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Syntax vs. Semantics

A programming language is defined with syntax and semantics.

The syntax is concerned with the grammatical structure of programs.
I Context-free grammar

The semantics is concerned with the meaning of grammatically
correct programs.

I Operational semantics: The meaning is specified by the computation
steps executed on a machine. It is of intrest how it is obtained.

I Denotational semantics: The meaning is modelled by mathematical
objects that represent the effect of executing the program. It is of
interest the effect, not how it is obtained.
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The While Language: Abstract Syntax

n will range over numerals, Num
x will range over variables, Var
a will range over arithmetic expressions, Aexp
b will range over boolean expressions, Bexp
c, S will range over statements, Stm

a → n | x | a1 + a2 | a1 ? a2 | a1 − a2
b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2
c → x := a | skip | c1; c2 | if b c1 c2 | while b c

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 4 / 37



Example

The factorial program:

y:=1; while ¬(x=1) do (y:=y?x; x:=x-1)

The abstract syntax tree:
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Semantics of Arithmetic Expressions

The meaning of an expression depends on the values bound to the
variables that occur in the expression, e.g., x+ 3.

A state is a function from variables to values:

State = Var→ Z

The meaning of arithmetic expressions is a function:

A : Aexp→ State→ Z

A[[a]] : State→ Z

A[[n]](s) = n

A[[x]](s) = s(x)

A[[a1 + a2]](s) = A[[a1]](s) +A[[a2]](s)

A[[a1 ? a2]](s) = A[[a1]](s)×A[[a2]](s)

A[[a1 − a2]](s) = A[[a1]](s)−A[[a2]](s)
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Semantics of Boolean Expressions

The meaning of boolean expressions is a function:

B : Bexp→ State→ T

where T = {true, false}.

B[[b]] : State→ T

B[[true]](s) = true

B[[false]](s) = false

B[[a1 = a2]](s) = A[[a1]](s) = A[[a2]](s)

B[[a1 ≤ a2]](s) = A[[a1]](s) ≤ A[[a2]](s)

B[[¬b]](s) = B[[b]](s) = false

B[[b1 ∧ b2]](s) = B[[b1]](s) ∧ B[[b2]](s)
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Free Variables

The free variables of an arithmetic expression a are defined to be the set
of variables occurring in it:

FV (n) = ∅
FV (x) = {x}

FV (a1 + a2) = FV (a1) ∪ FV (a2)
FV (a1 ? a2) = FV (a1) ∪ FV (a2)
FV (a1 − a2) = FV (a1) ∪ FV (a2)

Exercise) Define free variables of boolean expressions.

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 8 / 37



Property of Free Variables

Only the free variables influence the value of an expression.

Lemma

Let s and s′ be two states satisfying that s(x) = s′(x) for all
x ∈ FV (a). Then, A[[a]](s) = A[[a]](s′).

Proof:
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Property of Free Variables

Lemma

Let s and s′ be two states satisfying that s(x) = s′(x) for all
x ∈ FV (b). Then, B[[b]](s) = B[[b]](s′).

Proof:
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Substitution

a[y 7→ a0]: the arithmetic expression that is obtained by replacing
each occurrence of y in a by a0.

n[y 7→ a0] = n

x[y 7→ a0] =

{
a0 if x = y
x if x 6= y

(a1 + a2)[y 7→ a0] = (a1[y 7→ a0]) + (a2[y 7→ a0])
(a1 ? a2)[y 7→ a0] = (a1[y 7→ a0]) ? (a2[y 7→ a0])
(a1 − a2)[y 7→ a0] = (a1[y 7→ a0])− (a2[y 7→ a0])

s[y 7→ v]: the state s except that the value bound to y is v.

(s[y 7→ v])(x) =

{
v if x = y
s(x) if x 6= y
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Property of Substitution

The two concepts of substitutions are related:

Lemma

A[[a[y 7→ a0]]](s) = A[[a]](s[y 7→ A[[a0]](s)]) for all states s.

Proof:
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Operational Semantics

Operational semantics is concerned about how to execute programs and
not merely what the execution results are.

Big-step operational semantics describes how the overall results of
executions are obtained.

Small-step operational semantics describes how the individual steps of
the computations take place.

In both kinds, the semantics is specified by a transition system (S,→)
where S is the set of states (configurations) with two types:

〈S, s〉: a nonterminal state (i.e. the statement S is to be executed
from the state s)

s: a terminal state

The transition relation (→) ⊆ S× S describes how the execution takes
place. The difference between the two approaches are in the definitions of
transition relation.
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Big-step Operational Semantics

The transition relation specifies the relationship between the initial state
and the final state:

〈S, s〉 → s′

Transition relation is defined with inference rules of the form: A rule has
the general form

〈S1, s1〉 → s′1, . . . , 〈Sn, sn〉 → s′n
〈S, s〉 → s′

if · · ·

S1, . . . , Sn are statements that constitute S.

A rule has a number of premises and one conclusion.

A rule may also have a number of conditions that have to be fulfilled
whenever the rule is applied.

Rules without premises are called axioms.
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Big-step Operational Semantics for While

〈x := a, s〉 → s[x 7→ A[[a]](s)]

〈skip, s〉 → s

〈S1, s〉 → s′ 〈S2, s
′〉 → s′′

〈S1;S2, s〉 → s′′

〈S1, s〉 → s′

〈if b S1 S2, s〉 → s′
if B[[b]](s) = true

〈S2, s〉 → s′

〈if b S1 S2, s〉 → s′
if B[[b]](s) = false

〈S, s〉 → s′ 〈while b S, s′〉 → s′′

〈while b S, s〉 → s′′
if B[[b]](s) = true

〈while b S, s〉 → s
if B[[b]](s) = false

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 15 / 37



Example
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Exercise

Let s be a state with s(x) = 3. Find s′ such that

(y:=1; while ¬(x=1) do (y:=y?x; x:=x-1), s)→ s′
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Execution Types

We say the execution of a statement S on a state s

terminates if and only if there is a state s′ such that 〈S, s〉 → s′ and

loops if and only if there is no state s′ such that 〈S, s〉 → s′.

We say a statement S always terminates if its execution on a state s
terminates for all states s, and always loops if its execution on a state s
loops for all states s.
Examples:

while true do skip

while ¬(x=1) do (y:=y?x; x:=x-1)

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 18 / 37



Semantic Equivalence

We say S1 and S2 are semantically equivalent, denoted S1 ≡ S2, if the
following is true for all states s and s′:

〈S1, s〉 → s′ if and only if 〈S2, s〉 → s′

Example:

while b do S ≡ if b then (S; while b do S) else skip
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Semantic Function for Statements

The semantic function for statements is the partial function:

Sb : Stm→ (State ↪→ State)

Sb[[S]](s) =

{
s′ if 〈S, s〉 → s′

undef otherwise

Examples:

Sb[[y:=1; while ¬(x=1) do (y:=y?x; x:=x-1)]](s[x 7→ 3])

Sb[[while true do skip]](s)
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Summary of While

The syntax is defined by the grammar:

a → n | x | a1 + a2 | a1 ? a2 | a1 − a2
b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2
c → x := a | skip | c1; c2 | if b c1 c2 | while b c

The semantics is defined by the functions:

A[[a]] : State→ Z

B[[b]] : State→ T

Sb[[c]] : State ↪→ State
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Implementing Big-Step Interpreter in OCaml
Syntax:

type var = string

type aexp =

| Int of int

| Var of var

| Plus of aexp * aexp

| Mult of aexp * aexp

| Minus of aexp * aexp

type bexp =

| True

| False

| Eq of aexp * aexp

| Le of aexp * aexp

| Neg of bexp

| Conj of bexp * bexp

type cmd =

| Assign of var * aexp

| Skip

| Seq of cmd * cmd

| If of bexp * cmd * cmd

| While of bexp * cmd
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Implementing Big-Step Interpreter

let fact =

Seq (Assign ("y", Int 1),

While (Neg (Eq (Var "x", Int 1)),

Seq (Assign("y", Mult(Var "y", Var "x")),

Assign("x", Minus(Var "x", Int 1)))

)

)

module State = struct

type t = (var * int) list

let empty = []

let rec lookup s x =

match s with

| [] -> raise (Failure (x ^ "is not bound in state"))

| (y,v)::s’ -> if x = y then v else lookup s’ x

let update s x v = (x,v)::s

end

let init_s = update empty "x" 3
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Implementing Big-Step Interpreter

let rec eval_a : aexp -> State.t -> int

=fun a s ->

match a with

| Int n -> n

| Var x -> State.lookup s x

| Plus (a1, a2) -> (eval_a a1 s) + (eval_a a2 s)

| Mult (a1, a2) -> (eval_a a1 s) * (eval_a a2 s)

| Minus (a1, a2) -> (eval_a a1 s) - (eval_a a2 s)

let rec eval_b : bexp -> State.t -> bool

=fun b s ->

match b with

| True -> true

| False -> false

| Eq (a1, a2) -> (eval_a a1 s) = (eval_a a2 s)

| Le (a1, a2) -> (eval_a a1 s) <= (eval_a a2 s)

| Neg b’ -> not (eval_b b’ s)

| Conj (b1, b2) -> (eval_b b1 s) && (eval_b b2 s)
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Implementing Big-Step Interpreter

let rec eval_c : cmd -> State.t -> State.t

=fun c s ->

match c with

| Assign (x, a) -> State.update s x (eval_a a s)

| Skip -> s

| Seq (c1, c2) -> eval_c c2 (eval_c c1 s)

| If (b, c1, c2) -> eval_c (if eval_b b s then c1 else c2) s

| While (b, c) ->

if eval_b b s then eval_c (While (b,c)) (eval_c c s)

else s

let _ =

print_int (State.lookup (eval_c fact init_s) "y");

print_newline ()
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Small-step Operational Semantics

The individual computation steps are described by the transition relation
of the form:

〈S, s〉 ⇒ γ

where γ either is non-terminal state 〈S′, s′〉 or terminal state s′. The
transition expresses the first step of the execution of S from state s.

If γ = 〈S′, s′〉, then the execution of S from s is not completed and
the remaining computation continues with 〈S′, s′〉.
If γ = s′, then the execution of S from s has terminated and the
final state is s′.

We say 〈S, s〉 is stuck if there is no γ such that 〈S, s〉 ⇒ γ (no stuck
state for While).
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Small-step Operational Semantics for While

〈x := a, s〉 ⇒ s[x 7→ A[[a]](s)]

〈skip, s〉 ⇒ s

〈S1, s〉 ⇒ 〈S′1, s′〉
〈S1;S2, s〉 ⇒ 〈S′1;S2, s

′〉

〈S1, s〉 ⇒ s′

〈S1;S2, s〉 ⇒ 〈S2, s
′〉

〈if b S1 S2, s〉 ⇒ 〈S1, s〉
if B[[b]](s) = true

〈if b S1 S2, s〉 ⇒ 〈S2, s〉
if B[[b]](s) = false

〈while b S, s〉 ⇒ 〈if b (S; while b S) skip, s〉
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Derivation Sequence

A derivation sequence of a statement S starting in state s is either

A finite sequence
γ0, γ1, γ2, · · · , γk

which is sometimes written

γ0 ⇒ γ1 ⇒ γ2 ⇒ · · · ⇒ γk

such that

γ0 = 〈S, s〉, γi ⇒ γi+1 for 0 ≤ i ≤ k
and γk is either a terminal configuration or a stuck configuration.
An infinite sequence

γ0, γ1, γ2, · · ·
which is sometimes written

γ0 ⇒ γ1 ⇒ γ2 ⇒ · · ·
consisting of configurations satisfying γ0 = 〈S, s〉 and γi ⇒ γi+1

for 0 ≤ i.
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Example: Factorial

Assume that s(x) = 3.

〈y:=1; while ¬(x=1) do (y:=y?x; x:=x-1), s〉
⇒ 〈while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 1]〉
⇒ 〈if ¬(x=1) then ((y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1))

else skip, s[y 7→ 1]〉
⇒ 〈(y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 1]〉
⇒ 〈x:=x-1;while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 3]〉
⇒ 〈while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 3][x 7→ 2]〉
⇒ 〈if ¬(x=1) then ((y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1))

else skip, s[y 7→ 3][x 7→ 2]〉
⇒ 〈(y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 3][x 7→ 2]〉
⇒ 〈x:=x-1;while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 6][x 7→ 2]〉
⇒ 〈while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 6][x 7→ 1]〉
⇒ s[y 7→ 6][x 7→ 1]
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Other Notations

We write γ0 ⇒i γi to indicate that there are i steps in the execution
from γ0 to γi.

We write γ0 ⇒∗ γi to indicate that there are a finite number of
steps.

We say that the execution of a statement S on a state s terminates if
and only if there is a finite derivation sequence starting with 〈S, s〉.
The execution loops if and only if there is an infinite derivation
sequence starting with 〈S, s〉.
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Semantic Function

The semantic function Ss for small-step semantics:

Ss : Stm→ (State ↪→ State)

Ss[[S]](s) =

{
s′ if 〈S, s〉 ⇒∗ s′
undef
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Implementing Small-Step Interpreter

type conf =

| NonTerminated of cmd * State.t

| Terminated of State.t

let rec next : conf -> conf

=fun conf ->

match conf with

| Terminated _ -> raise (Failure "Must not happen")

| NonTerminated (c, s) ->

match c with

| Assign (x, a) -> Terminated (State.update s x (eval_a a s))

| Skip -> Terminated s

| Seq (c1, c2) -> (

match (next (NonTerminated (c1,s))) with

| NonTerminated (c’, s’) -> NonTerminated (Seq (c’, c2), s’)

| Terminated s’ -> NonTerminated (c2, s’)

)

| If (b, c1, c2) ->

if eval_b b s then NonTerminated (c1, s) else NonTerminated (c2, s)

| While (b, c) -> NonTerminated (If (b, Seq (c, While (b,c)), Skip), s)
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Implementing Small-Step Interpreter

let rec next_trans : conf -> State.t

=fun conf ->

match conf with

| Terminated s -> s

| _ -> next_trans (next conf)

let _ =

print_int (State.lookup (next_trans (NonTerminated (fact,init_s))) "y");

print_newline ()
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Summary of While

We have defined the operational semantics of While.

Big-step operational semantics describes how the overall results of
executions are obtained.

Small-step operational semantics describes how the individual steps of
the computations take place.

The big-step and small-step operational semantics are equivalent:

Theorem

For every statement S of While, we have Sb[[S]] = Ss[[S]].
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Next

We will extend While with blocks and procedures: e.g.,
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Materials

This lecture is based on Chapters 1–3 of the book:

Read those chapters if you are unfamiliar with language semantics.

If you are uncomfortable with OCaml, take my undergraduate course
on programming languages or watch the following video (in Korean):

https://www.youtube.com/watch?v=EDG9diprxQ0
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