AAA616: Program Analysis

Lecture 1 — Basic Math Notations

Hakjoo Oh 2022 Fall

Reference

• Chapter 1 of "The formal semantics of programming languages".

Logical Notation

For statements A and B,

- A & B: A and B, the conjunction of A and B
- $\bullet A \implies B: A \text{ implies } B, \text{ if } A \text{ then } B$
- ullet $A\iff B$: A iff B, the logical equivalence of A and B
- $\bullet \neg A$: not A

Logical Notation

Logical quantifiers \exists and \forall :

- ullet $\exists x.\ P(x)$: for some $x,\ P(x)$
- $\forall x. \ P(x)$: for all x, P(x)
- Abbreviations:
 - $\exists x, y, \dots, z. \ P(x, y, \dots, z) \equiv \exists x \exists y \dots \exists z. \ P(x, y, \dots, z)$
 - $\forall x, y, \dots, z. \ P(x, y, \dots, z) \equiv \forall x \forall y \dots \forall z. \ P(x, y, \dots, z)$
 - $\forall x \in X. \ P(x) \equiv \forall x. \ x \in X \implies P(x)$
 - $\exists x \in X. \ P(x) \equiv \exists x. \ x \in X \& \ P(x)$
 - $\quad \exists ! x. \ P(x) \equiv (\exists x. \ P(x)) \ \& \ (\forall y, z. \ P(y) \ \& \ P(z) \implies y = z)$

Sets

- A set is a collection of objects (also called elements or members)
- ullet $a\in X$: a is an element of the set X
- ullet A set X is a subset of a set Y, $X\subseteq Y$, iff every element of X is an element of Y:

$$X \subseteq Y \iff \forall z \in X. \ z \in Y.$$

- ullet Sets X and Y are equal, X=Y, iff $X\subseteq Y$ and $Y\subseteq X$.
- Ø: empty set
- $m{\omega}$: the set of natural numbers $0,1,2,\ldots$

Constructions on Sets

ullet Comprehension: If X is a set and P(x) is a property, the set

$$\{x \in X \mid P(x)\}$$

denotes the subset of X consisting of all elements x of X which satisfy P(x).

• Powerset: the set of all subsets of a set:

$$\mathcal{P}(X) = \{Y \mid Y \subseteq X\}.$$

ullet Indexed sets: Suppose I is a set and that for any $i\in I$ there is a unique object x_i . Then

$$\{x_i \mid i \in I\}$$

is a set. The elements x_i is indexed by the elements $i \in I$.

Constructions on Sets

• Union and intersection:

$$X \cup Y = \{a \mid a \in X \text{ or } a \in Y\}$$

$$X \cap Y = \{a \mid a \in X \& a \in Y\}$$

ullet Big union and intersection: When $oldsymbol{X}$ is a set of sets,

$$\bigcup X = \{a \mid \exists x \in X. \ a \in x\}$$
$$\bigcap X = \{a \mid \forall x \in X. \ a \in x\}$$

When $X = \{x_i \mid i \in I\}$ for some index set I,

$$\bigcup_{i \in I} x_i = \bigcup X$$

$$\bigcap_{i\in I} x_i = \bigcap X$$

Constructions on Sets

Disjoint union:

$$X \uplus Y = (\{0\} \times X) \cup (\{1\} \times Y).$$

ullet Product: For sets $oldsymbol{X}$ and $oldsymbol{Y}$, their product is the set

$$X \times Y = \{(a,b) \mid a \in X \& b \in Y\}.$$

In general,

$$X_1 \times X_2 \times \cdots \times X_n = \{(x_1, x_2, \dots, x_n) \mid \forall i \in [1, n]. \ x_i \in X_i\}.$$

Set difference:

$$X \setminus Y = \{x \mid x \in X \& x \not\in Y\}.$$

- ullet A binary relation R between X and Y is an element of $\mathcal{P}(X imes Y)$, $R \in \mathcal{P}(X imes Y)$, or $R \subseteq X imes Y$.
- ullet When R is a binary relation $R\subseteq X\subseteq Y$, we write xRy for $(x,y)\in R$.
- ullet A partial function f from X to Y is a relation $f\subseteq X imes Y$ such that

$$\forall x,y,y'.\; (x,y)\in f\;\&\; (x,y')\in f\implies y=y'.$$

- We use the notation f(x)=y when there is y such that $(x,y)\in f$ and say f(x) is defined, and otherwise f(x) is undefined.
- ullet A total function from X to Y is a partial function such that f(x) is defined for all $x \in X$.
- \bullet $(X \rightharpoonup Y)$: the set of all partial functions from X to Y
- ullet (X o Y): the set of all total functions from X to Y
- λx . e: the lambda notation for functions

ullet Composition: When $R\subseteq X imes Y$ and $S\subseteq Y imes Z$ are binary relations, their composition is a relation of type X imes Z defined as,

$$S\circ R=\{(x,z)\in X\times Z\mid \exists y\in Y.\; (x,y)\in R\;\&\; (y,z)\in S\}$$

• $Id_X = \{(x, x) \mid x \in X\}$

- ullet An equivalence relation on X is a relation $R\subseteq X imes X$ which is
 - reflexive: $\forall x \in X$. xRx,
 - lacktriangle symmetric: $orall x,y\in X.\ xRy\implies yRx$, and
 - transitive: $\forall x, y, z \in X$. $xRy \& yRz \implies xRz$.
- Example: = on numbers, the relation "has the same age" on people
- ullet We sometime write $x\equiv y\pmod R$ for $(x,y)\in R$.
- The equivalence class of x under R, denoted $\{x\}_R$ or $[x]_R$:

$$[x]_R = \{y \in X \mid xRy\}.$$

ullet Quotient set: the set of all equivalence classes of $oldsymbol{X}$ by $oldsymbol{R}$:

$$X/R = \{ [x]_R \mid x \in X \}.$$

• For any equivalence relation R, X/R is a partition of X.

ullet Let R be a relation on a set X. Define $R^0=Id_X$, and $R^1=R$, and

$$R^{n+1} = R \circ R^n.$$

• The transitive closure of R:

$$R^+ = \bigcup_{n \in \omega} R^{n+1}$$

• The reflexive transitive closure of R:

$$R^* = \bigcup_{n \in \omega} R^n = Id_X \cup R^+.$$

Sequences

- ullet Given a set $S,\,S^+$ denotes the set of all finite nonempty sequences of elements of S
- When σ is a finite sequence, σ_k denotes the (k+1)th element of the sequence, σ_0 the first element, and σ_{\dashv} .
- Given a sequence $\sigma \in S^+$ and an element $s \in S$, $\sigma \cdot s$ denotes a sequence obtained by appending s to σ .