AAA616: Program Analysis

Abstract Interpretation Example

Hakjoo Oh

2019 Fall

Concrete Semantics

- Program representation:
- \boldsymbol{P} is represented by control flow graph $\left(\mathbb{C}, \rightarrow, c_{0}\right)$
- Each program point \boldsymbol{c} is associated with a command $\mathbf{c m d}(\boldsymbol{c})$

$$
\begin{aligned}
\text { cmd } & \rightarrow \text { skip } x:=e \\
e & \rightarrow n|x| e+e \mid e-e .
\end{aligned}
$$

- Concrete memory states: $\mathbb{M}=\operatorname{Var} \rightarrow \mathbb{Z}$
- Concrete semantics:

$$
\begin{aligned}
\llbracket c \rrbracket & : \quad \mathbb{M} \rightarrow \mathbb{M} \\
\llbracket s k i p \rrbracket(m) & =m \\
\llbracket x:=e \rrbracket(m) & =m[x \mapsto \llbracket e \rrbracket(s)] \\
\llbracket e \rrbracket & : \quad \mathbb{M} \rightarrow \mathbb{Z} \\
\llbracket n \rrbracket(m) & =n \\
\llbracket x \rrbracket(m) & =m(x) \\
\llbracket e_{1}+e_{2} \rrbracket(m) & =\llbracket e_{1} \rrbracket(m)+\llbracket e_{2} \rrbracket(m) \\
\llbracket e_{1}-e_{2} \rrbracket(m) & =\llbracket e_{1} \rrbracket(m)+\llbracket e_{2} \rrbracket(m)
\end{aligned}
$$

Concrete Semantics

- Program states: State $=\mathbb{C} \times \mathbb{M}$
- A trace $\boldsymbol{\sigma} \in$ State $^{+}$is a (partial) execution sequence of the program:

$$
\sigma_{0} \in I \wedge \forall k \cdot \sigma_{k} \leadsto \sigma_{k+1}
$$

where $I \subseteq$ State is the initial program states

$$
I=\left\{\left(c_{0}, m_{0}\right) \mid m_{0} \in \mathbb{M}\right\}
$$

and $(\sim) \subseteq$ State \times State is the relation for the one-step execution:

$$
\left(c_{i}, s_{i}\right) \leadsto\left(c_{j}, s_{j}\right) \Longleftrightarrow c_{i} \rightarrow c_{j} \wedge s_{j}=\llbracket \operatorname{cmd}\left(c_{j}\right) \rrbracket\left(s_{i}\right)
$$

Concrete Semantics

The collecting semantics of program \boldsymbol{P} is defined as the set of all finite traces of the program:

$$
\llbracket P \rrbracket=\left\{\sigma \in \text { State }^{+} \mid \sigma_{0} \in I \wedge \forall k . \sigma_{k} \leadsto \sigma_{k+1}\right\}
$$

The semantic domain:

$$
D=\wp\left(\text { State }^{+}\right)
$$

The semantic function:

$$
\begin{aligned}
F & : \wp\left(\text { State }^{+}\right) \rightarrow \wp\left(\text { State }^{+}\right) \\
\boldsymbol{F}(\Sigma) & =I \cup\left\{\sigma \cdot(\boldsymbol{c}, \boldsymbol{m}) \mid \sigma \in \Sigma \wedge \sigma_{\dashv} \leadsto(\boldsymbol{c}, \boldsymbol{m})\right\}
\end{aligned}
$$

Lemma
$\llbracket P \rrbracket=f i x F$.

Partitioning Abstraction

Galois-connection: $\wp\left(\right.$ State $\left.^{+}\right) \underset{\alpha_{1}}{\stackrel{\gamma_{1}}{\leftrightarrows}} \mathbb{C} \rightarrow \wp(\mathbb{M})$

$$
\alpha_{1}(\Sigma)=\lambda c .\left\{m \in \mathbb{M} \mid \exists \sigma \in \Sigma \wedge \exists i . \sigma_{i}=(c, m)\right\}
$$

Semantic function:

$$
\begin{gathered}
\hat{F}_{1}:(\mathbb{C} \rightarrow \wp(\mathbb{M})) \rightarrow(\mathbb{C} \rightarrow \wp(\mathbb{M})) \\
\hat{F}_{1}(X)=\alpha_{1}(I) \sqcup \lambda c \in \mathbb{C} . f_{c}\left(\bigcup_{c^{\prime} \rightarrow c} X\left(c^{\prime}\right)\right)
\end{gathered}
$$

where $f_{c}: \wp(\mathbb{M}) \rightarrow \wp(\mathbb{M})$ is a transfer function at program point c :

$$
f_{c}(M)=\left\{m^{\prime} \mid m \in M \wedge m^{\prime}=\llbracket \operatorname{cmd}(c) \rrbracket(m)\right\}
$$

Lemma (Soundness of Partitioning Abstraction)

 $\alpha_{1}(f i x F) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{F}_{1}^{i}(\perp)$.
Memory State Abstraction

Galois-connection:

$$
\begin{gathered}
\mathbb{C} \rightarrow \wp(\mathbb{M}) \underset{\alpha_{2}}{\stackrel{\gamma_{2}}{\leftrightarrows}} \mathbb{C} \rightarrow \hat{\mathbb{M}} \\
\alpha_{2}(f)=\lambda c \cdot \alpha_{m}(f(c)) \\
\gamma_{1}(\hat{f})=\lambda c \cdot \gamma_{m}(\hat{f}(c))
\end{gathered}
$$

where we assume

$$
\wp(\mathbb{M}) \underset{\alpha_{m}}{\stackrel{\gamma_{m}}{\leftrightarrows}} \hat{\mathbb{M}}
$$

Semantic function $\hat{\boldsymbol{F}}:(\mathbb{C} \rightarrow \hat{\mathbb{M}}) \rightarrow(\mathbb{C} \rightarrow \hat{\mathbb{M}})$:

$$
\hat{F}(X)=\left(\alpha_{2} \circ \alpha_{1}\right)(I) \sqcup \lambda c \in \mathbb{C} . \hat{f}_{c}\left(\bigsqcup_{c^{\prime} \rightarrow c} X\left(c^{\prime}\right)\right)
$$

where abstract transfer function $\hat{f}_{c}: \hat{\mathbb{M}} \rightarrow \hat{\mathbb{M}}$ is given such that

$$
\begin{equation*}
\alpha_{m} \circ f_{c} \sqsubseteq \hat{f}_{c} \circ \alpha_{m} \tag{1}
\end{equation*}
$$

Theorem (Soundness)
$\alpha(f i x F) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\perp)$ where $\alpha=\alpha_{\mathbf{2}} \circ \boldsymbol{\alpha}_{\mathbf{1}}$.

Sign Analysis

Memory state abstraction:

$$
\begin{gathered}
\wp(\mathbb{M}) \stackrel{\gamma_{m}}{\stackrel{\alpha_{m}}{\leftrightarrows}} \hat{\mathbb{M}} \\
\alpha_{m}(M)=\lambda x \in \operatorname{Var} . \alpha_{s}(\{m(x) \mid m \in M\})
\end{gathered}
$$

where $\boldsymbol{\alpha}_{\boldsymbol{s}}$ is the sign abstraction:

$$
\wp(\mathbb{Z}) \underset{\alpha_{s}}{\stackrel{\gamma_{s}}{\leftrightarrows}} \hat{\mathbb{Z}}
$$

The transfer function $\hat{f_{c}}: \hat{\mathbb{M}} \rightarrow \hat{\mathbb{M}}$:

$$
\begin{array}{rll}
\hat{f}_{c}(\hat{m})=\hat{m} & c=\text { skip } \\
\hat{f}_{c}(\hat{m})=\hat{m}[x \mapsto \hat{\mathcal{V}}(e)(\hat{m})] & c=x:=e \\
\hat{\mathcal{V}}(n)(\hat{m}) & =\alpha_{s}(\{n\}) \\
\hat{\mathcal{V}}(x)(\hat{m}) & =\hat{m}(x) \\
\hat{\mathcal{V}}\left(e_{1}+e_{2}\right) & =\hat{\mathcal{V}}\left(e_{1}\right)(\hat{m}) \hat{\hat{V}} \hat{\mathcal{V}}\left(e_{2}\right)(\hat{m}) \\
\hat{\mathcal{V}}\left(e_{1}-e_{2}\right) & =\hat{\mathcal{V}}\left(e_{1}\right)(\hat{m}) \hat{\mathcal{V}}\left(e_{2}\right)(\hat{m})
\end{array}
$$

Lemma

$\alpha_{m} \circ f_{c} \sqsubseteq \hat{f}_{c} \circ \boldsymbol{\alpha}_{m}$

Interval Analysis

Memory state abstraction:

$$
\alpha_{m}(M)=\lambda x \in \operatorname{Var} . \alpha_{n}(\{m(x) \mid m \in M\})
$$

where $\boldsymbol{\alpha}_{\boldsymbol{n}}$ is the interval abstraction:

$$
\begin{gathered}
\wp(\mathbb{Z}) \underset{\alpha_{n}}{\stackrel{\gamma_{n}}{\leftrightarrows}} \hat{\mathbb{Z}} \\
\hat{\mathbb{Z}}=\{\perp\} \cup\{[l, u] \mid l, u \in \mathbb{Z} \cup\{-\infty,+\infty\} \wedge l \leq u\}
\end{gathered}
$$

The transfer function $\hat{\boldsymbol{f}_{c}}: \hat{\mathbb{M}} \rightarrow \hat{\mathbb{M}}$:

$$
\begin{array}{rll}
\hat{f}_{c}(\hat{m})=\hat{m} & c=\text { skip } \\
\hat{f}_{c}(\hat{m})=\hat{m}[x \mapsto \hat{\mathcal{V}}(e)(\hat{m})] & c=x:=e
\end{array}
$$

Lemma

$\alpha_{m} \circ f_{c} \sqsubseteq \hat{f}_{c} \circ \alpha_{m}$

Widening/Narrowing Example

```
i = 0;
while (i<10)
    i++;
```

- Abstract equation:

$$
\begin{aligned}
& \boldsymbol{X}_{1}=[0,0] \\
& \boldsymbol{X}_{2}=\left(\boldsymbol{X}_{1} \sqcup \boldsymbol{X}_{3}\right] \sqcap[-\infty, \mathbf{9}] \\
& \boldsymbol{X}_{\mathbf{3}}=\boldsymbol{X}_{\mathbf{2}} \hat{+}[\mathbf{1}, \mathbf{1}] \\
& \boldsymbol{X}_{4}=\left(\boldsymbol{X}_{\mathbf{1}} \sqcup \boldsymbol{X}_{\mathbf{3}}\right) \sqcap[\mathbf{1 0},+\infty]
\end{aligned}
$$

- Abstract domain $\hat{D}=$ Interval \times Interval \times Interval \times Interval
- Semantic function $\hat{\boldsymbol{F}}: \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$ such that

$$
\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\hat{F}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)
$$

Widening/Narrowing Example

$$
\begin{aligned}
& \boldsymbol{X}_{\mathbf{1}}=[\mathbf{0}, \mathbf{0}] \\
& \boldsymbol{X}_{2}=\left(\boldsymbol{X}_{1} \sqcup \boldsymbol{X}_{\mathbf{3}}\right] \sqcap[-\infty, \mathbf{9}] \\
& \boldsymbol{X}_{\mathbf{3}}=\boldsymbol{X}_{\mathbf{2}} \hat{+}[\mathbf{1}, \mathbf{1}] \\
& \boldsymbol{X}_{4}=\left(\boldsymbol{X}_{\mathbf{1}} \sqcup \boldsymbol{X}_{\mathbf{3}}\right) \sqcap[\mathbf{1 0},+\infty]
\end{aligned}
$$

$\bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\hat{\perp}):$

	0	1	2	3	4	5	6	...	
\boldsymbol{X}_{1}	A	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]		[0, 0]
\boldsymbol{X}_{2}	Î	$\hat{\text { I }}$	[0, 0]	[0, 0]	$[0,1]$	[0, 1]	$[0,2]$		[0,9]
\boldsymbol{X}_{3}	$\hat{1}$	Î	Î	[1, 1]	$[1,1]$	[1, 2]	[1, 2]		[1, 10]
\boldsymbol{X}_{4}	^̂	І̂	^̂	ค	ค	ค	ค		$[10,10]$

Widening/Narrowing Example

A simple widening operator for the Interval domain:

$$
\begin{array}{rlll}
{[a, b]} & \nabla & \perp & =[a, b] \\
\perp & \nabla & {[c, d]} & =[c, d] \\
{[a, b]} & \nabla & {[c, d]} & =[(c<a ?-\infty: a),(b<d ?+\infty: b)]
\end{array}
$$

A simple narrowing operator:

$$
\begin{array}{rlll}
{[a, b]} & \triangle & \perp & =\perp \\
\perp & \triangle & {[c, d]} & =\perp \\
{[a, b]} & \triangle & {[c, d]} & =[(a=-\infty ? c: a),(b=+\infty ? d: b)]
\end{array}
$$

Widening／Narrowing Example

Widening iteration：

	0	1	2	3	4	5	6	7
\boldsymbol{X}_{1}	へ̂	［0，0］	［0，0］	［0，0］	［0，0］	［0，0］	［0，0］	［0，0］
\boldsymbol{X}_{2}	へ̂	$\hat{\text { I }}$	［0，0］	［0，0］	$[0,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	$[0,+\infty]$
\boldsymbol{X}_{3}	$\hat{\perp}$	ค̂	ค	$[1,1]$	［1，1］	$[1,+\infty]$	$[1,+\infty]$	$[1,+\infty]$
\boldsymbol{X}_{4}	$\hat{\perp}$	Î	Î	I	I	」	$[10,+\infty]$	$[10,+\infty]$

Narrowing iteration：

	0	1	2	3	4
X_{1}	$[0,0]$	$[0,0]$	$[0,0]$	$[0,0]$	$[0,0]$
X_{2}	$[0,+\infty]$	$[0,9]$	$[0,9]$	$[0,9]$	$[0,9]$
X_{3}	$[1,+\infty]$	$[1,+\infty]$	$[1,10]$	$[1,10]$	$[1,10]$
X_{4}	$[10,+\infty]$	$[10,+\infty]$	$[10,+\infty]$	$[10,10]$	$[\mathbf{1 0}, 10]$

