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Abstract Interpretation Framework

A powerful framework for designing correct static analysis

“framework”: correct static analysis comes out, reusable

“powerful”: all static analyses are understood in this framework

“simple”: prescription is simple

“eye-opening”: any static analysis is an abstract interpretation
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Step 1: Define Concrete Semantics

The concrete semantics describes the real executions of the program.
Described by semantic domain and function.

A semantic domain D, which is a CPO:
I D is a partially ordered set with a least element ⊥.
I Any increasing chain d0 v d1 v . . . in D has a least upper bound⊔

n≥0 dn in D.

A semantic function F : D → D, which is continuous: for all chains
d0 v d1 v . . . ,

F (
⊔
n≥0

di) =
⊔
n≥0

F (dn).

Then, the concrete semantics (or collecting semantics) is defined as the
least fixed point of semantic function F : D → D:

fixF =
⊔
i∈N

F i(⊥).
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Step 2: Define Abstract Semantics

Define the abstract semantics of the input program.

Define an abstract semantic domain CPO D̂.
I Intuition: D̂ is an abstraction of D

Define an abstract semantic function F̂ : D̂ → D̂.
I Intuition: F̂ is an abstraction of F .
I F̂ must be monotone:

∀x̂, ŷ ∈ D̂. x̂ v ŷ =⇒ F̂ (x̂) v F̂ (ŷ)

(or extensive: ∀x ∈ D̂. x v F̂ (x))

Then, static analysis is to compute an upper bound of:⊔
i∈N

F̂ i(⊥)

How can we ensure that the result soundly approximate the concrete
semantics?
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Requirement 1: Galois Connection

D and D̂ must be related with Galois-connection:

D −−→←−−α
γ

D̂

That is, we have

abstraction function: α ∈ D → D̂
I represents elements in D as elements of D̂

concretization function: γ ∈ D̂ → D
I gives the meaning of elements of D̂ in terms of D

∀x ∈ D, x̂ ∈ D̂. α(x) v x̂ ⇐⇒ x v γ(x̂)
I α and γ respect the orderings of D and D̂
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Galois-Connection
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Example: Sign Abstraction

Sign abstraction:

℘(Z) −−→←−−α
γ

({⊥,+, 0,−,>},v)

where

α(Z) =


⊥ Z = ∅
+ ∀z ∈ Z. z > 0
0 Z = {0}
− ∀z ∈ Z. z < 0
> otherwise

γ(⊥) = ∅
γ(>) = Z
γ(+) = {z ∈ Z | z > 0}
γ(0) = {0}
γ(−) = {z ∈ Z | z < 0}
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Example: Interval Abstraction

℘(Z) −−→←−−α
γ
{⊥} ∪ {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}}

γ(⊥) = ∅
γ([a, b]) = {z ∈ Z | a ≤ z ≤ b}

α(∅) = ⊥
α(X) = [minX,maxX]
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cf) Alternate Formulation

D and D̂ are related with Galois-connection:

D −−→←−−α
γ

D̂

iff (α, γ) satisfies the following conditions:

α and γ are monotone functions

γ ◦ α is extensive, i.e., γ ◦ α w λx.x
I abstraction typically loses precision
I (γ ◦ α)({1, 3}) = {1, 2, 3}

α ◦ γ is reductive: i.e., α ◦ γ v λx.x
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Properties of Galois-Connection

Given D −−→←−−α
γ

D̂, we have:

γ ◦ α ◦ γ = γ
I From α ◦ γ v λx.x and monotonicity of γ, we have γ ◦ α ◦ γ v γ.

We have γ ◦ α ◦ γ w γ from γ ◦ α w λx.x.

α ◦ γ ◦ α = α

α ◦ γ and γ ◦ α are idempotent

γ uniquely determines α(D, D̂ complete lattices):

α(d) =
l
{d̂ | d v γ(d̂)}

which implies that α(d) is the best abstraction of d.

α uniquely determines γ:

γ(d̂) =
⊔
{d | α(d) v d̂}
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Deriving Galois-Connections

Pointwise lifting: Given D −−→←−−α
γ

D̂ and a set S, then

S → D −−−→←−−−
α′

γ′

S → D̂

with α′(f) = λs ∈ S.α(f(s)) and γ(f) = λs ∈ S.γ(f(s)).

Composition: Given X1 −−−→←−−−α1

γ1
X2 −−−→←−−−α2

γ2
X3, we have

X1 −−−−−→←−−−−−
α2◦α1

γ1◦γ2
X3
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Requirement 2: F̂ and F

F̂ is a sound abstraction of F :

F ◦ γ v γ ◦ F̂ (α ◦ F v F̂ ◦ α)

or, alternatively,

α(x) v x̂ =⇒ α(F (x)) v F̂ (x̂)
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Best Abstract Semantics

From D −−→←−−α
γ

D̂ and F ◦ γ v γ ◦ F̂ , we have

α ◦ F ◦ γ v α ◦ γ ◦ F̂ α is monotone

v F̂ α ◦ γ v λx.x

The result means that α ◦ F ◦ γ is the best abstraction of F and any
sound abstraction F̂ of F is greater than α ◦ F ◦ γ.
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Composition

When F, F ′ are concrete operators and F̂ , F̂ ′ are abstract operators, if F̂
and F̂ ′ are sound abstractions of F and F ′, respectively, then F̂ ◦ F̂ ′ is a
sound abstraction of F ◦ F ′.
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Fixpoint Transfer Theorems

Theorem (Fixpoint Transfer)

Let D and D̂ be related by Galois-connection D −−→←−−α
γ

D̂. Let F : D → D be

a continuous function and F̂ : D̂ → D̂ be a monotone function such that
α ◦ F v F̂ ◦ α. Then,

α(fixF ) v
⊔
i∈N

F̂ i(⊥̂).

Theorem (Fixpoint Transfer2)

Let D and D̂ be related by Galois-connection D −−→←−−α
γ

D̂. Let F : D → D be

a continuous function and F̂ : D̂ → D̂ be a monotone function such that
α(x) v x̂ =⇒ α(F (x)) v F̂ (x̂). Then,

α(fixF ) v
⊔
i∈N

F̂ i(⊥̂).
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Computing
⊔
i∈N F̂

i(⊥̂)

If the abstract domain D̂ has finite height (i.e., all chains are finite),
we can directly calculate ⊔

i∈N
F̂ i(⊥̂).

If the domain D̂ has infinite height, the computation may not
terminate. In this case, we find a finite chain
X̂0 v X̂1 v X̂2 v . . . such that⊔

i∈N
F̂ i(⊥̂) v lim

i∈N
X̂i
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Fixpoint Accerlation with Widening

Define finite chain X̂i by an widening operator
`

: D̂ × D̂ → D̂:

X̂0 = ⊥
X̂i = X̂i−1 if F̂ (X̂i−1) v X̂i−1

= X̂i−1
`
F̂ (X̂i−1) otherwise

(1)

Conditions on
`

:

∀a, b ∈ D̂. (a v a
`
b) ∧ (b v a

`
b)

For all increasing chains (xi)i, the increasing chain (yi)i defined as

yi =

{
x0 if i = 0
yi−1

`
xi if i > 0

eventually stabilizes (i.e., the chain is finite).
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Decreasing Iterations with Narrowing

We can refine the widening result limi∈N X̂i by a narrowing operatora
: D̂ × D̂ → D̂.

Compute chain (Ŷi)i

Ŷi =

{
limi∈N X̂i if i = 0

Ŷi−1
a
F̂ (Ŷi−1) if i > 0

(2)

Conditions on
a

I ∀a, b ∈ D̂. a v b =⇒ a v a
a
b v b

I For all decreasing chain (xi)i, the decreasing chain (yi)i defined as

yi =

{
xi if i = 0
yi−1

a
xi if i > 0

eventually stabilizes.
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Safety of Widening and Narrowing

Theorem (Widening’s Safety)

Let D̂ be a CPO, F̂ : D̂ → D̂ a monotone function,
`

: D̂ × D̂ → D̂
a widening operator. Then, chain (X̂i)i defined as (1) eventually
stabilizes and ⊔

i∈N
F̂ i(⊥̂) v lim

i∈N
X̂i.

Theorem (Narrowing’s Safety)

Let D̂ be a CPO, F̂ : D̂ → D̂ a monotone function,
a

: D̂ × D̂ → D̂
a narrowing operator. Then, chain (Ŷi)i defined as (2) eventually
stabilizes and ⊔

i∈N
F̂ i(⊥̂) v lim

i∈N
Ŷi.
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