Constraint-Based Analysis

CS 6340

{HEADSHOT}

The field of software analysis is highly diverse: there are many different approaches each with their
own strengths and limitations in aspects such as soundness, completeness, scalability, and applicability.

We will learn about a dominant approach to software analysis called constraint-based analysis.

Constraint-based analysis follows a declarative paradigm: it is concerned with expressing “what” the
analysis computes rather than “how” the analysis computes it.

In other words, constraint-based analysis is concerned with the specification of the analysis, rather
than the implementation of the analysis.

The analysis specification takes the form of constraints over program facts, while the analysis
implementation involves solving these constraints using an off-the-shelf constraint solver.

This separation of concerns has many benefits: it simplifies the design and understanding of the
analysis, it allows to rapidly prototype analyses, and it enables to leverage continual performance
improvements in constraint solvers.

We will illustrate these benefits on classical dataflow analysis problems using Datalog, a constraint
programming language.

Motivation

Designing an efficient program analysis is challenging

Program Analysis = Specification +

/ \

“What”
No null pointer is dereferenced Many design choices:
along any path in the program. e forward vs. backward
traversal
e symbolic vs. explicit
representation

Designing an efficient program analysis is a challenging task. It involves dealing with both the
specification of the analysis -- that is, what information the analysis must compute -- and the
implementation of the analysis -- that is, the details of how the analysis should compute that
information efficiently.

For example, in a null-pointer dereference checking analysis, the specification might be, "No null
pointer is dereferenced along any path in the program." As for the implementation, there are several
design choices that affect the efficiency of the analysis, such as whether to use a forward vs. a
backwards traversal of the program, whether to use symbolic vs. explicit representations of the
program's state, and many others.

Motivation

Designing an efficient program analysis is challenging

Program Analysis = Specification +

T~

Nontrivial! .
Consider null pointer “~._Many design choices:
dereference analysis: ~~ forward vs. backward
e No null pointer assignments traversal
(v = null): forward is best e symbolic vs. explicit
e No pointer dereferences representation
(v->next): backward is best * ...

Even the first choice, whether to traverse the program forward or backward, is a nontrivial decision.
Consider for instance a null-pointer dereference checking analysis.

A forward traversal involves starting at locations in the program where pointers are set to null and
checking if they can flow to locations in the program where pointers are dereferenced. A backward
traversal involves doing the opposite, that is, starting at locations in the program where pointers are
dereferenced, and checking if locations where pointers are set to null can reach them.

It is easy to see that, if a program does not set any pointers to null, then forward traversal is more
efficient. On the other hand, if the program does not dereference any pointers, then backward
traversal is more efficient. In practice, programs contain a mix of both null pointer assignments and
pointer dereferences, making it challenging to determine the most efficient traversal strategy.

What Is Constraint-Based Analysis?

Designing an efficient program analysis is challenging

Program Analysis = Specification +

/ \

llwhatll
Defined by the user in the Automated by the
constraint language. constraint

In constraint-based analysis, the analysis designer defines the specification of the program analysis
using what is called a constraint language, and a constraint solver automates the implementation of
the analysis.

Benefits of Constraint-Based Analysis

* Separates analysis specification from implementation

— Analysis writer can focus on “what” rather than “how”

* Yields natural program specifications

— Constraints are usually local, whose conjunctions
capture global properties

* Enables sophisticated analysis implementations

— Leverage powerful, off-the-shelf solvers

This approach to program analysis has several benefits.

Because the analysis specification is separated from the implementation, analysis designers can focus
their efforts on specifying what information the analysis must compute, rather than implementing how
the analysis should compute that information efficiently.

Another benefit of constraint-based analysis is that it yields natural program specifications: just like
types in a type system, constraints are usually defined locally, and solving their conjunction captures
global properties about the program.

Finally, the modularization of the program analysis task into a specification and an implementation
sub-problem allows the specification to be agnostic of the implementation. In other words, we can
"plug-and-play" powerful, off-the-shelf constraint solvers, giving us flexibility that would otherwise not
be available.

QUIZ: Specification & Implementation

Consider a dataflow analysis such as live variables analysis.
If one expresses it as a constraint-based analysis, one must
still decide:

D The order in which statements should be processed.

[] What the gen and kill sets for each kind of statement are.
E] In what language to implement the chaotic iteration algorithm.

D Whether to take intersection or union at merge points.

{QUIZ SLIDE}

To illustrate the difference between the specification and the implementation of a program analysis,
let’s look at the following quiz. Consider a dataflow analysis such as live variables analysis. If this
analysis is expressed as a constraint-based analysis, which of the following must the analysis designer
still decide upon?

- The order in which statements should be processed

- What the gen and kill sets for each kind of statement are

- In what language to implement the chaotic iteration algorithm
- Whether to take intersections or unions at merge points

Check all that apply.

QUIZ: Specification & Implementation

Consider a dataflow analysis such as live variables analysis.
If one expresses it as a constraint-based analysis, one must
still decide:

E] The order in which statements should be processed.

[] What the gen and kill sets for each kind of statement are.
E] In what language to implement the chaotic iteration algorithm.

@ Whether to take intersection or union at merge points.

{SOLUTION SLIDE}

Recall that, when using a constraint-based analysis, the user only needs to decide aspects of the
specification, not the implementation. Therefore, the answers to this quiz are those that are part of
the specification of live variables analysis instead of its implementation. Let’s consider each statement
inturn.

The order in which statements should be processed: this is an implementation aspect, as changing the
order in which statements are processed would not change the outcome of the analysis. Therefore this
is an aspect the constraint solver would determine, so the analysis designer does not need to decide
this.

What the gen and kill sets for each kind of statement are: this is a specification aspect. Choosing
different gen and kill sets would affect the outcome of the analysis. Therefore the analysis designer
needs to decide on this aspect.

In what language to implement the chaotic iteration algorithm: this choice won’t affect the final
outcome of the analysis, so it’s another implementation aspect that the analysis designer is not
responsible for.

Whether to take the intersection or union at merge points: switching between intersection and union
changes the type of analysis that is being done, so this is a specification detail that the analysis
designer needs to decide.

Outline of this Lesson

» A constraint language: Datalog
Two static analyses in Datalog:

* Intra-procedural analysis: computing reaching
definitions

* Inter-procedural analysis: computing points-to
information

Here are the topics we will consider in the remainder of this lesson.
Next, you will learn a language called Datalog that can be used to specify constraint-based analyses.

Once you have learned the basics of Datalog, you will see how to use it to specify two kinds of static
analyses:

First, you will see how to specify an intra-procedural analysis in Datalog, that is, an analysis that is
restricted to a single procedure. In particular, you will see how to specify computing reaching
definitions.

Then, you will see how to define an inter-procedural analysis in Datalog, that is, an analysis of a
program involving multiple procedures. In particular, you will see how to specify computing points-to
information. You will also see the extra complexities inherent in defining these types of analysis.

A Constraint Language: Datalog

* Adeclarative logic programming language

: subset of Prolog, or SQL with recursion

=> Efficient algorithms to evaluate Datalog programs
* Originated as query language for deductive databases

* Later applied in many other domains: software analysis, data
mining, networking, security, knowledge representation,
cloud-computing, ...

* Many implementations: Logicblox, bddbddb, IRIS, Paddle, ...

Datalog is a declarative logic programming language.

It is not a Turing-complete language: it can be viewed as a subset of Prolog, or as SQL with recursion.
Efficient algorithms exist to evaluate programs in these languages, so there exist efficient algorithms to
evaluate Datalog programs.

Datalog originated as a query language for deductive databases. It was later applied in many other
domains, including software analysis, data mining, networking, security, knowledge representation,

and cloud computing among others.

There are many implementations of Datalog. Some of the implementations available include Logicblox,
bddbddb, IRIS, and Paddle.

You can learn more about Datalog using the resources linked in the Instructor Notes.

[http://www.utdallas.edu/~gupta/courses/acl/papers/datalog-paper.pdf and online book at
webdam.inria.fr/Alice/]

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N)

Output Relations:
path(n:N, m:N)

Rules:
path(x, x).
path(x, z) :- path(x, y), edge(y, z).

We will now present the syntax of Datalog by means of an example program that computes
reachability in a directed graph.

The problem of graph reachability is to determine all pairs of nodes in a graph that are connected by a
path.

To express this problem as a program in Datalog, we need to define three things:
- the form of the input to the Datalog program,

- the form of the output of the Datalog program, and
- the rules of inference comprising the Datalog program that compute the output from the input.

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N) — | . . .
~__ Arelation is similar to a tablein a

database. A tuplein a relation is
similar to a row in a table.

Output Relations:
path(n:N, m:N)

Rules:
path(x, x).
path(x, z) :- path(x, y), edge(y, z).

A Datalog program’s inputs and outputs are defined in terms of relations, which are declarative
statements that some number of objects are related in some way.

A relation is similar to a table in a relational database, and a tuple in a relation is similar to a row in the
table: it asserts that the relation holds among some number of objects.

11

Syntax of Datalog: Example

Input Relations:

edge(n:N, m:N) edge

0 n m
Output Relations: "1? Y A 0 1
path(n:N, m:N) ‘ s

¥ 0 2

3 ’\4/

- - 2 3
Rules:
path(x, x). 2 4

path(x, z) :- path(x, y), edge(y, z).

For the graph-reachability problem, the input is a single binary relation called edge(n:N, m:N), where n
and m are variables of type Node, denoted by N, the set of all nodes. This relation encodes the edges
in the input graph. For example, for the graph shown here, the edge relation contains tuples (0,1) and
(2,3), but not tuples (3,4), (0,3), or (2,0).

The four tuples (0,1), (0,2), (2,3), and (2,4) are sufficient to establish the entire structure of the graph.
The output of this Datalog program is a single binary relation called path(n:N, m:N), which is true iff

there is a directed path in the graph from n to m. So, for the graph shown, the path relation should
contain tuples (0,4) and (0,3), but not tuples (3,0) or (1,4).

12

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N)

Deductive rules that hold universally
(i.e., variables like x, y, z can be
/ replaced by any constant). Specify
/. “if ... then ... ” logic.

Output Relations:
path(n:N, m:N)

Rules:
path(x, x). e
path(x, z) :- path(x, y), edge(y, z).

In order for the Datalog program to compute the output relations from the input relations, we must
provide rules of inference. These are deductive rules that hold universally. They specify logical “if-
then” statements.

13

Syntax of Datalog: Example

Input Relations:
edge(n:N, m:N))
(If TRUE,) there is a path
from each node to itself.
Output Relations:

path(n:N, m:N) If there is path from node x to y,
and there is an edge from y to z,

then there is path from x to z.

Rules: G ‘ |

path(x, x). =
path(x, z) :- path(x, y), edge(y, z).

The rules of inference that we will define for this problem are (in English):
First: There is always a path from each node x to itself, which in Datalog syntax takes the form
path(x, x).

Second: If there is a path from node x to node z and an edge from node z to node y, then there is a
path from node x to node y. In Datalog syntax, this rule takes the form

path(x, z) :- path(x, y), edge(y, z).

The rules of inference are written in the opposite order that they are typically written in: the
hypothesis of an implication is written on the right-hand side, and the conclusion is written on the left-
hand side. Relations separated by a comma are ANDed together. The first inference rule, because it
has no hypotheses, acts as an axiomatic statement. Finally, a period is used to end each inference rule.

14

Semantics of Datalog: Example

Input Relations:

edge(n:N, m:N) path = { (x, x) | x e N }
do
Output Relations: path :=path v { (x, 2) | 3y e N:
path(n:N, m:N) (x, y) € path and (y, z) € edge }
until path relation stops changing
Rules:
path(x, x).

path(x, z) :- path(x, y), edge(y, z).

Now that you’re familiar with the syntax of Datalog programs, | will illustrate the semantics of Datalog
programs, using the graph-reachability example. Conceptually, we start out with the empty path
relation, and apply each of these two rules, growing the path relation with each application. We stop
when the path relation stops growing.

A slight variant of this algorithm is depicted here [point to box]. It starts out by applying the first rule,
which involves adding to the path relation each tuple (x, x) for each node x in the graph, capturing the
intent of this rule that there exists a path from each node to itself. It then repeatedly applies the
second rule, which involves adding to the path relation each tuple (x, z) whenever there exists a node y
such that tuple (x, y) exists in the current path relation and tuple (y, z) exists in the input edge relation.
This captures the intent of the second rule, that there exists a path from node x to node z if there exists
a path from node x to some node y, and there exists an edge from that node y to node z.

This naive algorithm is essentially the chaotic iteration algorithm used for dataflow analyses and
pointer analysis. In practice, Datalog solvers have much more efficient algorithms for computing the
output relations from the input relations and inference rules. The key is that if there are multiple rules,
the order in which the rules are applied does not matter.

Additionally, the result of the algorithm, like that of chaotic iteration, is the least solution: the smallest
path relation that satisfies all the rules. The least solution typically corresponds to what the user wants
to compute in many problems. An example of a non-least solution to this problem would be that
path(x,y) holds for all nodes x and y. While this relation doesn’t violate any rules, it contains many
nonsensical paths that would not be desired by a user.

15

Semantics of Datalog: Example

Input Relations:
edge(n:N, m:N)

Output Relations:
path(n:N, m:N)

Rules:
path(x, x).

Input Tuples:
edge(0, 1), edge(©,
edge(2, 4)

Output Tuples:

path(e, @), path(1,
path(3, 3), path(4,
path(e, 2), path(2,
path(e, 3), path(e,

2), edge(2, 3),

1), path(2, 2),
4), path(e, 1),
3), path(2, 4),
4)

path(x, z) :- path(x, y), edge(y, z).

Let’s look at a run of this Datalog program on an example input.

Suppose the input is the following directed graph, encoded by the following edge relation, which

contains four tuples: (0,1), (0,2), (2,3) and (2,4).

The output of this Datalog program on this input is as follows:

16

Semantics of Datalog: Example

Input Relations:
edge(n:N, m:N)

Output Relations:
path(n:N, m:N)

Rules:
path(x, x).

@
o0
OJRO

Input Tuples:
edge(0, 1), edge(©,
edge(2, 4)

Output Tuples:

path(e, @), path(1,
path(3, 3), path(4,
path(e, 2), path(2,
path(e, 3), path(e,

2), edge(2,

1), path(2,
4), path(e,
3), path(2,
4)

3),

2),
1),
4),

path(x, z) :- path(x, y), edge(y, z).

Applying the first rule, path(x,x), produces all paths of length 0, represented by the following tuples in

the path relation:(0,0), (1,1), (2,2), (3,3), and (4,4).

17

Semantics of Datalog: Example

Input Relations: Input Tuples:

edge(n:N, m:N) edge(0, 1), edge(®, 2), edge(2, 3),
(o) edge(2, 4)

Output Relations: 1(xl/ Output Tuples:

path(3, 3), path(4, 4), path(e, 1),
path(e, 2), path(2, 3), path(2, 4),
Rules: path(e, 3), path(e, 4)

path(x, x).
path(x, z) :- path(x, y), edge(y, z).

() (2
path(n:N, m:N) ’}& path(e, @), path(1, 1), path(2, 2),

Applying the second rule at this time yields all paths of length 1, represented by the following tuples in
the path relation: (0,1), (0,2), (2,3), and (2,4).

Semantics of Datalog: Example

Input Relations: Input Tuples:
edge(n:N, m:N) edge(0, 1), edge(®, 2), edge(2, 3),
edge(2, 4)

Output Relations: 1'/>\‘x Output Tuples:

path(n:N, m:N) '/\\< path(e, @), path(1, 1), path(2, 2),
X - |path(3, 3), path(4, 4), path(e, 1),
(3 (4 |path(e, 2), path(2, 3), path(2, 4),

Rules: path(e, 3), path(e, 4)

path(x, x).

path(x, z) :- path(x, y), edge(y, z).

>
3/

Applying the second rule again yields all paths of length two: (0,3) and (0,4).

Because the path relation doesn’t change after applying either of these rules again, the algorithm
terminates, yielding the least solution seen here.

QUIZ: Computation Using Datalog

Check each of the below Datalog programs that computes
in relation scc exactly those pairs of nodes (n1, n2) such
that n2 is reachable from n1 AND n1 is reachable from n2.

[:] scc(nl, n2) :- edge(nl, n2), edge(n2, nl).
[:] scc(nl, n2) :- path(nl, n2), path(n2, nl).

[:] scc(nl, n2) :- path(nl, n3), path(n3, n2),
path(n2, n4), path(n4, nl).

[:] scc(nl, n2) :- path(nl, n3), path(n2, n3).

{QUIZ SLIDE}

Let’s work on expressing another computation in Datalog in the form of a quiz. Suppose we want to
compute the relation scc (standing for strongly connected component) on a directed graph from the
input relations edge and path (as we defined them earlier), and suppose we want our Datalog program
to output scc(nl, n2) if and only if n2 is reachable from n1 and n1 is reachable from n2.

Select each of the inference rules below that will compute the correct output:

scc(nl, n2) :- edge(nl, n2), edge(n2, nl).
scc(nl, n2) :- path(n1, n2), path(n2, nl1).
scc(nl, n2) :- path(n1, n3), path(n3, n2), path(n2, n4), path(n4, n1).
scc(nl, n2) :- path(n1, n3), path(n2, n3).

20

QUIZ: Computation Using Datalog

Check each of the below Datalog programs that computes
in relation scc exactly those pairs of nodes (n1, n2) such
that n2 is reachable from n1 AND n1 is reachable from n2.

D scc(nl, n2) :- edge(nl, n2), edge(n2, nl).

scc(nl, n2) :- path(nl, n2), path(n2, nl).

m scc(nl, n2) :- path(nl, n3), path(n3, n2),
path(n2, n4), path(n4, nl).

scc(nl, n2) :- path(nl, n3), path(n2, n3).

{SOLUTION SLIDE}

Two of these inference rules---the second and third---correctly compute the relation scc. The second
rule is minimal in its expression of the scc relation, but the third rule still computes the same relation.
To see this, recall that path(x,x) holds for all nodes x; therefore, by taking n3 equal to n1 and n4 equal
to n2, the hypothesis is true if and only if path(n1,n2) and path(n2,n1) are true.

While the first rule will not produce any incorrect tuples in relation scc, it will fail to produce scc(n1,n2)
for any two nodes that are reachable from each other but which are not adjacent to each other.

Finally, the last rule could potentially produce incorrect tuples: the fact that there exists some node n3
such that there is a path from n1 to n3 and a path from n2 to n3 is neither a necessary nor a sufficient
condition for nodes n1 and n2 to belong to a strongly connected component.

21

Outline of this Lesson

A constraint language: Datalog
Two static analyses in Datalog:

» * Intra-procedural analysis: computing reaching
definitions

* Inter-procedural analysis: computing points-to
information

Now that we have seen the syntax and semantics of Datalog programs, we will consider how to use
Datalog to specify an intra-procedural dataflow analysis; specifically, reaching definitions analysis.

22

Dataflow Analysis in Datalog

* Recall the specification of reaching definitions analysis:

OUT[n] = (IN[n] - KILL[n]) u GEN[n]

IN[n] =y OUT[n’]

predecessors(n)

The specification of reaching definitions analysis is as follows:

OUT[n] = (IN[n] - KILL[n]) U GEN[n]
IN[n] =U n' € predecessors[n] OUT[n']

where KILL[n] is the set of definitions killed at program point n, GEN[n] is the set of definitions
generated at program point n, and predecessors(n) is the set of program points that immediately
precede program point n in the input procedure’s control-flow graph.

23

Reaching Definitions Analysis in Datalog

) J Definition d is killed by
Input Relations:
kill(n:N, d:D) —— statement n.

OUT[n] = (IN[n] - KILL[n]) u GEN[n]
Output Relations:
IN[n] =y OUT[n’]

redecessors(n
Rules: P (n)

Let us describe the form of the input and output relations as well as the inference rules that would be
used to specify reaching definitions analysis in Datalog.

24

Reaching Definitions Analysis in Datalog

. Definition d is generated
Input Relations:)
Kill(n:N, d:D) by statement n.
gen (n:N, d:D) —

OUT[n] = (IN[n] - KILL[n]) u GEN[n]
Output Relations:
IN[n] =y OUT[n’]

redecessors(n
Rules: P (n)

The input relations for the analysis should capture all the information from the input procedure’s
control-flow graph that is relevant to computing the IN and OUT sets for each program point. While we
haven't yet formally defined the inference rules for the analysis, by looking at the specification we see
that in order to compute OUT[n], we need to know KILL[n] and GEN[n], and in order to compute IN[n],
we need to know predecessors(n). Therefore, the input relations should give Datalog's constraint
solver knowledge of the contents of the KILL, GEN, and predecessors sets. Moreover, all three of these
relations can be computed from the control-flow graph of the procedure to be analyzed.

Let us define the relation kill(n:N, d:D) to mean that the definition d is in the KILL set of program point
n..

25

Reaching Definitions Analysis in Datalog

Statement m is an immediate

Input Relations: successor of statement n.
kill(n:N, d:D) —
gen (n:N, d:D)
next(n:N, m:N) — OUT[n] = (IN[n] - KILL[n]) u GEN[n]
Output Relations:
IN[n] =y OUT[n’]
n’ e

redecessors(n
Rules: P (n)

the relation gen(n:N, d:D) to mean that the definition d is in the GEN set of program pointn ...

26

Reaching Definitions Analysis in Datalog

Input Relations:
kill(n:N, d:D)
gen (n:N, d:D)
next(n:N, m:N) OUT[n] = (IN[n] - KILL[n]) u GEN[n]
Output Relations:
IN[n] =y OUT[n’]
n e

redecessors(n
Rules: P (n)

and the relation next(n:N, m:N) to mean that program point m is an immediate successor of program
point n, or equivalently, that program point n is an immediate predecessor of program point m.

(In these relations, N denotes the set of all program points and D denotes the set of all definitions in
the given control-flow graph.)

27

Reaching Definitions Analysis in Datalog

Input Relations:
kill(n:N, d:D)
gen (n:N, d:D)

next(n:N, m:N) OUT[n] = (IN[n] - KILL[n]) u GEN[n]
Output Relations: ,
in (n:N, d:D) _ |N[n] = U OUT[n]
X ne
Rules: - _prnradecessors(n)

Definition d may reach the
program point just before
statement n.

In reaching definitions analysis, we want to compute the IN and OUT sets for each program point. So
let us say that in(n:P, d:D) is the relation that asserts that the definition d is a member of the IN set of
program point n---that is, definition d may reach the program point just before n ...

Reaching Definitions Analysis in Datalog

Input Relations:
kill(n:N, d:D)
gen (n:N, d:D)

next(n:N, m:N) OUT[n] = (IN[n] - KILL[n]) u GEN[n]
Output Relations:)

in (n:N, d:D) IN[n] = U OuUT[n’]

out(n:N, d:D) - ne

redecessors(n
Rules: P ()

Definition d may reach the

program point just after
statement n.

... and let us define out(n:P, d:D) to mean that definition d is a member of the OUT set of program point
n---that is, definition d may reach the program point just after n.

Reaching Definitions Analysis in Datalog

Input Relations:
kill(n:N, d:D)
gen (n:N, d:D)
next(n:N, m:N) OUT[n] = (IN[n] - KILL[n]) u GEN[n]

Output Relations: ,
in (n:N, d:D) IN[n] = U OUT[n’]
out(n:N, d:D) 0 e
Rules: predecessors(n)
out(n, d) :- gen(n, d).
out(n, d) :- in(n, d), !'kill(n, d).

Lastly, we specify three rules of inference to compute the IN and OUT sets. These will be based on the
formulas for OUT[n] and IN[n] shown here

out(n, d) :- gen(n, d).
out(n, d) :-in(n, d), Ikill(n, d).
in(m, d) :- out(n, d), next(n, m).

The first two rules map to the first rule in the specification, which is OUT[n] = (IN[n] - KILL[n]) U
GEN[n]. We use two separate rules to reflect the union of (IN[n] - KILL[n]) with GEN[n], and we use the
'I' character to mean the relation kill(n,d) does not hold. This represents the fact that IN[n] - KILL[n] is
the intersection of IN[n] with the complement of KILL[n].

Reaching Definitions Analysis in Datalog

Input Relations:
kill(n:N, d:D)
gen (n:N, d:D)

next(n:N, m:N) OUT[n] = (IN[n] - KILL[n]) u GEN[n]
Output Relations: ,
in (n:N, d:D) IN[n] = U OUT[n’]
out(n:N, d:D) W e
predecessors(n)

Rules:

out(n, d) :- gen(n, d).
out(n, d) :- in(n, d), 'kill(n, d).
in (m, d) :- out(n, d), next(n, m).

Finally, the third rule maps to the second rule in the specification, which is IN[n] = U n' &€
predecessors[n] OUT[n']. Because this expression is a union, we only need a single inference rule to
ensure all definitions are correctly added to the appropriate IN set. For each predecessor n of program
point m, each definition d in the OUT set of that predecessor n will satisfy the hypothesis of this third
inference rule.

31

Reaching Definitions Analysis: Example

Input Relations:
kill(n:N, d:D)
gen (n:N, d:D)
next(n:N, m:N)

Output Relations:
in (n:N, d:D)
out(n:N, d:D)

Rules:

out(n, d) :- gen(n, d).

out(n, d) :- in(n, d), 'kill(n, d).
in (m, d) :- out(n, d), next(n, m).

Let's look at an example run of our reaching definitions analysis specified in Datalog. Consider this
control-flow graph:

Program point 1 is the entry point to the procedure. It has a single transition to program point 2, which
contains the statement x = 8. Program point 2 has a single transition to program point 3, which is a test
of the boolean expression (x != 1). If this expression is true, control flows to program point 4, which
contains the definition x = x - 1 and then transitions to program point 3 again. If the boolean expression
at program point 3 is false, control flows to program point 5, which is the exit point of the procedure.

32

Reaching Definitions Analysis: Example

Input Relations: 1: Input Tuples:
kill(n:N, d:D) kill(4, 2),
gen (n:N, d:D) 2:[x=8 gen (2, 2), gen (4, 4),

next(1, 2), next(2, 3),
next(3, 4), next(3, 5),
next(4, 3)

next(n:N, m:N)

Output Relations:
in (n:N, d:D)
out(n:N, d:D)

Rules:

out(n, d) :- gen(n, d).

out(n, d) :- in(n, d), 'kill(n, d).
in (m, d) :- out(n, d), next(n, m).

Recall that the inputs to reaching definitions analysis are the relations kill(n, d), gen(n, d), and next(n,
m). Because each definition is associated with a program point, we will label the definitions by the
number of the program point they appear at (so the definition x = 8 will be denoted by letting d equal
2 in the relations, and the definition x = x - 1 will be denoted by letting d equal 4).

There are only two tuples in the gen relation of this control-flow graph: (2, 2) and (4, 4), as no other
program points establish any variable definitions.

The next relation can be computed from the directed edges in the control-flow graph. Each edge
corresponds to a tuple in this relation. This relation thus contains the following tuples:(1, 2), (2, 3), (3,
4), (3, 5), and (4, 3).

The kill relation is a bit more difficult to compute. A definition d is in the KILL set of a program point n if
there is a definition other than d generated at n and there is a directed path from the point where d is
generated to n. Using the graph-reachability analysis we described earlier (for example), we can
compute that the only such tuple that is applicable for this procedure is (4, 2), capturing the fact that
the definition associated with program point 2 is killed at program point 4.

33

Reaching Definitions Analysis: Example

Input Relations:
kill(n:N, d:D)
gen (n:N, d:D)
next(n:N, m:N)

Input Tuples:

kill(a, 2),

gen (2, 2), gen (4, 4),
next(1, 2), next(2, 3),
next(3, 4), next(3, 5),

Output Relations: next(4, 3)

in (n:N, d:D)

out(n:N, d:D) Output Tuples:

in (3, 2), in (3, 4), in (4, 2),

Rules: in (4, 4), in (5, 2), in (5, 4),
out(n, d) :- gen(n, d). out(2, 2), out(3, 2), out(3, 4),
out(n, d) :- in(n, d), !'kill(n, d). |out(4, 2), out(4, 4), out(5, 2),

in (m, d) :- out(n, d), next(n, m). |out(5, 4)

Given these input relations and the inference rules described previously, the output relations produced
are as follows.

The in relation contains the following tuples: (3, 2), (3, 4), (4, 2), (4, 4), (5, 2), and (5, 4).
The out relation contains the following tuples: (2, 2), (3, 2), (3, 4), (4, 2), (4, 4), (5, 2), and (5, 4).

You can verify the contents of these relations for yourself by using, for example, the chaotic iteration
algorithm.

34

QUIZ: Live Variables Analysis

Complete the Datalog program below by filling in the
rules for live variables analysis.

Input Relations: Output Relations:
kill(n:N, v:V) in (n:N, v:V)
gen (n:N, v:V) out(n:N, v:V)
next(n:N, m:N)
Rules:
| - | o
| - | ;

{QUIZ SLIDE}

To practice specifying a program analysis in Datalog yourself, in the following quiz define the inference
rules needed to compute a live variables analysis.

35

QUIZ: Live Variables Analysis

Complete the Datalog program below by filling in the
rules for live variables analysis.

Input Relations: Output Relations:
kill(n:N, v:V) in (n:N, v:V)

gen (n:N, v:V) out(n:N, v:V)
next(n:N, m:N)

Rules:

’ in(n, v) |:- ‘gen(n, v) .

’ in(n, v) |:- ‘out(n, v) |, !| kill(n, v) | .
‘out(n, V) :—‘ in(m, v) |, next(n, m)

{SOLUTION SLIDE}

The three rules used for live variables analysis are very similar to those for reaching definitions
analysis. In fact, the only change needed is that the IN and OUT sets have swapped places. The three
rules needed are:

in(n,v) :- gen(n,v).
in(n,v) :- out(n,v), !kill(n,v).
out(n,v) :- in(m,v), next(n,m).

The order of the two hypotheses in your third rule may have varied but it should be equivalent to this
rule.

Outline of this Lesson

A constraint language: Datalog
Two static analyses in Datalog:

* Intra-procedural analysis: computing reaching
definitions

» * Inter-procedural analysis: computing points-to
information

We will wrap up the lesson with a discussion of how to specify an inter-procedural analysis in Datalog
using a pointer analysis as an example.

An inter-procedural analysis is an analysis that spans multiple procedures in a program.

37

Pointer Analysis in Datalog

Consider a flow-insensitive may-alias analysis for a
simple language:

(function body) f(v) { s1, .., sn }

[}
c

(statement) s ::= v=newh | v
| returnu | v

f(u)
(pointer variable) u, v
(allocationsite) h

(function name) f

Let's now consider a flow-insensitive may-alias analysis on programs in the following language.

A program in this language consists of functions that have a single argument variable and whose body
is a set of simple statements s1, through sn. For convenience of presentation, we presume that the
flow-insensitivity approximation has already been applied to the body of the function, enabling us to
view it as a set of statements rather than a control-flow graph.

Each statement is either an object allocation statement, a copy assighment, a return statement, or a
call to a function f with actual argument u whose return result is assigned to v.

Since we are dealing with a pointer analysis, we are only concerned with pointer typed variables, and
we presume that each object allocation site is associated with a unique label.

For simplicity, we do not allow field-reads or field-writes in this language.

38

Pointer Analysis in Datalog: Intra-procedural

Consider a flow-insensitive may-alias analysis for a
simple language:
(function body) f(v) { s1, .., sn }

(statement) s ::= v=newh | v=u
| return u | v = f(u)

(pointer variable) u, v
(allocationsite) h

(function name) f

Let’s first look at the intra-procedural aspects of the pointer analysis for our language. For this part of
the analysis, we can ignore the function call and return statements, though we'll come back to them
when we consider the inter-procedural aspects of the analysis.

39

Pointer Analysis in Datalog: Intra-procedural

Recall the specification:

Before: v —»{ h2

[v = new h ‘ vV=u

h2 v h
After: v < K
—

h u h2

Let’s recall the specification of the pointer analysis rules associated with the object allocation and copy

assignment statements as depicted in this diagram.

Before analyzing an object allocation statement ‘v = new h’, if the variable v points to an allocation site
labeled h2, then after analyzing this statement, v may point to both allocation sites h and h2.

Likewise, before analyzing a copy assignment statement 'v = u’, if the variable v points to an allocation
site labeled h and variable u points to an allocation site labeled h2, then after analyzing this statement,

v may point to both h and h2.

Note that in both cases, we accumulate points-to facts of variables rather than overwriting them, as
this particular pointer analysis performs weak updates rather than strong updates, given its flow-

insensitive nature.

40

Pointer Analysis in Datalog: Intra-procedural

Before: v —»{ h2

‘v:newh‘

h2
After: v <

h

Input Relations:
new (v:V, h:H)
assign(v:V, u:V)

Output Relations:

Rules:

The input relations to the pointer analysis correspond to object allocation and copy assignment

statements.

The first one is new(v:V, h:H), meaning that the object allocation statement v = new h appears in the
program being analyzed, and the second is assign(v:V, u:V), meaning that the copy assignment
statement v = u appears in the program.

(The letter V denotes the set of all pointer-typed variables and the letter H denotes the set of labels of

all object allocation statements.)

41

Pointer Analysis in Datalog: Intra-procedural

v > h Input Relations:
Before: : new (v:V, h:H)
u —> h2 assign(v:V, u:V)

‘ v = new h ‘ ‘ vV =u ‘ Output Relations:
points(v:V, h:H)

h2 v h .
After: ‘ v < — i — Rules:
—

The output relation generated by the pointer analysis is of the form points(v:V, h:H), meaning that the
variable v may point to an object allocated at the site labeled h.

42

Pointer Analysis in Datalog: Intra-procedural

v > h Input Relations:
Before: v F’ h2 - new (v:V, h:H)
—» h2 : . .
o assign(v:V, u:V)
‘ vV = new h ‘ v=u Output Relations:
points(v:V, h:H)
h2 v h .
- Rules:
After: ‘ hd < i - points(v, h) :- new(v, h)
h u — h2 S T

Finally, the inference rules used to compute the points-to information are defined to reflect the
diagrams depicting the specification of the pointer analysis.

The rule for object allocation statements is:

points(v, h) :- new(v, h).

Pointer Analysis in Datalog: Intra-procedural

) v > h Input Relations:
Before: v F’ h2 — new (v:V, h:H)
u > h2 assign(v:V, u:V)
‘ v = new h ‘ vV =u ‘ Output Relations:

points(v:V, h:H)

h2 v h .
. ’7 - W Rules:
After: v < i points(v, h) :- new(v, h).
h —>_h2 points(v, h) :- assign(v, u),
points(u, h).

and the rule for copy assignment statements is:

points(v, h) :- assign(v, u), points(u, h).

Pointer Analysis in Datalog: Inter-procedural

Consider a flow-insensitive may-alias analysis for a
simple language:

(function body) f(v) { s1, .., sn }

(statement) s ::= v=newh | v

]
<

| returnu | v

f(u)

(pointer variable) u, v
(allocationsite) h

(function name) f

Now let us remove the restriction on function call and return statements, which will allow us to
conduct inter-procedural pointer analysis.

45

Pointer Analysis in Datalog: Inter-procedural

X new hl;

y = F(x)5 —~—_|

\ ?
f(v) {
u=v; |~ .
return u;

A

}

Suppose we have the following program to analyze. The program has two statements: an object

allocation statement x = new h1 and a function call statement y = f(x).
argument v and has two statements in its body: u = v and return u.

Function f takes a single

46

Pointer Analysis in Datalog: Inter-procedural

Input Relations:
new (v:V, h:H)
assign(v:V, u:V)

X

n

new hl;

y = f(x); \\ Parameter passing Output Relations:
) (and return can be points(v:v, h:H)
u=v; treated as
return u; assignments! Rules:
} points(v, h) :- new(v, h).

points(v, h) :- assign(v, u),
points(u, h).

To analyze the program, we need to introduce rules for handling function calls and returns.

So far, we know how to address the object allocation and copy assignment statements via the input
relations new(v, h) and assign(v, u).

But how do we handle function calls and returns?

The trick is to treat parameter passing and return statements as copy assignments.

47

Pointer Analysis in Datalog: Inter-procedural

Input Relations:

new(v:V, h:H)
X = new hi; assign(v:V, u:V)
y = f(x); \\’: - ": Output Relations:
£ | y=u points(v:V, h:H)
u=v;
return u; Rules:
} points(v, h) :- new(v, h).
points(v, h) :- assign(v, u), points(u, h).

More concretely, the line y = f(x) can be effectively replaced by three lines:

X;
v
u;

< c <
"

where the first line assigns the value of the passed argument x to the variable v, the second line is the
body of the function f, which in this case is just the statement u = v, and the third line assigns the value
of variable u that would be returned to variable y receiving the output of the function call f(x).

48

Pointer Analysis in Datalog: Inter-procedural

Input Relations:
new(v:V, h:H) arg(f:F, v:V) ret(f:F, u:V)
X = new hi; assign(v:V, u:V) call(y:v, f:F, x:V)

y = f(x); \\’Z z : Output Relations:
f) 1 y=u points(v:V, h:H)
u=v;
return u; Rules:
} points(v, h) :- new(v, h).

points(v, h) :- assign(v, u), points(u, h).

To implement the inter-procedural version of the pointer analysis, we need to add input relations
capturing function calls, function definitions, and return statements:

arg(f:F, v:V)

ret(f:F, u:V)

call(y:V, f:F, x:V)

where the letter F denotes the set of all functions in the program being analyzed.
arg(f:F, v:V) means that the function f is defined with v as its argument variable.

ret(f:F, u:V) means that the function f returns the value of the variable u.

And call(y:V, f:F, x:V) means that the function f is called with argument variable x and that its output is
assigned to the variable y.

49

Pointer Analysis in Datalog: Inter-procedural

Input Relations:
new(v:V, h:H) arg(f:F, v:V) ret(f:F, u:V)

c_frlfl,(y’f’x)‘ assign(v:V, u:V) call(y:v, f:F, x:V)

X = new h1;77|::

y = ‘C(")j,,, arg(f,v) Output Relations:
— oints(v:V, h:H
f) € p ()
u=v;
return u; Rules:

points(v, h) :- new(v, h).

;eé(f,u) ‘ points(v, h) :- assign(v, u), points(u, h).

So, for our example program, we would include the following tuples: tuple (f,v) in the arg relation,
tuple (f,u) in the ret relation, and tuple (y,f,x) in the call relation.

50

Pointer Analysis in Datalog: Inter-procedural

Input Relations:

new(v:V, h:H) arg(f:F, v:V) ret(f:F, u:V)
X = new hi; assign(v:V, u:V) call(y:v, f:F, x:V)
y = f(x); \\"J - ": Output Relations:
£ | -y | points(v:V, h:H)
u=v;
return u; Rules:
} points(v, h) :- new(v, h).
points(v, h) :- assign(v, u), points(u, h).

points(v, h) :- call(_, f, x), arg(f, v),
poisits(x, h).

Wildcard,

“don’t care”

Finally, we add new rules of inference to compute points-to information from these relations. The first
rule is

points(v, h) :- call(_, f, x), arg(f, v), points(x, h).

to reflect the fact that the variable v in the definition of f may point to the same allocation site as the
variable x passed into f at the call.

The underscore character refers to a "wildcard": it doesn't matter what variable is present in that slot,
as the output is unaffected by it.

Pointer Analysis in Datalog: Inter-procedural

Input Relations:

new(v:V, h:H) arg(f:F, v:V) ret(f:F, u:V)
X = new hi; assign(v:V, u:V) call(y:v, f:F, x:V)
y = f(x); \\"J z : Output Relations:
£ | - u | points(v:V, h:H)
u=v;
return u; Rules:
} points(v, h) :- new(v, h).
points(v, h) :- assign(v, u), points(u, h).

points(v, h) :- call(_, f, x), arg(f, v),
points(x, h).

points(y, h) :- call(y, f, _), ret(f, u),
points(u, h).

And the second new inference rule is
points(y, h) :- call(y, f,), ret(f, u), points(u, h).

to reflect that if variable y receives the output of a call to f, and f returns the variable u, then y may
point to the same allocation site as u.

QUIZ: Querying Pointer Analysis in Datalog

Check each of the below Datalog programs that computes in
relation mustNotAlias each pair of variables (u, v) such that u
and v do not alias in any run of the program.

[i] mustNotAlias(u, v) :- points(u, hl), points(v, h2), hl != h2.
mayAlias(u, v) :- points(u, h), points(v, h).
mustNotAlias(u, v) :- !mayAlias(u, v).
mustNotAlias(u, v) :- !mayAlias(u, v).
common(u, v, h) :- points(u, h), points(v, h).

mayAlias(u, v) :- common(u, v, _).
mustNotAlias(u, v) :- ImayAlias(u, v).

[:] mayAlias(u, v) :- points(u, _), points(v, _).

{QUIZ SLIDE}

Suppose you want to compute the relation mustNotAlias for a program in our toy language, where
mustNotAlias(u,v) holds if and only if u and v do not alias in any run of the program.

Select each of the Datalog programs below that will compute the correct output.

The first program consists of a single rule:
mustNotAlias(u, v) :- points(u, h1), points(v, h2), h1 != h2.

The second program consists of two rules:
mayAlias(u, v) :- points(u, h), points(v, h).
mustNotAlias(u, v) :- ImayAlias(u, v).

The third program consists of two rules:
mayAlias(u, v) :- points(u, _), points(v, _).
mustNotAlias(u, v) :- ImayAlias(u, v).

And the fourth program consists of three rules:
common(u, v, h) :- points(u, h), points(v, h).
mayAlias(u, v) :- common(u, v, _).
mustNotAlias(u, v) :- ImayAlias(u, v).

53

QUIZ: Querying Pointer Analysis in Datalog

Check each of the below Datalog programs that computes in
relation mustNotAlias each pair of variables (u, v) such that u
and v do not alias in any run of the program.

D mustNotAlias(u, v) :- points(u, hl), points(v, h2), hl != h2.

'J—d mayAlias(u, v) :- points(u, h), points(v, h).
mustNotAlias(u, v) :- !mayAlias(u, v).

I:I mayAlias(u, v) :- points(u, _), points(v, _).
mustNotAlias(u, v) :- !mayAlias(u, v).

common(u, v, h) :- points(u, h), points(v, h).
E\ mayAlias(u, v) :- common(u, v, _).
mustNotAlias(u, v) :- !mayAlias(u, v).

{SOLUTION SLIDE}
The two programs which correctly compute the mustNotAlias relation are the second and fourth.

The first program does not correctly compute the relation. A variable may point to more than one
allocation site at once, so it is not sufficient merely to check that there exist distinct allocation sites
that are pointed to by u and v.

The second program does correctly compute the mustNotAlias relation. mayAlias(u,v) holds whenever
u and v may point to the same allocation site, and mustNotAlias is the logical negation of mayAlias.

The third program does not correctly compute the relation. Because of the wildcard character, it would
generate the tuple mayAlias(u,v) if there is any points tuple with u and any points tuple with v, even if
the allocation sites in those tuples are not the same.

Finally, the fourth program does correctly compute mustNotAlias. The first two rules are logically
equivalent to the rule mayAlias(u,v) :- points(u,h), points(v,h), so this program computes the same
result as the second program.

Context Sensitivity

Input Relations:
new(v:V, h:H) arg(f:F, v:V) ret(f:F, u:V)

X = new hi; assign(v:V, u:V) call(y:v, f:F, x:V)
z = new h2;
z = iz’z‘;’ Output Relations:
= 3 1 . .

£ 1 points(v:V, h:H)

u=v;

return u; Rules:
} points(v, h) :- new(v, h).

points(v, h) :- assign(v, u), points(u, h).

points(v, h) :- call(_, f, x), arg(f, v),
points(x, h).

points(y, h) :- call(y, f, _), ret(f, u),
points(u, h).

The rules we've defined so far correspond to what is called a context-insensitive pointer analysis -- that
is, an analysis that conflates points-to information across different calls to the same function. This in
turn results in a loss of precision. To achieve a more precise analysis, we introduce context sensitivity.

For example, consider this new program. The program has four statements: two object allocation
statements x = new h1 and z = new h2, and two function call statements y = f(x) and w = f(z). Function
fis as before: it takes a single argument v and has two statements in its body: u = v and return u.

55

Context Sensitivity

Input Relations:

V= x new(v:V, h:H) arg(f:F, v:V) ret(f:F, u:V)

X = new hi; u=v assign(v:V, u:V) call(y:Vv, f:F, x:V)
z = new h2; 7| y=u
y = f(x)f Output Relations:
w = £(2); points(v:V, h:H)
f(v) { v=2z

u=v; S u=v

return u; w=u | Rules:
} points(v, h) :- new(v, h).

points(v, h) :- assign(v, u), points(u, h).

points(v, h) :- call(_, f, x), arg(f, v),
points(x, h).

points(y, h) :- call(y, f, _), ret(f, u),
points(u, h).

As before, we could try replacing the function calls with assignment statements:
y = f(x); would be replaced by v=x; u=v;y=u;, and

w = f(z); would be replaced by v=z; u=v; w=u;.

Context Sensitivity

X = new hl; -
us=yv

z = new h2; 7| =u
y = f(x);
w = f(z);
f(v) { v=1z

u=v; ™Sy -y

return u; =u
} u '

Let’s build the points-to graph that would correspond to the pointer analysis as we’ve defined it so far.

57

Context Sensitivity

y X z w
v =X
X = new hil; | viu=v]
z = new h2; =
y=u
y = f£(x); T~ .
w = f(z); Imprecision! h h2
f(v) { v =1z /
u=v; SSaly = v N
return u; W=u
} u v

Notice that w may point to hl and y may point to h2 in this points-to graph. This introduces
imprecision into the pointer analysis we've defined so far: w can never point to the object allocated at
h1, and y can never point to the object allocated at h2.

58

Cloning-Based Inter-procedural Analysis

- x y X z w
X = new hil; -
z = new h2; L7 y =
sy = £(x);
jrw = f(z); n h2
£(v) { s
i=1z
u=v; \‘ uj = vj /vT T‘\
return u; W = Uj
} vi uj

Achieves context sensitivity by inlining procedure calls

Cloning deptht: precisiont Vs. scalabilityl

One way to add context sensitivity to the analysis is through what is called "cloning". It achieves
context sensitivity by reproducing the bodies of the procedure in-line with distinguished variable
names.

For example, in this program, instead of replacingy = f(x); by v=x; u=v;y=u; and w=1(z); byv=2zu
=v; w = u;, we could introduce different copies of the variables v and u (say, vi and ui versus vj and uj)
for each call to f. In this way, we avoid imprecisely claiming that w may point to h1 or that y may point
to h2. Instead, we would have an equivalent program for which pointer analysis would generate a
precise points-to graph.

We can achieve greater precision by allowing cloning to be used for more levels in the call stack.
However, the tradeoff for precision via cloning is scalability. The deeper we allow function calls to be
cloned, the more space and time we need to allow for the resulting analysis. If each function calls just
two other functions, the resources needed for a precise analysis becomes exponential in the depth of
the stack of nested function calls.

59

What about Recursion?

new hl;
new h2;

£(x); Need infinite cloning depth to
£ differentiate the points-to sets

f(v) { of x,yand w, z!
if (*)
v = f(v);
return v;

X
z
y
w

In fact, if there are recursive function calls, as in the following program, which is similar to the previous
one except that the body of function f recursively calls f, then an infinite cloning depth is needed to
differentiate the points-to set of x and y from that of w and z.

You can learn more about cloning-based context sensitivity by following the link in the Instructor
Notes.

[http://suif.stanford.edu/papers/pldi04.pdf]

Summary-Based Inter-procedural Analysis

* Use the incoming program states to differentiate calls
to the same procedure

* Same incoming program states yield same outgoing
program states for a given procedure

* As precise as cloning-based analysis with infinite
cloning depth

Cloning is not the only way to perform context-sensitive analysis. Another popular approach, called
the summary-based approach, uses the incoming program states to differentiate between different
calls to the same procedure.

Since in general, there may be infinitely many different such concrete states, the analysis designer
must apply a suitable abstraction that conflates them enough to enable the analysis to be scalable and

terminate, yet make enough distinctions to enable the analysis to be precise.

Then, the same incoming program states yield the same outgoing program states for a given
procedure, and these input-output pairs of program states are called summaries.

Summary-based analysis is as precise as cloning-based analysis with infinite cloning depth.

You can read more about summary-based inter-procedural analysis by following the link in the
instructor notes.

[https://research.cs.wisc.edu/wpis/papers/popl95.pdf]

61

Other Constraint Languages

Constraint Problem Expressed Example
Language Solvers
Datalog Least solution of deductive inference LogixBlox,
rules bddbddb
SAT Boolean satisfiability problem MiniSat, Glucose
MaxSAT Boolean satisfiability problem open-wbo, SAT4j
extended with optimization
SMT Satisfiability modulo theories 73, Yices
problem
MaxSMT Satisfiability modulo theories Z3

problem extended with optimization

We focussed on a particular constraint language, Datalog, in this lesson. However, there are several
other constraint languages with different expressiveness and performance characteristics. Here are
some of the popular languages along with the kind of problem that one can express using each of
them, and some example solvers for each of those problems.

In Datalog, recall that one must specify the analysis in terms of the problem of finding the least
solution of deductive inference rules, and example solvers for this problem are LogicBlox and bddbddb.

SAT is the well-known Boolean satisfiability problem. Using SAT, one must specify the analysis in terms
of the problem of determining whether a set of Boolean constraints is satisfiable. Example solvers for
this problem are MiniSat and Glucose.

MaxSAT is an optimization extension of the Boolean satisfiability problem. One can specify not only
what Boolean constraints must be satisfied but also an objective function to minimize or maximize.
This optimization aspect of MaxSAT can be used to express, for instance, various tradeoffs in the
analysis. Example MaxSAT solvers are open-wbo and SAT4j.

SMT, the Satisfiability Modulo Theories problem, is an extension of the SAT problem. It allows one to
specify not just constraints over booleans, but also constraints over integers and pointers. Example
SMT solvers include Z3 from Microsoft and Yices.

Finally, MaxSMT is an optimization extension of the SMT problem, similar to how MaxSAT is to the SAT
problem. An example MaxSMT solver is Z3.

62

What Have We Learned?

* Constraint-based analysis and its benefits
* The constraint language

* How to express static analyses in Datalog
— Analysis == in Datalog

— Analysis and == of tuples

e Context-insensitive and context-sensitive inter-
procedural analysis

In this lesson, we have looked at the benefits of constraint-based analysis and how it separates the
specification of an analysis from its implementation.

We have also seen how to use a constraint language (particularly Datalog) to set up and solve static
analysis problems. The key points to remember are:

* the mapping between the logic of the analysis and the constraints or rules of inference in Datalog,
and

* the mapping between the inputs and outputs of the analysis and the relations by which facts are
asserted in Datalog.

We have also explored the difficulties and potential solutions that arise in extending pointer analysis to
context-insensitive and context-sensitive forms of inter-procedural analysis.

63

