AAA616: Program Analysis

Lecture 1 - Basic Math Notations

Hakjoo Oh
2022 Fall

Reference

- Chapter 1 of "The formal semantics of programming languages".

Logical Notation

For statements \boldsymbol{A} and \boldsymbol{B},

- $\boldsymbol{A} \& \boldsymbol{B}: \boldsymbol{A}$ and \boldsymbol{B}, the conjunction of \boldsymbol{A} and \boldsymbol{B}
- $\boldsymbol{A} \Longrightarrow \boldsymbol{B}: \boldsymbol{A}$ implies \boldsymbol{B}, if \boldsymbol{A} then \boldsymbol{B}
- $\boldsymbol{A} \Longleftrightarrow \boldsymbol{B}: \boldsymbol{A}$ iff \boldsymbol{B}, the logical equivalence of \boldsymbol{A} and \boldsymbol{B}
- $\neg \boldsymbol{A}$: not \boldsymbol{A}

Logical Notation

Logical quantifiers \exists and \forall :

- $\exists \boldsymbol{x} \boldsymbol{P} \boldsymbol{P}(\boldsymbol{x})$: for some $\boldsymbol{x}, \boldsymbol{P}(\boldsymbol{x})$
- $\forall x . P(x)$: for all $x, P(x)$
- Abbreviations:
- $\exists x, y, \ldots, z . P(x, y, \ldots, z) \equiv \exists x \exists y \ldots \exists z . P(x, y, \ldots, z)$
$\bullet \forall x, y, \ldots, z . P(x, y, \ldots, z) \equiv \forall x \forall y \ldots \forall z . P(x, y, \ldots, z)$
- $\forall x \in X . P(x) \equiv \forall x . x \in X \Longrightarrow P(x)$
- $\exists x \in X . P(x) \equiv \exists x . x \in X \& P(x)$
- $\exists!x \cdot P(x) \equiv(\exists x \cdot P(x)) \&(\forall y, z \cdot P(y) \& P(z) \Longrightarrow y=z)$

Sets

- A set is a collection of objects (also called elements or members)
- $\boldsymbol{a} \in \boldsymbol{X}: \boldsymbol{a}$ is an element of the set \boldsymbol{X}
- A set \boldsymbol{X} is a subset of a set $\boldsymbol{Y}, \boldsymbol{X} \subseteq \boldsymbol{Y}$, iff every element of \boldsymbol{X} is an element of \boldsymbol{Y} :

$$
\boldsymbol{X} \subseteq \boldsymbol{Y} \Longleftrightarrow \forall z \in \boldsymbol{X} . \boldsymbol{z} \in \boldsymbol{Y}
$$

- Sets \boldsymbol{X} and \boldsymbol{Y} are equal, $\boldsymbol{X}=\boldsymbol{Y}$, iff $\boldsymbol{X} \subseteq \boldsymbol{Y}$ and $\boldsymbol{Y} \subseteq \boldsymbol{X}$.
- \emptyset : empty set
- ω : the set of natural numbers $\mathbf{0 , 1 , 2}, \ldots$

Constructions on Sets

- Comprehension: If \boldsymbol{X} is a set and $\boldsymbol{P}(\boldsymbol{x})$ is a property, the set

$$
\{x \in X \mid P(x)\}
$$

denotes the subset of \boldsymbol{X} consisting of all elements \boldsymbol{x} of \boldsymbol{X} which satisfy $\boldsymbol{P}(x)$.

- Powerset: the set of all subsets of a set:

$$
\mathcal{P}(X)=\{Y \mid Y \subseteq X\}
$$

- Indexed sets: Suppose \boldsymbol{I} is a set and that for any $i \in I$ there is a unique object $\boldsymbol{x}_{\boldsymbol{i}}$. Then

$$
\left\{x_{i} \mid i \in I\right\}
$$

is a set. The elements $\boldsymbol{x}_{\boldsymbol{i}}$ is indexed by the elements $\boldsymbol{i} \in \boldsymbol{I}$.

Constructions on Sets

- Union and intersection:

$$
\begin{aligned}
& X \cup \boldsymbol{Y}=\{a \mid a \in X \text { or } a \in \boldsymbol{Y}\} \\
& X \cap \boldsymbol{Y}=\{a \mid a \in X \& a \in \boldsymbol{Y}\}
\end{aligned}
$$

- Big union and intersection: When \boldsymbol{X} is a set of sets,

$$
\begin{aligned}
& \cup X=\{a \mid \exists x \in X . a \in x\} \\
& \cap X=\{a \mid \forall x \in X . a \in x\}
\end{aligned}
$$

When $X=\left\{x_{i} \mid i \in I\right\}$ for some index set I,

$$
\begin{aligned}
& \bigcup_{i \in I} x_{i}=\bigcup X \\
& \bigcap_{i \in I} x_{i}=\bigcap X
\end{aligned}
$$

Constructions on Sets

- Disjoint union:

$$
X \uplus Y=(\{0\} \times X) \cup(\{1\} \times Y)
$$

- Product: For sets \boldsymbol{X} and \boldsymbol{Y}, their product is the set

$$
X \times Y=\{(a, b) \mid a \in X \& b \in Y\}
$$

In general,

$$
X_{1} \times X_{2} \times \cdots \times X_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \forall i \in[1, n] . x_{i} \in X_{i}\right\}
$$

- Set difference:

$$
X \backslash Y=\{x \mid x \in X \& x \notin Y\}
$$

Relations and Functions

- A binary relation \boldsymbol{R} between \boldsymbol{X} and \boldsymbol{Y} is an element of $\mathcal{P}(\boldsymbol{X} \times \boldsymbol{Y})$, $\boldsymbol{R} \in \mathcal{P}(\boldsymbol{X} \times \boldsymbol{Y})$, or $\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}$.
- When \boldsymbol{R} is a binary relation $\boldsymbol{R} \subseteq \boldsymbol{X} \subseteq \boldsymbol{Y}$, we write $\boldsymbol{x} \boldsymbol{R} \boldsymbol{y}$ for $(x, y) \in R$.
- A partial function f from \boldsymbol{X} to \boldsymbol{Y} is a relation $f \subseteq \boldsymbol{X} \times \boldsymbol{Y}$ such that

$$
\forall x, y, y^{\prime} .(x, y) \in f \&\left(x, y^{\prime}\right) \in f \Longrightarrow y=y^{\prime}
$$

- We use the notation $f(x)=y$ when there is y such that $(x, y) \in f$ and say $f(x)$ is defined, and otherwise $f(x)$ is undefined.
- A total function from \boldsymbol{X} to \boldsymbol{Y} is a partial function such that $f(x)$ is defined for all $\boldsymbol{x} \in \boldsymbol{X}$.
- $(\boldsymbol{X} \rightharpoonup \boldsymbol{Y})$: the set of all partial functions from \boldsymbol{X} to \boldsymbol{Y}
- $(\boldsymbol{X} \rightarrow \boldsymbol{Y})$: the set of all total functions from \boldsymbol{X} to \boldsymbol{Y}
- $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e}$: the lambda notation for functions

Relations and Functions

- Composition: When $\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{Y}$ and $\boldsymbol{S} \subseteq \boldsymbol{Y} \times \boldsymbol{Z}$ are binary relations, their composition is a relation of type $\boldsymbol{X} \times \boldsymbol{Z}$ defined as,
$S \circ R=\{(x, z) \in X \times Z \mid \exists y \in Y .(x, y) \in R \&(y, z) \in S\}$
- $I d_{X}=\{(x, x) \mid x \in X\}$

Relations and Functions

- An equivalence relation on \boldsymbol{X} is a relation $\boldsymbol{R} \subseteq \boldsymbol{X} \times \boldsymbol{X}$ which is
- reflexive: $\forall x \in X . \boldsymbol{x} \boldsymbol{x}$,
- symmetric: $\forall x, y \in X . x R y \Longrightarrow y R x$, and
- transitive: $\forall x, y, z \in X . x R y \& y R z \Longrightarrow x R z$.
- Example: $=$ on numbers, the relation "has the same age" on people
- We sometime write $\boldsymbol{x} \equiv \boldsymbol{y}(\bmod \boldsymbol{R})$ for $(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{R}$.
- The equivalence class of \boldsymbol{x} under \boldsymbol{R}, denoted $\{x\}_{R}$ or $[x]_{R}$:

$$
[x]_{R}=\{y \in X \mid x R y\}
$$

- Quotient set: the set of all equivalence classes of \boldsymbol{X} by \boldsymbol{R} :

$$
X / R=\left\{[x]_{R} \mid x \in X\right\}
$$

- For any equivalence relation $\boldsymbol{R}, \boldsymbol{X} / \boldsymbol{R}$ is a partition of \boldsymbol{X}.

Relations and Functions

- Let R be a relation on a set \boldsymbol{X}. Define $\boldsymbol{R}^{0}=\boldsymbol{I} d_{X}$, and $\boldsymbol{R}^{1}=\boldsymbol{R}$, and

$$
R^{n+1}=R \circ R^{n}
$$

- The transitive closure of \boldsymbol{R} :

$$
R^{+}=\bigcup_{n \in \omega} R^{n+1}
$$

- The reflexive transitive closure of \boldsymbol{R} :

$$
R^{*}=\bigcup_{n \in \omega} R^{n}=I d_{X} \cup R^{+}
$$

Sequences

- Given a set $\boldsymbol{S}, \boldsymbol{S}^{+}$denotes the set of all finite nonempty sequences of elements of \boldsymbol{S}
- When σ is a finite sequence, σ_{k} denotes the $(\boldsymbol{k}+\mathbf{1})$ th element of the sequence, σ_{0} the first element, and σ_{\dashv}.
- Given a sequence $\sigma \in S^{+}$and an element $s \in S, \sigma \cdot s$ denotes a sequence obtained by appending s to σ.

