B_{i}\right)=\bigcup_{B \hookrightarrow S} \operatorname{in}(S)\)
\}
```


Example

Available Expressions Analysis

- An expression $\boldsymbol{x}+\boldsymbol{y}$ is available at a point \boldsymbol{p} if every path from the entry node to \boldsymbol{p} evaluates $\boldsymbol{x}+\boldsymbol{y}$, and after the last such evaluation prior to reaching \boldsymbol{p}, there are no subsequent assignments to \boldsymbol{x} or \boldsymbol{y}.

Available Expressions Analysis

- An expression $\boldsymbol{x}+\boldsymbol{y}$ is available at a point \boldsymbol{p} if every path from the entry node to \boldsymbol{p} evaluates $\boldsymbol{x}+\boldsymbol{y}$, and after the last such evaluation prior to reaching \boldsymbol{p}, there are no subsequent assignments to \boldsymbol{x} or \boldsymbol{y}.

- Application: common subexpression elimination (i.e., given a program that computes e more than once, eliminate one of the duplicate computations)

Available Expressions Analysis

The goal is to compute

$$
\begin{aligned}
\text { in } & : \quad \text { Block } \rightarrow 2^{E x p r} \\
\text { out } & : B l o c k \rightarrow \mathcal{2}^{\text {Expr }}
\end{aligned}
$$

(1) Derive the set of data-flow equations.
(2) Solve the equation by the iterative fixed point algorithm.

Gen/Kill Sets

- gen (\boldsymbol{B}) : the set of expressions evaluated and not subsequently killed
- kill (\boldsymbol{B}) : the set of expressions whose variables can be killed
- What expressions are generated and killed by each of statements?

Statement s	$\boldsymbol{g e n}(s)$	kill (s)
$\boldsymbol{x}=\boldsymbol{y}+\boldsymbol{z}$	$\{\boldsymbol{y}+\boldsymbol{z}\}-\operatorname{kill}(s)$	expressions containing \boldsymbol{x}
$\boldsymbol{x}=\operatorname{alloc}(\boldsymbol{n})$	\emptyset	expressions containing \boldsymbol{x}
$\boldsymbol{x}=\boldsymbol{y}[i]$	$\{y[i]\}-\operatorname{kill}(s)$	expressions containing \boldsymbol{x}
$x[i]=\boldsymbol{y}$	\emptyset	expressions of the form $x[k]$

Basically, $\boldsymbol{x}=\boldsymbol{y}+\boldsymbol{z}$ generates $\boldsymbol{y}+\boldsymbol{z}$, but $\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{z}$ does not because \boldsymbol{y} is subsequently killed.

- What expressions are generated and killed by the block?

$$
\begin{array}{|l|}
\hline a=b+c \\
b=a-d \\
c=b+c \\
d=a-d \\
\hline
\end{array}
$$

1. Set up a set of data-flow equations

Intuitions:
(1) At the entry, no expressions are available.
(2) An expression is available at the entry of a block only if it is available at the end of all its predecessors.

Equations:

$$
\begin{aligned}
\operatorname{in}(E N T R Y) & =\emptyset \\
\operatorname{out}(B) & =\operatorname{gen}(B) \cup(\operatorname{in}(B)-\operatorname{kill}(B)) \\
\operatorname{in}(B) & =\bigcap_{P \rightarrow B} \operatorname{out}(B)
\end{aligned}
$$

2. Solve the equations

- We are interested in the largest set satisfying the equation
- Need to find the greatest solution (i.e., greatest fixed point) of the equation.

$$
\operatorname{in}(E N T R Y)=\emptyset
$$

For other $B_{i}, \operatorname{in}\left(B_{i}\right)=\operatorname{out}\left(B_{i}\right)=\operatorname{Expr}$ while (changes to any in and out occur) \{

For all \boldsymbol{i}, update

$$
\begin{aligned}
& \operatorname{in}\left(B_{i}\right)=\bigcap_{P \hookrightarrow B_{i}} \operatorname{out}(P) \\
& \operatorname{out}\left(B_{i}\right)=\operatorname{gen}\left(B_{i}\right) \cup\left(\operatorname{in}\left(B_{i}\right)-\operatorname{kill}\left(B_{i}\right)\right)
\end{aligned}
$$

\}

Summary

- Code optimization requires static analysis, data-flow analysis.
- Every static analysis follows two steps:
(1) Set up a set of abstract semantic equations.
* about dynamics of program executions (e.g., how definitions flow)
(2) Solve the equations using the iterative fixed point algorithm.
» naive tabulation algorithm, worklist algorithm, etc

