AAA616: Program Analysis

Abstract Interpretation Framework

Hakjoo Oh
2019 Fall

Abstract Interpretation Framework

A powerful framework for designing correct static analysis

- "framework": correct static analysis comes out, reusable
- "powerful": all static analyses are understood in this framework
- "simple": prescription is simple
- "eye-opening": any static analysis is an abstract interpretation

Step 1: Define Concrete Semantics

The concrete semantics describes the real executions of the program. Described by semantic domain and function.

- A semantic domain \boldsymbol{D}, which is a CPO:
- \boldsymbol{D} is a partially ordered set with a least element \perp.
- Any increasing chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D has a least upper bound $\bigsqcup_{n \geq 0} d_{n}$ in D.
- A semantic function $\boldsymbol{F}: \boldsymbol{D} \rightarrow \boldsymbol{D}$, which is continuous: for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$,

$$
F\left(\bigsqcup_{n \geq 0} d_{i}\right)=\bigsqcup_{n \geq 0} F\left(d_{n}\right)
$$

Then, the concrete semantics (or collecting semantics) is defined as the least fixed point of semantic function $\boldsymbol{F}: \boldsymbol{D} \rightarrow \boldsymbol{D}$:

$$
f i x F=\bigsqcup_{i \in N} F^{i}(\perp)
$$

Step 2: Define Abstract Semantics

Define the abstract semantics of the input program.

- Define an abstract semantic domain CPO $\hat{\boldsymbol{D}}$.
- Intuition: $\hat{\boldsymbol{D}}$ is an abstraction of \boldsymbol{D}
- Define an abstract semantic function $\hat{\boldsymbol{F}}: \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$.
- Intuition: $\hat{\boldsymbol{F}}$ is an abstraction of \boldsymbol{F}.
- $\hat{\boldsymbol{F}}$ must be monotone:

$$
\begin{aligned}
& \qquad \forall \hat{x}, \hat{\boldsymbol{y}} \in \hat{D} . \hat{\boldsymbol{x}} \sqsubseteq \hat{\boldsymbol{y}} \Longrightarrow \hat{\boldsymbol{F}}(\hat{\boldsymbol{x}}) \sqsubseteq \hat{\boldsymbol{F}}(\hat{\boldsymbol{y}}) \\
& \text { (or extensive: } \forall x \in \hat{D} . x \sqsubseteq \hat{\boldsymbol{F}}(x) \text {) }
\end{aligned}
$$

Then, static analysis is to compute an upper bound of:

$$
\bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\perp)
$$

How can we ensure that the result soundly approximate the concrete semantics?

Requirement 1: Galois Connection

\boldsymbol{D} and $\hat{\boldsymbol{D}}$ must be related with Galois-connection:

$$
D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} \hat{D}
$$

That is, we have

- abstraction function: $\alpha \in \boldsymbol{D} \rightarrow \hat{\boldsymbol{D}}$
- represents elements in \boldsymbol{D} as elements of \hat{D}
- concretization function: $\gamma \in \hat{D} \rightarrow \boldsymbol{D}$
- gives the meaning of elements of \hat{D} in terms of \boldsymbol{D}
- $\forall x \in D, \hat{x} \in \hat{D} \cdot \alpha(x) \sqsubseteq \hat{\boldsymbol{x}} \Longleftrightarrow \boldsymbol{x} \sqsubseteq \gamma(\hat{\boldsymbol{x}})$
- $\boldsymbol{\alpha}$ and γ respect the orderings of \boldsymbol{D} and \hat{D}
- If an element $x \in D$ is safely described by $\hat{x} \in \hat{D}$, i.e., $\alpha(d) \sqsubseteq \hat{d}$, then the element described by $\hat{\boldsymbol{x}}$ is also safe w.r.t. \boldsymbol{x}, i.e., $\boldsymbol{x} \sqsubseteq \gamma(\hat{\boldsymbol{x}})$

Galois-Connection

Example: Sign Abstraction

$$
\begin{aligned}
& \wp(\mathbb{Z}) \stackrel{\gamma}{\stackrel{\gamma}{\hookrightarrow}}(\{\perp,+, 0,-, \top\}, \sqsubseteq) \\
& \alpha(Z)= \begin{cases}\perp & Z=\emptyset \\
+ & \forall z \in Z . z>0 \\
0 & Z=\{0\} \\
- & \forall z \in Z . z<0 \\
\top & \text { otherwise }\end{cases} \\
& \gamma(\perp)=\emptyset \\
& \gamma(\top)=\mathbb{Z} \\
& \gamma(+)=\{z \in \mathbb{Z} \mid z>0\} \\
& \gamma(0)=\{0\} \\
& \gamma(-)=\{z \in \mathbb{Z} \mid z<0\}
\end{aligned}
$$

Example: Interval Abstraction

$$
\begin{aligned}
& \wp(\mathbb{Z}) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}\{\perp\} \cup\{[a, b] \mid a \in \mathbb{Z} \cup\{-\infty\}, b \in \mathbb{Z} \cup\{+\infty\}\} \\
& \gamma(\perp)=\emptyset \\
& \gamma([a, b])=\{z \in \mathbb{Z} \mid a \leq z \leq b\} \\
& \alpha(\emptyset)=\perp \\
& \alpha(X)=[\min X, \max X]
\end{aligned}
$$

cf) Alternate Formulation

D and \hat{D} are related with Galois-connection:

$$
D \underset{\alpha}{\stackrel{\gamma}{\rightleftarrows}} \hat{D}
$$

iff (α, γ) satisfies the following conditions:

- α and γ are monotone functions
- $\gamma \circ \alpha$ is extensive, i.e., $\gamma \circ \alpha \sqsupseteq \boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{x}$
- abstraction typically loses precision
- $(\gamma \circ \alpha)(\{1,3\})=\{1,2,3\}$
- $\alpha \circ \gamma$ is reductive: i.e., $\alpha \circ \gamma \sqsubseteq \boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{x}$
- If $\alpha \circ \gamma=\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{x}$, Galois-insertion.
- With Galois-insertion, no two abstract elements describe the same concrete element, which may be true with Galois-connection.

Proof (\Rightarrow)

If we have a Galois-connection:

$$
\forall x \in D, \hat{x} \in \hat{D} \cdot \alpha(x) \sqsubseteq \hat{x} \Longleftrightarrow x \sqsubseteq \gamma(\hat{x})
$$

then

- $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{x} \sqsubseteq \gamma \circ \alpha: \alpha(x) \sqsubseteq \alpha(x)$ and hence $\boldsymbol{x} \sqsubseteq \gamma(\boldsymbol{\alpha}(\boldsymbol{x}))$ by Galois-connection.
- $\alpha \circ \gamma \sqsubseteq \lambda \boldsymbol{x} . \boldsymbol{x}: \gamma(\hat{\boldsymbol{x}}) \sqsubseteq \gamma(\hat{\boldsymbol{x}})$ and hence $\boldsymbol{\alpha}(\gamma(\hat{\boldsymbol{x}})) \sqsubseteq \hat{\boldsymbol{x}}$ by Galois-connection.
- γ is monotone: if $\hat{\boldsymbol{x}} \sqsubseteq \hat{\boldsymbol{y}}$, then $\boldsymbol{\alpha}(\gamma(\hat{\boldsymbol{x}})) \sqsubseteq \hat{\boldsymbol{y}}$. Hence $\gamma(\hat{\boldsymbol{x}}) \sqsubseteq \gamma(\hat{\boldsymbol{y}})$ by Galois-connection.
- $\boldsymbol{\alpha}$ is monotone: if $\boldsymbol{x} \sqsubseteq \boldsymbol{y}$, then $\boldsymbol{x} \sqsubseteq \gamma(\boldsymbol{\alpha}(\boldsymbol{y}))$. Hence $\boldsymbol{\alpha}(\boldsymbol{x}) \sqsubseteq \boldsymbol{\alpha}(\boldsymbol{y})$ by Galois-connection.

$\operatorname{Proof}(\Leftarrow)$

- Assume $\boldsymbol{\alpha}(\boldsymbol{x}) \sqsubseteq \hat{\boldsymbol{x}}$. Since γ is monotone, $\gamma(\boldsymbol{\alpha}(\boldsymbol{x})) \sqsubseteq \gamma(\hat{\boldsymbol{x}})$. Because $\gamma \circ \boldsymbol{\alpha}$ is extensive, we have $\boldsymbol{x} \sqsubseteq \gamma(\hat{\boldsymbol{x}})$.
- Assume $\boldsymbol{x} \sqsubseteq \gamma(\hat{\boldsymbol{x}})$. Since $\boldsymbol{\alpha}$ is monotone, $\boldsymbol{\alpha}(\boldsymbol{x}) \sqsubseteq \alpha(\gamma(\hat{\boldsymbol{x}}))$. Because $\alpha \circ \gamma$ is reductive, we have $\boldsymbol{\alpha}(\boldsymbol{x}) \sqsubseteq \hat{\boldsymbol{x}}$.

Properties of Galois-Connection

Given $D \underset{\alpha}{\stackrel{\gamma}{\alpha}} \hat{D}$, we have:

- $\gamma \circ \alpha \circ \gamma=\gamma$
- From $\alpha \circ \gamma \sqsubseteq \lambda x . \boldsymbol{x}$ and monotonicity of γ, we have $\gamma \circ \alpha \circ \gamma \sqsubseteq \gamma$. We have $\gamma \circ \alpha \circ \gamma \sqsupseteq \gamma$ from $\gamma \circ \alpha \sqsupseteq \lambda \boldsymbol{x} . \boldsymbol{x}$.
- $\alpha \circ \gamma \circ \alpha=\alpha$
- $\boldsymbol{\alpha} \circ \gamma$ and $\gamma \circ \boldsymbol{\alpha}$ are idempotent:

$$
(\alpha \circ \gamma)^{2}=\alpha \circ \gamma,(\gamma \circ \alpha)^{2}=\gamma \circ \alpha
$$

- γ uniquely determines $\alpha(\boldsymbol{D}, \hat{\boldsymbol{D}}$ complete lattices):

$$
\alpha(d)=\rceil\{\hat{d} \mid d \sqsubseteq \gamma(\hat{d})\}
$$

which implies that $\boldsymbol{\alpha}(\boldsymbol{d})$ is the best abstraction of \boldsymbol{d}.

- α uniquely determines γ :

$$
\gamma(\hat{d})=\bigsqcup\{d \mid \alpha(d) \sqsubseteq \hat{d}\}
$$

Deriving Galois-Connections

- Pointwise lifting: Given $D \underset{\alpha}{\stackrel{\gamma}{\alpha}} \hat{D}$ and a set S, then

$$
S \rightarrow D \underset{\alpha^{\prime}}{\stackrel{\gamma^{\prime}}{\leftrightarrows}} S \rightarrow \hat{D}
$$

with $\alpha^{\prime}(f)=\lambda s \in \boldsymbol{S} . \boldsymbol{\alpha}(f(s))$ and $\gamma(f)=\lambda s \in \boldsymbol{S} \cdot \gamma(f(s))$.

- Composition: Given $\boldsymbol{X}_{1} \underset{\alpha_{1}}{\stackrel{\gamma_{1}}{\leftrightarrows}} \boldsymbol{X}_{2} \underset{\alpha_{2}}{\stackrel{\gamma_{2}}{\leftrightarrows}} \boldsymbol{X}_{3}$, we have

$$
X_{1} \xrightarrow[\alpha_{2} \circ \alpha_{1}]{\stackrel{\gamma_{1} \circ \gamma_{2}}{\leftrightarrows}} X_{3}
$$

Requirement 2: $\hat{\boldsymbol{F}}$ and \boldsymbol{F}

- $\hat{\boldsymbol{F}}$ is a sound abstraction of \boldsymbol{F} :

$$
F \circ \gamma \sqsubseteq \gamma \circ \hat{F} \quad(\alpha \circ F \sqsubseteq \hat{F} \circ \alpha)
$$

- or, alternatively,

$$
\alpha(x) \sqsubseteq \hat{x} \Longrightarrow \alpha(F(x)) \sqsubseteq \hat{F}(\hat{x})
$$

Best Abstract Semantics

From $\boldsymbol{D} \underset{\alpha}{\stackrel{\gamma}{\alpha}} \hat{D}$ and $\boldsymbol{F} \circ \gamma \sqsubseteq \gamma \circ \hat{\boldsymbol{F}}$, we have

$$
\begin{array}{rlr}
\alpha \circ F \circ \gamma \sqsubseteq \alpha \circ \gamma \circ \hat{\boldsymbol{F}} & \alpha \text { is monotone } \\
\sqsubseteq \hat{\boldsymbol{F}} & \alpha \circ \gamma \sqsubseteq \lambda x . x
\end{array}
$$

The result means that $\boldsymbol{\alpha} \circ \boldsymbol{F} \circ \gamma$ is the best abstraction of \boldsymbol{F} and any sound abstraction $\hat{\boldsymbol{F}}$ of \boldsymbol{F} is greater than $\boldsymbol{\alpha} \circ \boldsymbol{F} \circ \gamma$.

Composition

When $\boldsymbol{F}, \boldsymbol{F}^{\prime}$ are concrete operators and $\hat{\boldsymbol{F}}, \hat{\boldsymbol{F}}^{\prime}$ are abstract operators, if $\hat{\boldsymbol{F}}$ and $\hat{\boldsymbol{F}}^{\prime}$ are sound abstractions of \boldsymbol{F} and \boldsymbol{F}^{\prime}, respectively, then $\hat{\boldsymbol{F}} \circ \hat{\boldsymbol{F}}^{\prime}$ is a sound abstraction of $\boldsymbol{F} \circ \boldsymbol{F}^{\prime}$.

Fixpoint Transfer Theorems

Theorem (Fixpoint Transfer)

Let D and \hat{D} be related by Galois-connection $D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} \hat{D}$. Let $\boldsymbol{F}: D \rightarrow D$ be a continuous function and $\hat{\boldsymbol{F}}: \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$ be a monotone function such that $\boldsymbol{\alpha} \circ \boldsymbol{F} \sqsubseteq \hat{\boldsymbol{F}} \circ \boldsymbol{\alpha}$. Then,

$$
\alpha(f i x F) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\perp}) .
$$

Theorem (Fixpoint Transfer2)

Let \boldsymbol{D} and $\hat{\boldsymbol{D}}$ be related by Galois-connection $\boldsymbol{D} \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} \hat{D}$. Let $\boldsymbol{F}: \boldsymbol{D} \rightarrow \boldsymbol{D}$ be a continuous function and $\hat{\boldsymbol{F}}: \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$ be a monotone function such that $\alpha(x) \sqsubseteq \hat{x} \Longrightarrow \alpha(F(x)) \sqsubseteq \hat{F}(\hat{x})$. Then,

$$
\alpha(f i x F) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\hat{\perp}) .
$$

Computing $\bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\hat{\perp})$

- If the abstract domain \hat{D} has finite height (i.e., all chains are finite), we can directly calculate

$$
\bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\perp}) .
$$

- If the domain $\hat{\boldsymbol{D}}$ has infinite height, the computation may not terminate. In this case, we find a finite chain $\hat{X}_{\mathbf{0}} \sqsubseteq \hat{\boldsymbol{X}}_{\mathbf{1}} \sqsubseteq \hat{\boldsymbol{X}}_{\mathbf{2}} \sqsubseteq \ldots$ such that

$$
\bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\perp}) \sqsubseteq \lim _{i \in \mathbb{N}} \hat{X}_{i}
$$

Fixpoint Accerlation with Widening

Define finite chain \hat{X}_{i} by an widening operator $\nabla: \hat{D} \times \hat{D} \rightarrow \hat{D}$:

$$
\begin{array}{rlrl}
\hat{X}_{0} & =\perp & \\
\hat{X}_{i} & =\hat{\hat{X}}_{i-1} & & \text { if } \hat{F}\left(\hat{X}_{i-1}\right) \sqsubseteq \hat{X}_{i-1} \tag{1}\\
& =\hat{X}_{i-1} \nabla \hat{F}\left(\hat{X}_{i-1}\right) & & \text { otherwise }
\end{array}
$$

Conditions on ∇ :

- $\forall a, b \in \hat{D} .(a \sqsubseteq a \nabla b) \wedge(b \sqsubseteq a \nabla b)$
- For all increasing chains $\left(x_{i}\right)_{i}$, the increasing chain $\left(y_{i}\right)_{i}$ defined as

$$
y_{i}= \begin{cases}x_{0} & \text { if } i=0 \\ y_{i-1} \nabla x_{i} & \text { if } i>0\end{cases}
$$

eventually stabilizes (i.e., the chain is finite).

Decreasing Iterations with Narrowing

- We can refine the widening result $\lim _{i \in \mathbb{N}} \hat{\boldsymbol{X}}_{\boldsymbol{i}}$ by a narrowing operator $\Delta: \hat{D} \times \hat{D} \rightarrow \hat{D}$.
- Compute chain $\left(\hat{\boldsymbol{Y}}_{i}\right)_{i}$

$$
\hat{\boldsymbol{Y}}_{i}= \begin{cases}\lim _{i \in \mathbb{N}} \hat{X}_{i} & \text { if } i=0 \tag{2}\\ \hat{\boldsymbol{Y}}_{i-1} \triangle \hat{\boldsymbol{F}}\left(\hat{\boldsymbol{Y}}_{\boldsymbol{i}-1}\right) & \text { if } i>0\end{cases}
$$

- Conditions on \triangle
- $\forall a, b \in \hat{D} . a \sqsubseteq b \Longrightarrow a \sqsubseteq a \Delta b \sqsubseteq b$
- For all decreasing chain $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)_{i}$, the decreasing chain $\left(\boldsymbol{y}_{\boldsymbol{i}}\right)_{\boldsymbol{i}}$ defined as

$$
\boldsymbol{y}_{i}= \begin{cases}\boldsymbol{x}_{\boldsymbol{i}} & \text { if } \mathrm{i}=0 \\ \boldsymbol{y}_{i-1} \Delta x_{i} & \text { if } i>0\end{cases}
$$

eventually stabilizes.

Safety of Widening and Narrowing

Theorem (Widening's Safety)

Let \hat{D} be a $C P O, \hat{F}: \hat{D} \rightarrow \hat{D}$ a monotone function, $\nabla: \hat{D} \times \hat{D} \rightarrow \hat{D}$ a widening operator. Then, chain $\left(\hat{X}_{i}\right)_{i}$ defined as (1) eventually stabilizes and

$$
\bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\hat{\perp}) \sqsubseteq \lim _{i \in \mathbb{N}} \hat{\boldsymbol{X}}_{i} .
$$

Theorem (Narrowing's Safety)

Let $\hat{\boldsymbol{D}}$ be a $C P O, \hat{\boldsymbol{F}}: \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$ a monotone function, $\Delta: \hat{\boldsymbol{D}} \times \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$ a narrowing operator. Then, chain $\left(\hat{\boldsymbol{Y}}_{\boldsymbol{i}}\right)_{i}$ defined as (2) eventually stabilizes and

$$
\bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\perp}) \sqsubseteq \lim _{i \in \mathbb{N}} \hat{Y}_{i} .
$$

