
AAA616: Program Analysis

Operational Semantics

Hakjoo Oh
2019 Fall

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 1 / 37

Plan

Big-step operational semantics for While

Small-step operational semantics for While

Implementing Interpreters

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 2 / 37

Syntax vs. Semantics

A programming language is defined with syntax and semantics.

The syntax is concerned with the grammatical structure of programs.
I Context-free grammar

The semantics is concerned with the meaning of grammatically
correct programs.

I Operational semantics: The meaning is specified by the computation
steps executed on a machine. It is of intrest how it is obtained.

I Denotational semantics: The meaning is modelled by mathematical
objects that represent the effect of executing the program. It is of
interest the effect, not how it is obtained.

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 3 / 37

The While Language: Abstract Syntax

n will range over numerals, Num
x will range over variables, Var
a will range over arithmetic expressions, Aexp
b will range over boolean expressions, Bexp
c, S will range over statements, Stm

a → n | x | a1 + a2 | a1 ? a2 | a1 − a2
b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2
c → x := a | skip | c1; c2 | if b c1 c2 | while b c

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 4 / 37

Example

The factorial program:

y:=1; while ¬(x=1) do (y:=y?x; x:=x-1)

The abstract syntax tree:

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 5 / 37

Semantics of Arithmetic Expressions

The meaning of an expression depends on the values bound to the
variables that occur in the expression, e.g., x+ 3.

A state is a function from variables to values:

State = Var→ Z

The meaning of arithmetic expressions is a function:

A : Aexp→ State→ Z

A[[a]] : State→ Z

A[[n]](s) = n

A[[x]](s) = s(x)

A[[a1 + a2]](s) = A[[a1]](s) +A[[a2]](s)

A[[a1 ? a2]](s) = A[[a1]](s)×A[[a2]](s)

A[[a1 − a2]](s) = A[[a1]](s)−A[[a2]](s)

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 6 / 37

Semantics of Boolean Expressions

The meaning of boolean expressions is a function:

B : Bexp→ State→ T

where T = {true, false}.

B[[b]] : State→ T

B[[true]](s) = true

B[[false]](s) = false

B[[a1 = a2]](s) = A[[a1]](s) = A[[a2]](s)

B[[a1 ≤ a2]](s) = A[[a1]](s) ≤ A[[a2]](s)

B[[¬b]](s) = B[[b]](s) = false

B[[b1 ∧ b2]](s) = B[[b1]](s) ∧ B[[b2]](s)

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 7 / 37

Free Variables

The free variables of an arithmetic expression a are defined to be the set
of variables occurring in it:

FV (n) = ∅
FV (x) = {x}

FV (a1 + a2) = FV (a1) ∪ FV (a2)
FV (a1 ? a2) = FV (a1) ∪ FV (a2)
FV (a1 − a2) = FV (a1) ∪ FV (a2)

Exercise) Define free variables of boolean expressions.

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 8 / 37

Property of Free Variables

Only the free variables influence the value of an expression.

Lemma

Let s and s′ be two states satisfying that s(x) = s′(x) for all
x ∈ FV (a). Then, A[[a]](s) = A[[a]](s′).

Proof:

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 9 / 37

Property of Free Variables

Lemma

Let s and s′ be two states satisfying that s(x) = s′(x) for all
x ∈ FV (b). Then, B[[b]](s) = B[[b]](s′).

Proof:

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 10 / 37

Substitution

a[y 7→ a0]: the arithmetic expression that is obtained by replacing
each occurrence of y in a by a0.

n[y 7→ a0] = n

x[y 7→ a0] =

{
a0 if x = y
x if x 6= y

(a1 + a2)[y 7→ a0] = (a1[y 7→ a0]) + (a2[y 7→ a0])
(a1 ? a2)[y 7→ a0] = (a1[y 7→ a0]) ? (a2[y 7→ a0])
(a1 − a2)[y 7→ a0] = (a1[y 7→ a0])− (a2[y 7→ a0])

s[y 7→ v]: the state s except that the value bound to y is v.

(s[y 7→ v])(x) =

{
v if x = y
s(x) if x 6= y

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 11 / 37

Property of Substitution

The two concepts of substitutions are related:

Lemma

A[[a[y 7→ a0]]](s) = A[[a]](s[y 7→ A[[a0]](s)]) for all states s.

Proof:

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 12 / 37

Operational Semantics

Operational semantics is concerned about how to execute programs and
not merely what the execution results are.

Big-step operational semantics describes how the overall results of
executions are obtained.

Small-step operational semantics describes how the individual steps of
the computations take place.

In both kinds, the semantics is specified by a transition system (S,→)
where S is the set of states (configurations) with two types:

〈S, s〉: a nonterminal state (i.e. the statement S is to be executed
from the state s)

s: a terminal state

The transition relation (→) ⊆ S× S describes how the execution takes
place. The difference between the two approaches are in the definitions of
transition relation.

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 13 / 37

Big-step Operational Semantics

The transition relation specifies the relationship between the initial state
and the final state:

〈S, s〉 → s′

Transition relation is defined with inference rules of the form: A rule has
the general form

〈S1, s1〉 → s′1, . . . , 〈Sn, sn〉 → s′n
〈S, s〉 → s′

if · · ·

S1, . . . , Sn are statements that constitute S.

A rule has a number of premises and one conclusion.

A rule may also have a number of conditions that have to be fulfilled
whenever the rule is applied.

Rules without premises are called axioms.

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 14 / 37

Big-step Operational Semantics for While

〈x := a, s〉 → s[x 7→ A[[a]](s)]

〈skip, s〉 → s

〈S1, s〉 → s′ 〈S2, s
′〉 → s′′

〈S1;S2, s〉 → s′′

〈S1, s〉 → s′

〈if b S1 S2, s〉 → s′
if B[[b]](s) = true

〈S2, s〉 → s′

〈if b S1 S2, s〉 → s′
if B[[b]](s) = false

〈S, s〉 → s′ 〈while b S, s′〉 → s′′

〈while b S, s〉 → s′′
if B[[b]](s) = true

〈while b S, s〉 → s
if B[[b]](s) = false

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 15 / 37

Example

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 16 / 37

Exercise

Let s be a state with s(x) = 3. Find s′ such that

(y:=1; while ¬(x=1) do (y:=y?x; x:=x-1), s)→ s′

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 17 / 37

Execution Types

We say the execution of a statement S on a state s

terminates if and only if there is a state s′ such that 〈S, s〉 → s′ and

loops if and only if there is no state s′ such that 〈S, s〉 → s′.

We say a statement S always terminates if its execution on a state s
terminates for all states s, and always loops if its execution on a state s
loops for all states s.
Examples:

while true do skip

while ¬(x=1) do (y:=y?x; x:=x-1)

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 18 / 37

Semantic Equivalence

We say S1 and S2 are semantically equivalent, denoted S1 ≡ S2, if the
following is true for all states s and s′:

〈S1, s〉 → s′ if and only if 〈S2, s〉 → s′

Example:

while b do S ≡ if b then (S; while b do S) else skip

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 19 / 37

Semantic Function for Statements

The semantic function for statements is the partial function:

Sb : Stm→ (State ↪→ State)

Sb[[S]](s) =

{
s′ if 〈S, s〉 → s′

undef otherwise

Examples:

Sb[[y:=1; while ¬(x=1) do (y:=y?x; x:=x-1)]](s[x 7→ 3])

Sb[[while true do skip]](s)

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 20 / 37

Summary of While

The syntax is defined by the grammar:

a → n | x | a1 + a2 | a1 ? a2 | a1 − a2
b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2
c → x := a | skip | c1; c2 | if b c1 c2 | while b c

The semantics is defined by the functions:

A[[a]] : State→ Z

B[[b]] : State→ T

Sb[[c]] : State ↪→ State

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 21 / 37

Implementing Big-Step Interpreter in OCaml
Syntax:

type var = string

type aexp =

| Int of int

| Var of var

| Plus of aexp * aexp

| Mult of aexp * aexp

| Minus of aexp * aexp

type bexp =

| True

| False

| Eq of aexp * aexp

| Le of aexp * aexp

| Neg of bexp

| Conj of bexp * bexp

type cmd =

| Assign of var * aexp

| Skip

| Seq of cmd * cmd

| If of bexp * cmd * cmd

| While of bexp * cmd

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 22 / 37

Implementing Big-Step Interpreter

let fact =

Seq (Assign ("y", Int 1),

While (Neg (Eq (Var "x", Int 1)),

Seq (Assign("y", Mult(Var "y", Var "x")),

Assign("x", Minus(Var "x", Int 1)))

)

)

module State = struct

type t = (var * int) list

let empty = []

let rec lookup s x =

match s with

| [] -> raise (Failure (x ^ "is not bound in state"))

| (y,v)::s’ -> if x = y then v else lookup s’ x

let update s x v = (x,v)::s

end

let init_s = update empty "x" 3

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 23 / 37

Implementing Big-Step Interpreter

let rec eval_a : aexp -> State.t -> int

=fun a s ->

match a with

| Int n -> n

| Var x -> State.lookup s x

| Plus (a1, a2) -> (eval_a a1 s) + (eval_a a2 s)

| Mult (a1, a2) -> (eval_a a1 s) * (eval_a a2 s)

| Minus (a1, a2) -> (eval_a a1 s) - (eval_a a2 s)

let rec eval_b : bexp -> State.t -> bool

=fun b s ->

match b with

| True -> true

| False -> false

| Eq (a1, a2) -> (eval_a a1 s) = (eval_a a2 s)

| Le (a1, a2) -> (eval_a a1 s) <= (eval_a a2 s)

| Neg b’ -> not (eval_b b’ s)

| Conj (b1, b2) -> (eval_b b1 s) && (eval_b b2 s)

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 24 / 37

Implementing Big-Step Interpreter

let rec eval_c : cmd -> State.t -> State.t

=fun c s ->

match c with

| Assign (x, a) -> State.update s x (eval_a a s)

| Skip -> s

| Seq (c1, c2) -> eval_c c2 (eval_c c1 s)

| If (b, c1, c2) -> eval_c (if eval_b b s then c1 else c2) s

| While (b, c) ->

if eval_b b s then eval_c (While (b,c)) (eval_c c s)

else s

let _ =

print_int (State.lookup (eval_c fact init_s) "y");

print_newline ()

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 25 / 37

Small-step Operational Semantics

The individual computation steps are described by the transition relation
of the form:

〈S, s〉 ⇒ γ

where γ either is non-terminal state 〈S′, s′〉 or terminal state s′. The
transition expresses the first step of the execution of S from state s.

If γ = 〈S′, s′〉, then the execution of S from s is not completed and
the remaining computation continues with 〈S′, s′〉.
If γ = s′, then the execution of S from s has terminated and the
final state is s′.

We say 〈S, s〉 is stuck if there is no γ such that 〈S, s〉 ⇒ γ (no stuck
state for While).

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 26 / 37

Small-step Operational Semantics for While

〈x := a, s〉 ⇒ s[x 7→ A[[a]](s)]

〈skip, s〉 ⇒ s

〈S1, s〉 ⇒ 〈S′1, s′〉
〈S1;S2, s〉 ⇒ 〈S′1;S2, s

′〉

〈S1, s〉 ⇒ s′

〈S1;S2, s〉 ⇒ 〈S2, s
′〉

〈if b S1 S2, s〉 ⇒ 〈S1, s〉
if B[[b]](s) = true

〈if b S1 S2, s〉 ⇒ 〈S2, s〉
if B[[b]](s) = false

〈while b S, s〉 ⇒ 〈if b (S; while b S) skip, s〉

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 27 / 37

Derivation Sequence

A derivation sequence of a statement S starting in state s is either

A finite sequence
γ0, γ1, γ2, · · · , γk

which is sometimes written

γ0 ⇒ γ1 ⇒ γ2 ⇒ · · · ⇒ γk

such that

γ0 = 〈S, s〉, γi ⇒ γi+1 for 0 ≤ i ≤ k
and γk is either a terminal configuration or a stuck configuration.
An infinite sequence

γ0, γ1, γ2, · · ·
which is sometimes written

γ0 ⇒ γ1 ⇒ γ2 ⇒ · · ·
consisting of configurations satisfying γ0 = 〈S, s〉 and γi ⇒ γi+1

for 0 ≤ i.
Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 28 / 37

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 29 / 37

Example: Factorial

Assume that s(x) = 3.

〈y:=1; while ¬(x=1) do (y:=y?x; x:=x-1), s〉
⇒ 〈while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 1]〉
⇒ 〈if ¬(x=1) then ((y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1))

else skip, s[y 7→ 1]〉
⇒ 〈(y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 1]〉
⇒ 〈x:=x-1;while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 3]〉
⇒ 〈while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 3][x 7→ 2]〉
⇒ 〈if ¬(x=1) then ((y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1))

else skip, s[y 7→ 3][x 7→ 2]〉
⇒ 〈(y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 3][x 7→ 2]〉
⇒ 〈x:=x-1;while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 6][x 7→ 2]〉
⇒ 〈while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 6][x 7→ 1]〉
⇒ s[y 7→ 6][x 7→ 1]

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 30 / 37

Other Notations

We write γ0 ⇒i γi to indicate that there are i steps in the execution
from γ0 to γi.

We write γ0 ⇒∗ γi to indicate that there are a finite number of
steps.

We say that the execution of a statement S on a state s terminates if
and only if there is a finite derivation sequence starting with 〈S, s〉.
The execution loops if and only if there is an infinite derivation
sequence starting with 〈S, s〉.

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 31 / 37

Semantic Function

The semantic function Ss for small-step semantics:

Ss : Stm→ (State ↪→ State)

Ss[[S]](s) =

{
s′ if 〈S, s〉 ⇒∗ s′
undef

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 32 / 37

Implementing Small-Step Interpreter

type conf =

| NonTerminated of cmd * State.t

| Terminated of State.t

let rec next : conf -> conf

=fun conf ->

match conf with

| Terminated _ -> raise (Failure "Must not happen")

| NonTerminated (c, s) ->

match c with

| Assign (x, a) -> Terminated (State.update s x (eval_a a s))

| Skip -> Terminated s

| Seq (c1, c2) -> (

match (next (NonTerminated (c1,s))) with

| NonTerminated (c’, s’) -> NonTerminated (Seq (c’, c2), s’)

| Terminated s’ -> NonTerminated (c2, s’)

)

| If (b, c1, c2) ->

if eval_b b s then NonTerminated (c1, s) else NonTerminated (c2, s)

| While (b, c) -> NonTerminated (If (b, Seq (c, While (b,c)), Skip), s)

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 33 / 37

Implementing Small-Step Interpreter

let rec next_trans : conf -> State.t

=fun conf ->

match conf with

| Terminated s -> s

| _ -> next_trans (next conf)

let _ =

print_int (State.lookup (next_trans (NonTerminated (fact,init_s))) "y");

print_newline ()

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 34 / 37

Summary of While

We have defined the operational semantics of While.

Big-step operational semantics describes how the overall results of
executions are obtained.

Small-step operational semantics describes how the individual steps of
the computations take place.

The big-step and small-step operational semantics are equivalent:

Theorem

For every statement S of While, we have Sb[[S]] = Ss[[S]].

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 35 / 37

Next

We will extend While with blocks and procedures: e.g.,

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 36 / 37

Materials

This lecture is based on Chapters 1–3 of the book:

Read those chapters if you are unfamiliar with language semantics.

If you are uncomfortable with OCaml, take my undergraduate course
on programming languages or watch the following video (in Korean):

https://www.youtube.com/watch?v=EDG9diprxQ0

Hakjoo Oh AAA616 2019 Fall, Lecture 2 September 9, 2019 37 / 37

https://www.youtube.com/watch?v=EDG9diprxQ0

