
AAA616: Program Analysis

Pointer Analysis

Hakjoo Oh
2019 Fall

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 1 / 31



Topics

Pointer analysis

Constraint-based analysis

Interprocedural analysis

Analysis of higher-order programs

Context-sensitivity

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 2 / 31



Motivating Example

Reasoning about any real programs needs pointer reasoning: e.g.,

x = 1;

y = 2;

*p = 3;

*q = 4;

What is the value of x + y after the last statement?

p = &x and q = &y:

p = &x and q 6= &y:

p 6= &x and q = &y:

p 6= &x and q 6= &y:

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 3 / 31



Pointer Analysis

Static program analysis that computes the set of memory locations
(objects) that a pointer variable may point to at runtime.

One of the most important static analyses: all interesting questions
on program reasoning eventually need pointer analysis.

I E.g., control-flows, data-flows, types, information-flows, etc

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 4 / 31



Allocation-Site Abstraction

Memory locations are unbounded. Consider the program:

Object id (Object p) { return p; }

void f() {

Object x = new A() // l1

Object y = id(x);

}

void g() {

Object a = new B(); // l2

Object b = id(a);

}

void main () { while (...) { f(); g(); } }

In program execution, new objects are allocated repeatedly.

In pointer analysis, objects get abstracted to their allocation sites.

Thus, a pointer analysis would produce the result:

x 7→ {l1}, y 7→ {l1}, a 7→ {l2}, b 7→ {l2}, p 7→ {l1, l2}
Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 5 / 31



Pointer Analysis in Datalog

Pointer analysis is expressed as subset constraints. The analysis is to
compute the smallest solution of the constraints. E.g.,

a = new A();

b = a;

We use the Datalog language to express such constraints.

Datalog is a declarative logic programming language, which has
application in many fields, e.g., database, information extraction,
networking, program analysis, security, etc.

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 6 / 31



Syntax of Datalog

A Datalog program is a sequence of constraints:

P ::= c̄

A constraint consists of a head of a literal and a body of a list of
literals:

c ::= l :- l̄

A constraint represents a horn clause (a disjunction of literals with at
most one positive, unnegated, literal):

l ∨ ¬l1 ∨ ¬l2 ∨ · · · ∨ ¬ln ⇐⇒ l← l1 ∧ l2 ∧ · · · ∧ ln

A literal is a relation with arguments:

l ::= r(ā)

where an argument is either a variable or constant.

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 7 / 31



Example

parent(bill, mary).

parent(mary, john).

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 8 / 31



Semantics of Datalog

A Datalog program denotes a set of ground literals:

[[P ]] ∈ ℘(G)

where G is the set of ground literals (literals without variables).

A Datalog rule l :- l1, . . . , ln denotes the function:

fl :- l1,...,ln(X) = {σ(l0) | σ(lk) ∈ X for 1 ≤ k ≤ n}

where σ is a variable substitution.

The semantics of P is defined as the least fixed point of FP :

[[P ]] = lfpFP where FP (X) = X ∪
⋃
c∈P

fc(X)

The semantics is monotone:

P1 ⊆ P2 =⇒ [[P1]] ⊆ [[P2]]

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 9 / 31



Programs as Relations

Without procedures, a program can be represented by a set of the
relations:

Alloc (var : V, heap : H)
Move (to : V, from : V )
Load(to : V, base : V,fld : F )
Store(base : V,fld : F, from : V )

domains:

V is a set of program variables

H is a set of heap abstractions (i.e. allocation sites)

F is a set of fields

a = new A();

b = new B();

c = a;

a.f = b;

d = c.f;

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 10 / 31



Simple Pointer Analysis

Pointer analysis computes the set of points-to relations:

VarPointsTo (var : V, heap : H)
FldPointsTo (baseH : H,fld : F, heap : H)

Analysis rules:

VarPointsTo(var , heap)← Alloc(var , heap)

VarPointsTo(to, heap)←
Move(to, from),VarPointsTo(from, heap)

FldPointsTo(baseH ,fld , heap)←
Store(base,fld , from),VarPointsTo(from, heap),
VarPointsTo(base, baseH ).

Exercise) Define the rule for Load.

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 11 / 31



Interprocedural Analysis

Domains:

V is a set of program variables

H is a set of heap abstractions (i.e. allocation sites)

F is a set of fields

M is a set of method identifiers

S is a set of method signatures (including name, type signature)

I is a set of instructions

T is a set of class types

N is the set of natural numbers

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 12 / 31



Interprocedural Analysis (First-Order)

Input relations:

Alloc (var : V, heap : H, inMeth : M)
Move (to : V, from : V )
Load(to : V, base : V,fld : F )
Store(base : V,fld : F, from : V )
CallGraph(invo : I,meth : M)
Reachable(meth : M)
FormalArg(meth : M, i : N, arg : V )
ActualArg(invo : I, i : N, arg : V )
FormalReturn(meth : M, ret : V )
ActualReturn(invo : I, var : V )

Output relations:
VarPointsTo (var : V, heap : H)
FldPointsTo (baseH : H,fld : F, heap : H)
InterProcAssign (to : V, from : V )

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 13 / 31



Analysis Rules

VarPointsTo(var , heap)←
Reachable(meth),Alloc(var , heap,meth)

VarPointsTo(to, heap)←
Move(to, from),VarPointsTo(from, heap)

FldPointsTo(baseH ,fld , heap)←
Store(base,fld , from),VarPointsTo(from, heap),
VarPointsTo(base, baseH ).

VarPointsTo(to, heap)←
Load(to, base,fld),VarPointsTo(base, baseH ),
FldPointsTo(baseH ,fld , heap).

InterProcAssign(to, from)← CallGraph(invo,meth),
FormalArg(meth, n, to),ActualArg(invo, n, from).

InterProcAssign(to, from)← CallGraph(invo,meth),
FormalReturn(meth, from),ActualReturn(invo, to).

VarPointsTo(to, heap)←
InterProcAssign(to, from),VarPointsTo(from, heap).

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 14 / 31



Example

Object f(Object p) {

return p;

}

a = new A();

b = f(a);

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 15 / 31



Interprocedural Analysis (Higher-Order)

Input relations:

Alloc (var : V, heap : H, inMeth : M)
Move (to : V, from : V )
Load(to : V, base : V,fld : F )
Store(base : V,fld : F, from : V )
VCall(base : V, sig : S, invo : I, inMeth : M)
FormalArg(meth : M, i : N, arg : V )
ActualArg(invo : I, i : N, arg : V )
FormalReturn(meth : M, ret : V )
ActualReturn(invo : I, var : V )
ThisVar(meth : M, this : V )
HeapType(heap : H, type : T )
LookUp(type : T, sig : S,meth : M)

Output relations:

VarPointsTo (var : V, heap : H)
FldPointsTo (baseH : H,fld : F, heap : H)
InterProcAssign (to : V, from : V )
CallGraph (invo : I,meth : M)
Reachable (meth : M)

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 16 / 31



Analysis Rules

A new rule for VCall whose main job is to update call-graph:

Reachable(toMeth),
VarPointsTo(this, heap),
CallGraph(invo, toMeth)←
VCall(base, sig , invo, inMeth),Reachable(inMeth),
VarPointsTo(base, heap),
HeapType(heap, heapT),LookUp(heapT , sig , toMeth),
ThisVar(toMeth, this).

The analysis performs on-the-fly call-graph construction.

Pointer analysis and call-graph construction are closed inter-connected
in object-oriented and higher-order languages. For example, to resolve
call obj.fun(), we need pointer analysis. To compute points-to set
of a in f(Object a){...}, we need call-graph.

This global fixed point computation increases precision of both.

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 17 / 31



Example

class C {

Object id(Object v){ return v; }

}

class B {

void m (){

C c = new C();

D d = c.id(new D());

E e = c.id(new E());

}

}

public class A {

void f(){

B b = new B();

b.m();

b.m();

}

}

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 18 / 31



Need for Context-Sensitivity

Our current analysis is context-insensitive:

class C { Object id(Object v){ return v; } }

class B {

void m (){

C c = new C();

D d = c.id(new D());

E e = c.id(new E()); }}

public class A {

void f(){

B b = new B();

b.m();

b.m(); }}

To achieve more precision, we can quality the analysis results with context
information. Two kinds of contexts:

I Calling context for qualifying local variables
I Heap context for qualifying heap abstractions

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 19 / 31



Domains for Context-Sensitive Analysis

V is a set of program variables

H is a set of heap abstractions (i.e. allocation sites)

M is a set of method identifiers

S is a set of method signatures (including name, type signature)

F is a set of fields

I is a set of instructions

T is a set of class types

N is the set of natural numbers

C is a set of calling contexts

HC is a set of heap contexts

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 20 / 31



Output Relations for Context-Sensitive Analysis

The output relations are modified to add contexts:

Context constructors:

Record generates heap contexts.

Merge generates calling contexts.

Different choices of them yield different context-sensitivity flavors.

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 21 / 31



Analysis Rules

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 22 / 31



Analysis Rules

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 23 / 31



Call-Site-Sensitivity (aka., k-CFA)

The best-known flavor of context-sensitivity. It uses call-sites as
contexts.

In k-CFA, a method gets analyzed with the context that is a sequence
of the last k call-sites (the current call-site of the method, the
call-site of the caller method, the call-site of the caller method’s
caller, etc, up to a pre-defined depth, k).

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 24 / 31



Call-Site-Sensitivity

1-call-site sensitive with context-insensitive heap:

C = I, HC = {?}
Record(heap, ctx) = ?
Merge(heap, hctx , invo, ctx) = invo

1-call-site sensitive with context-sensitive heap:

C = I, HC = I
Record(heap, ctx) = ctx
Merge(heap, hctx , invo, ctx) = invo

2-call-site sensitive with 1-call-site-sensitive heap:

C = I × I, HC = I
Record(heap, ctx) = first(ctx)
Merge(heap, hctx , invo, ctx) = pair(invo,first(ctx))

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 25 / 31



Example

class C { Object id(Object v){ return v; } }

class B {

void m (){

C c = new C();

D d = c.id(new D());

E e = c.id(new E());

}

}

public class A {

void f(){

B b = new B();

b.m();

b.m();

}

}

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 26 / 31



Object-Sensitivity

The dominant flavor of context-sensitivity for object-oriented
languages.

It uses object abstractions (i.e. allocation sites) as contexts,
qualifying a method’s local variables with the allocation site of the
receiver object of the method call.

class A { void m() { return; } }

...

b = new B();

b.m();

The context of m is the allocation site of b.

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 27 / 31



Exercise

class S {

Object id(Object a) { return a; }

Object id2(Object a) { return id(); }

}

class C extends S {

void fun1() {

Object a1 = new A1();

Object b1 = id2(a1);

}}

class D extends S {

void fun2() {

Object a2 = new A2();

Object b2 = id2(a2);

}}

What is the result of 1-call-site-sensitive analysis?

What is the result of 1-object-sensitive analysis?

Explain the strength of object-sensitivity over call-site-sensitivity.

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 28 / 31



Object-Sensitivity

1-object-sensitive with context-insensitive heap:

C = H, HC = {?}
Record(heap, ctx) = ?
Merge(heap, hctx , invo, ctx) = heap

2-object-sensitive with 1-context-sensitive heap:

C = H ×H, HC = H
Record(heap, ctx) = first(ctx)
Merge(heap, hctx , invo, ctx) = pair(heap, hctx)

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 29 / 31



Example

class D{} class E{}

class C { Object id(Object v) { return v; } }

class B {

Object id(Object v) {

C c = new C(); // l3, heap objects: ([l1],l3), ([l2],l3)

return c.id(v); // calling contexts: [l3,l1], [l3,l2]

}

}

class A {

void m () {

B b1 = new B(); // l1

B b2 = new B(); // l2

D d = b1.id (new D()); // calling contexts: l1

E e = b2.id (new E()); // calling contexts: l2

}

}

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 30 / 31



Summary

We have covered a number of key concepts in program analysis:

Pointer analysis

Constraint-based analysis

Interprocedural analysis

Analysis of higher-order programs

Context-sensitivity

For more details, see

Yannis Smaragdakis and George Balatsouras. Pointer Analysis.
Foundations and Trends in Programming Languages. 2(1). 2015.

Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 31 / 31


