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Lecture 5 — Abstract Interpretation Framework
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Abstract Interpretation Framework

A powerful framework for designing correct static analysis

@ “framework”: correct static analysis comes out, reusable

o “powerful”: all static analyses are understood in this framework
@ “simple”: prescription is simple
°

“eye-opening”: any static analysis is an abstract interpretation

CCr7 CC79
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Step 1: Define Concrete Semantics

The concrete semantics describes the real executions of the program.
Described by semantic domain and function.
@ A semantic domain D, which is a CPO:

» D is a partially ordered set with a least element L.
» Any increasing chain dg C dy E ... in D has a least upper bound

L,.>0 dn in D.
@ A semantic function F' : D — D, which is continuous: for all chains
doLdi C...

F(| | d) = || F(dn)-

n>0 n>0

Then, the concrete semantics (or collecting semantics) is defined as the
least fixed point of semantic function F' : D — D:

fieF = | | Fi(L).

1EN
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Step 2: Define Abstract Semantics

Define the abstract semantics of the input program.

o Define an abstract semantic domain CPO D.
» Intuition: D is an abstraction of D
e Define an abstract semantic function ' : D — D.

» Intuition: F' is an abstraction of F.
» F' must be monotone:

Vi, g€ D. 2 C§ = F(2) C F(9)
(or extensive: V& € D. x T F(x))
Then, static analysis is to compute an upper bound of:
|| FA(L)
ieN

How can we ensure that the result soundly approximate the concrete
semantics?
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Requirement 1: Galois Connection

D and D must be related with Galois-connection:
Y ~
D % D

That is, we have
e abstraction function: o« € D — D
> represents elements in D as elements of D
@ concretization function: ~v € D—>D
> gives the meaning of elements of D in terms of D
oeVxeED,E€D.a(zx)C& < = C ()
» « and -y respect the orderings of D and D
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Galois-Connection

D Y D
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Example: Sign Abstraction

Sign abstraction: Y
P(Z) —= ({J-a +,0, —, T}a E)

where
1L zZz=0
+ VzeZ. z>0
a(Z) = 0 Z=4{0}
— VzeZ.2<0
T otherwise
(L) =0
Y (T) = Z
v(+) = {2€Z|z>0}
v(0) = {o}
(=) = {z€Z|z<0}
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Example: Interval Abstraction

p(2) &= {L} U {la,b] | a € ZU{—o0},b € ZU {+oo}}
(L) = 0
v([a,b])) = {z€Z|a<2<b}
a@) = L
a(X) = [min X, max X]
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cf) Alternate Formulation

D and D are related with Galois-connection:
Y ~
D % D

iff (at, 7y) satisfies the following conditions:

@ « and ~ are monotone functions

@ v 0 « is extensive, i.e., vy 0o o J Azx.x
> abstraction typically loses precision
» (voa)({1,3}) = {1,2,3}

@ o o~y is reductive: i.e.,, d oy C Az.x
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Properties of Galois-Connection

: Y A
Given D % D, we have:

@ Yooy =~
» From o o v C Az.z and monotonicity of «, we have yo v oy C ~.
We have y o a« o v J v from vy o a J Az.x.

daovyoa=ao
@ a0~ and v o « are idempotent

@ ~ uniquely determines a(D, D complete lattices):

a(d) = {d| dC~(d)}

which implies that a(d) is the best abstraction of d.

@ « uniquely determines ~:

7(d) = | [{d| a(d) C d}
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Deriving Galois-Connections
@ Pointwise lifting: Given D % D and a set S, then
S sD< =S D
al

with @’(f) = As € S.a(f(s)) and v(f) = As € S (f(s)).

71 Y2

o Composition: Given X7 £ — X5 ¢ o X3, we have
Y1072
X1 &—— X3
«2001
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Requirement 2: Fand F

e F'is a sound abstraction of F:
FoyLC~oF (aoFLC Fooa)
@ or, alternatively,

a(z) C& = a(F(z)) C F(2)
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Best Abstract Semantics

FromD%f)andFo'ygfyoF‘,wehave

aoFoyCaoyoF o is monotone

CF ao~y C Azx.x

The result means that ac o F o 7y is the best abstraction of F' and any
sound abstraction F' of F' is greater than av o F o .
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Composition

When F, F’ are concrete operators and F', F are abstract operators, if F'

and F are sound abstractions of F and F’, respectively, then ' o F is a
sound abstraction of F o F’.
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Fixpoint Transfer Theorems

Theorem (Fixpoint Transfer)

Let D and D be related by Galois-connection D % D. Let F: D — D be

a continuous function and ' : D — D be a monotone function such that
aoF C Foa. Then,

a(ficF) C | | F{(1).

1€N

Theorem (Fixpoint Transfer2)

Let D and D be related by Galois-connection D %} D. let F: D — D be

a continuous function and F' 1? — D be a monotone function such that
a(z) E&2 = a(F(x)) C F(&). Then,

a(ficF) C | | F{(1).

1€N

v
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Computing | |;cx Fi(l)

o If the abstract domain D has finite height (i.e., all chains are finite),
we can directly calculate

| | Fi(L).

i€EN

o If the domain D has infinite height, the computation may not
terminate. In this case, we find a finite chain
Xo L X7 C Xo ... such that

]_| F(1) C lim X;
1€EN
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Fixpoint Accerlation with Widening

Define finite chain X; by an widening operator V: D x D — D:

~

Xo = 1L
Xi = Xom1 if F(X;-1) C X1 (1)
= X;-1VF(X;-1) otherwise
Conditions on /:
oVa,be D.(aCaVb) A (bC aV{b)
e For all increasing chains (x;);, the increasing chain (y;); defined as
L o if’i =0
Y=\ yaVa  ifi>0

eventually stabilizes (i.e., the chain is finite).
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Decreasing lterations with Narrowing

@ We can refine the widening result lim;cn X; by a narrowing operator
A: D x D — D.

e Compute chain (Y;);

o f limgen X; ifi=0
Tl Yia AF(Yia)  ifi>0
e Conditions on A

»Va,be D.aCb = aClaAbLCb
» For all decreasing chain (x;);, the decreasing chain (y;); defined as

R 7 ifi=0
Yi = yi—lAwi if 2 >0

eventually stabilizes.
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Safety of Widening and Narrowing

Theorem (Widening's Safety)

Let D be a CPO, F' : D — D a monotone function, \J : D x D — D
a widening operator. Then, chain (X;); defined as (1) eventually
stabilizes and o

| | F*(1) C lim X..

L iEN

1€EN

Theorem (Narrowing's Safety)

Let D be a CPO, F : D — D a monotone function, \ : D x D — D
a narrowing operator. Then, chain (Y;); defined as (2) eventually
stabilizes and _

| | F*(1) C lim V..

. i€EN

1€EN
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