AAA616: Program Analysis

Lecture 3 — Denotational Semantics

Hakjoo Oh 2018 Spring

Denotational Semantics

- In denotational semantics, we are interested in the mathematical meaning of a program.
- Also called compositional semantics: The meaning of an expression is defined with the meanings of its immediate subexpressions.
- Denotational semantics for While:

$$egin{array}{lll} a &
ightarrow & n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 - a_2 \ b &
ightarrow & {
m true} \mid {
m false} \mid a_1 = a_2 \mid a_1 \leq a_2 \mid \lnot b \mid b_1 \wedge b_2 \ c &
ightarrow & x := a \mid {
m skip} \mid c_1; c_2 \mid {
m if} \; b \; c_1 \; c_2 \mid {
m while} \; b \; c \end{array}$$

Denotational Semantics of Expressions

$$\mathcal{A}[\![a]\!] : \operatorname{State} o \mathbb{Z}$$
 $\mathcal{A}[\![n]\!](s) = n$
 $\mathcal{A}[\![x]\!](s) = s(x)$
 $\mathcal{A}[\![a_1 + a_2]\!](s) = \mathcal{A}[\![a_1]\!](s) + \mathcal{A}[\![a_2]\!](s)$
 $\mathcal{A}[\![a_1 \star a_2]\!](s) = \mathcal{A}[\![a_1]\!](s) \times \mathcal{A}[\![a_2]\!](s)$
 $\mathcal{A}[\![a_1 - a_2]\!](s) = \mathcal{A}[\![a_1]\!](s) - \mathcal{A}[\![a_2]\!](s)$
 $\mathcal{B}[\![b]\!] : \operatorname{State} o \operatorname{T}$
 $\mathcal{B}[\![\operatorname{true}]\!](s) = \operatorname{true}$
 $\mathcal{B}[\![\operatorname{false}]\!](s) = \operatorname{false}$
 $\mathcal{B}[\![a_1 = a_2]\!](s) = \mathcal{A}[\![a_1]\!](s) = \mathcal{A}[\![a_2]\!](s)$
 $\mathcal{B}[\![a_1 \leq a_2]\!](s) = \mathcal{A}[\![a_1]\!](s) \leq \mathcal{A}[\![a_2]\!](s)$
 $\mathcal{B}[\![n_1 \leq a_2]\!](s) = \mathcal{B}[\![n_1]\!](s) = \operatorname{false}$
 $\mathcal{B}[\![n_1 \wedge b_2]\!](s) = \mathcal{B}[\![b_1]\!](s) \wedge \mathcal{B}[\![b_2]\!](s)$

Denotational Semantics of Commands

$$egin{array}{lll} \mathcal{C} \llbracket c
Vert &: & \mathsf{State} \hookrightarrow \mathsf{State} \ \mathcal{C} \llbracket x := a
Vert (s) &= s [x \mapsto \mathcal{A} \llbracket a
Vert (s)] \ \mathcal{C} \llbracket \mathsf{skip}
Vert &= \mathsf{id} \ \mathcal{C} \llbracket c_1; c_2
Vert &= \mathcal{C} \llbracket c_2
Vert \circ \mathcal{C} \llbracket c_1
Vert \ \mathcal{C} \llbracket \mathsf{if} \ b \ c_1 \ c_2
Vert &= \mathsf{cond} (\mathcal{B} \llbracket b
Vert, \mathcal{C} \llbracket c_1
Vert, \mathcal{C} \llbracket c_2
Vert) \ \mathcal{C} \llbracket \mathsf{while} \ b \ c
Vert &= \mathit{fix} F \end{array}$$

where

$$\operatorname{cond}(f,g,h) = \lambda s. \left\{ egin{array}{ll} g(s) & \cdots f(s) = true \\ h(s) & \cdots f(s) = false \end{array}
ight. \ \left. F(g) = \operatorname{cond}(\mathcal{B}\llbracket b
rbla, g \circ \mathcal{C}\llbracket c
rbla, \operatorname{id})
ight.$$

Denotational Semantics of Loops

The meaning of the while loop is the mathematical object (i.e. partial function in $State \hookrightarrow State$) that satisfies the equation:

$$\mathcal{C}[\![\mathtt{while}\ b\ c]\!] = \mathsf{cond}(\mathcal{B}[\![b]\!], \mathcal{C}[\![\mathtt{while}\ b\ c]\!] \circ \mathcal{C}[\![c]\!], \mathsf{id}).$$

Rewrite the equation:

$$\mathcal{C}[\![ext{while } b \ c]\!] = F(\mathcal{C}[\![ext{while } b \ c]\!])$$

where

$$F(g) = \operatorname{cond}(\mathcal{B}[\![b]\!], g \circ \mathcal{C}[\![c]\!], \operatorname{id}).$$

The meaning of the while loop is defined as the least fixed point of F:

$$\mathcal{C}[\![ext{while } b \ c]\!] = f\!i x F$$

where fixF denotes the least fixed point of F.

Example

while
$$\neg(x=0)$$
 skip

- **F**
- \bullet fix F

Questions

- ullet Does the least fixed point fixF exist?
- Is fixF unique?
- How to compute fixF?

Fixed Point Theory

Theorem

Let f:D o D be a continuous function on a CPO D . Then f has a (unique) least fixed point, fix(f), and

$$fix(f) = \bigsqcup_{n \geq 0} f^n(\perp).$$

The denotational semantics is well-defined if

- State → State is a CPO, and
- $F: (\mathsf{State} \hookrightarrow \mathsf{State}) \to (\mathsf{State} \hookrightarrow \mathsf{State})$ is a continuous function.

Plan

- Complete Partial Order
- Continuous Functions
- Least Fixed Point

Partially Ordered Set

Definition (Partial Order)

We say a binary relation \sqsubseteq is a partial order on a set D iff \sqsubseteq is

- ullet reflexive: $orall p \in D$. $p \sqsubseteq p$
- ullet transitive: $orall p,q,r\in D.\ p\sqsubseteq q\ \land\ q\sqsubseteq r\implies p\sqsubseteq r$
- ullet anti-symmetric: $orall p, q \in D. \ p \sqsubseteq q \ \land \ q \sqsubseteq p \implies p = q$

We call such a pair (D, \sqsubseteq) partially ordered set, or poset.

Lemma

If a partially ordered set (D,\sqsubseteq) has a least element d, then d is unique.

Exercise 1

Let S be a non-empty set. Prove that $(\wp(S),\subseteq)$ is a partially ordered set.

Exercise 2

Let $X \hookrightarrow Y$ be the set of all partial functions from a set X to a set Y, and define $f \sqsubseteq g$ iff

$$\operatorname{dom}(f)\subseteq\operatorname{dom}(g)\ \wedge\ \forall x\in\operatorname{dom}(f).\ f(x)=g(x).$$

Prove that $(X \hookrightarrow Y, \sqsubseteq)$ is a partially ordered set.

Least Upper Bound

Definition (Least Upper Bound)

Let (D,\sqsubseteq) be a partially ordered set and let Y be a subset of D. An upper bound of Y is an element d of D such that

$$\forall d' \in Y. \ d' \sqsubseteq d.$$

An upper bound d of Y is a least upper bound if and only if $d \sqsubseteq d'$ for every upper bound d' of Y. The least upper bound of Y is denoted by $\bigsqcup Y$. The least upper bound (lub, join) of a and b is written as $a \sqcup b$.

Lemma

If Y has a least upper bound d, then d is unique.

Greatest Lower Bound

Definition (Greatest Lower Bound)

Let (D, \sqsubseteq) be a partially ordered set and let Y be a subset of D. A lower bound of Y is an element d of D such that

$$\forall d' \in Y. \ d \sqsubseteq d'.$$

An lower bound d of Y is a greatest lower bound if and only if $d' \sqsubseteq d$ for every lower bound d' of Y. The greatest lower bound of Y is denoted by $\prod Y$. The greatest lower bound (glb, meet) of a and b is written as $a \sqcap b$.

Chain

Definition (Chain)

Let (D, \sqsubseteq) be a poset and Y a subset of D. Y is called a chain if Y is totally ordered:

$$\forall y_1,y_2 \in Y.y_1 \sqsubseteq y_2 \text{ or } y_2 \sqsubseteq y_1.$$

Example

Consider the poset $(\wp(\{a,b,c\}),\subseteq)$.

- $Y_1 = \{\emptyset, \{a\}, \{a, c\}\}$
- $\bullet \ Y_2 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$

Complete Partial Order (CPO)

Definition (CPO)

A poset (D, \sqsubseteq) is a CPO, if every chain $Y \subseteq D$ has $\bigsqcup Y \in D$.

Lemma

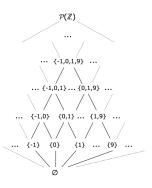
If (D, \sqsubseteq) is a CPO, then it has a least element \bot given by $\bot = \bigcup \emptyset$.

* We denote the least element and the greatest element in a poset as \bot and \top , respectively, if they exist.

Examples

Example

Let S be a non-empty set. Then, $(\wp(S), \subseteq)$ is a CPO. The lub $\coprod Y$ for Y is $\bigcup Y$. The least element is \emptyset .



Examples

Example

The poset $(X \hookrightarrow Y, \sqsubseteq)$ of all partial functions from a set X to a set Y, equipped with the partial order

$$\operatorname{dom}(f)\subseteq\operatorname{dom}(g)\ \wedge\ \forall x\in\operatorname{dom}(f).\ f(x)=g(x)$$

is a CPO (but not a complete lattice). The lub of a chain Y is the partial function f with ${\sf dom}(f) = \bigcup_{f_i \in Y} {\sf dom}(f_i)$ and

$$f(x) = \left\{egin{array}{ll} f_n(x) & \cdots x \in \mathsf{dom}(f_i) ext{ for some } f_i \in Y \ \mathsf{undef} & \cdots \mathit{otherwise} \end{array}
ight.$$

The least element $\perp = \lambda x$.undef.

Lattices

Ordered sets with richer structures.

Definition (Lattice)

A lattice $(D, \sqsubseteq, \sqcup, \sqcap)$ is a poset where the lub and glb always exist:

$$\forall a, b \in D. \ a \sqcup b \in D \land a \sqcap b \in D.$$

Definition (Complete Lattice)

A complete lattice $(D,\sqsubseteq,\sqcup,\sqcap,\perp,\top)$ is a poset such that every subset $Y\subseteq D$ has $\bigsqcup Y\in D$ and $\bigcap Y\in D$, and D has a least element $\bot=\bigcup\emptyset=\bigcap D$ and a greatest element $\top=\bigcap\emptyset=\bigcup D$.

* A complete lattice is a CPO.

Derived Ordered Structures

When $(D_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \perp_1, \top_1)$ and $(D_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \perp_2, \top_2)$ are complete lattices (resp., CPO), so are the following ordered sets:

- Lifting: $(D_1 \cup \{\bot\}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$

 - $a \sqsubseteq b \iff a = \bot \lor a \sqsubseteq_1 b$
 - $\bot \sqcup a = a \sqcup \bot = a$ and otherwise $a \sqcup b = a \sqcup_1 b$ (similar for \sqcap)
 - ightharpoonup $T = T_1$
- Cartesian product: $(D_1 \times D_2, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$.
- Pointwise lifting: $(S \to D, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ (S is a set)
 - $lackbox{} a \sqsubseteq b \iff \forall s \in S. \ a(s) \sqsubseteq_1 b(s)$
 - $\forall s \in S. (a \sqcup b)(s) \iff a(s) \sqcup_1 b(s)$
 - $\forall s \in S. \ \bot(s) = \bot_1$

Monotone Functions

Definition (Monotone Functions)

A function f:D o E between posets is *monotone* iff

$$\forall d, d' \in D. \ d \sqsubseteq d' \implies f(d) \sqsubseteq f(d').$$

Example

Consider $(\wp(\{a,b,c\}),\subseteq)$ and $(\wp(\{d,e\}),\subseteq)$ and two functions $f_1,f_2:\wp(\{a,b,c\})\to\wp(\{d,e\})$

Exercise

Determine which of the following functionals of

$$(\mathsf{State} \hookrightarrow \mathsf{State}) \to (\mathsf{State} \hookrightarrow \mathsf{State})$$

are monotone:

- **1** $F_0(g) = g$.
- $m{e} F_1(g) = \left\{ egin{array}{ll} g_1 & \cdots g = g_2 \ g_2 & \cdots otherwise \end{array}
 ight. ext{ where } g_1
 eq g_2.$
- $F_2(g) = \lambda s. \begin{cases} g(s) & \cdots s(x) \neq 0 \\ s & \cdots s(x) = 0 \end{cases}$

Properties of Monotone Functions

Lemma

Let (D_1,\sqsubseteq_1) , (D_2,\sqsubseteq_2) , and (D_3,\sqsubseteq_3) be CPOs. Let $f:D_1\to D_2$ and $g:D_2\to D_3$ be monotone functions. Then, $g\circ f:D_1\to D_3$ is a monotone function.

Properties of Monotone Functions

Lemma

Let (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) be CPOs. Let $f:D_1\to D_2$ be a monotone function. If Y is a chain in D_1 , then $f(Y)=\{f(d)\mid d\in Y\}$ is a chain in D_2 . Furthermore,

$$\bigsqcup f(Y) \sqsubseteq f(\bigsqcup Y).$$

Continuous Functions

Definition (Continuous Functions)

A function $f:D_1\to D_2$ defined on CPOs (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) is continuous if it is monotone and it preserves least upper bounds of chains:

$$\bigsqcup f(Y) = f(\bigsqcup Y)$$

for all non-empty chains Y in D_1 . If $f(\bigsqcup Y) = \bigsqcup f(Y)$ holds for the empty chain (that is, $\bot = f(\bot)$), then we say that f is strict.

Properties of Continuous Functions

Lemma

Let $f:D_1\to D_2$ be a monotone function defined on posets (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) and D_1 is a finite set. Then, f is continuous.

Properties of Continuous Functions

Lemma

Let (D_1,\sqsubseteq_1) , (D_2,\sqsubseteq_2) , and (D_3,\sqsubseteq_3) be CPOs. Let $f:D_1\to D_2$ and $g:D_2\to D_3$ be continuous functions. Then, $g\circ f:D_1\to D_3$ is a continuous function.

Least Fixed Points

Definition (Fixed Point)

Let (D, \sqsubseteq) be a poset. A fixed point of a function $f: D \to D$ is an element $d \in D$ such that f(d) = d. We write fix(f) for the least fixed point of f, if it exists, such that

- f(fix(f)) = fix(f)
- $\forall d \in D. \ f(d) = d \implies fix(f) \sqsubseteq d$
- * More notations:
 - x is a fixed point of f if f(x) = x. Let $fp(f) = \{x \mid f(x) = x\}$ be the set of fixed points.
 - x is a pre-fixed point of f if $x \sqsubseteq f(x)$.
 - x is a post-fixed point of f if $x \supseteq f(x)$.
 - lfp(f): the least fixed point
 - gfp(f): the greatest fixed point

Fixed Point Theorem

Theorem (Kleene Fixed Point)

Let f:D o D be a continuous function on a CPO D . Then f has a least fixed point, $f\!ix(f)$, and

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot)$$

where
$$f^n(ot) = \left\{egin{array}{ll} ot & n=0 \ f(f^{n-1}(ot)) & n>0 \end{array}
ight.$$

Proof

We show the claims of the theorem by showing that $\bigsqcup_{n\geq 0} f^n(\bot)$ exists and it is indeed equivalent to fix(f). First note that $\bigsqcup_{n\geq 0} f^n(\bot)$ exists because $f^0(\bot) \sqsubseteq f^1(\bot) \sqsubseteq f^2(\bot) \sqsubseteq \ldots$ is a chain. We show by induction that $\forall n \in \mathbb{N} \cdot f^n(\bot) \sqsubseteq f^{n+1}(\bot)$:

- $\bot \sqsubseteq f(\bot)$ (\bot is the least element)
- $ullet f^n(ot)\sqsubseteq f^{n+1}(ot) \implies f^{n+1}(ot)\sqsubseteq f^{n+2}(ot) \ (ext{monotonicity of}\ f)$

Now, we show that $fix(f) = \bigsqcup_{n \ge 0} f^n(\bot)$ in two steps:

• We show that $\bigsqcup_{n\geq 0} f^n(\bot)$ is a fixed point of f:

$$f(igsqcup_{n\geq 0}f^n(oldsymbol{\perp}))=igsqcup_{n\geq 0}f(f^n(oldsymbol{\perp}))$$
 continuity of f
$$=igsqcup_{n\geq 0}f^{n+1}(oldsymbol{\perp})$$

$$=igsqcup_{n\geq 0}f^n(oldsymbol{\perp})$$

Proofs

• We show that $\bigsqcup_{n\geq 0} f^n(\bot)$ is smaller than all the other fixed points. Suppose d is a fixed point, i.e., f(d)=d. Then,

$$\bigsqcup_{n\geq 0} f^n(\bot) \sqsubseteq d$$

since $\forall n \in \mathbb{N}.f^n(\bot) \sqsubseteq d$:

$$f^0(\bot) = \bot \sqsubseteq d, \qquad f^n(\bot) \sqsubseteq d \implies f^{n+1}(\bot) \sqsubseteq f(d) = d.$$

Therefore, we conclude

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

Well-definedness of the Semantics

The function $oldsymbol{F}$

$$F(g) = \operatorname{cond}(\mathcal{B}[\![b]\!], g \circ \mathcal{C}[\![c]\!], \operatorname{id})$$

is continuous.

Lemma

Let $g_0: \mathsf{State} \hookrightarrow \mathsf{State}, p: \mathsf{State} \to \mathsf{T}$, and define

$$F(g) = \operatorname{cond}(p, g, g_0).$$

Then, F is continuous.

Lemma

Let g_0 : State \hookrightarrow State, and define

$$F(g) = g \circ g_0$$
.

Then F is continuous.