AAA616: Program Analysis

Lecture 3 - Denotational Semantics

Hakjoo Oh
2018 Spring

Denotational Semantics

- In denotational semantics, we are interested in the mathematical meaning of a program.
- Also called compositional semantics: The meaning of an expression is defined with the meanings of its immediate subexpressions.
- Denotational semantics for While:

$$
\begin{aligned}
& a \rightarrow n|x| a_{1}+a_{2}\left|a_{1} \star a_{2}\right| a_{1}-a_{2} \\
& b \rightarrow \text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2} \\
& c \rightarrow x:=a \mid \text { skip }\left|c_{1} ; c_{2}\right| \text { if } b c_{1} c_{2} \mid \text { while } b c
\end{aligned}
$$

Denotational Semantics of Expressions

$$
\begin{aligned}
\mathcal{A} \llbracket a \rrbracket & : \text { State } \rightarrow \mathbb{Z} \\
\mathcal{A} \llbracket n \rrbracket(s) & =n \\
\mathcal{A} \llbracket x \rrbracket(s) & =s(x) \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket(s) & =\mathcal{A} \llbracket a_{1} \rrbracket(s)+\mathcal{A} \llbracket a_{2} \rrbracket(s) \\
\mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket(s) & =\mathcal{A} \llbracket a_{1} \rrbracket(s) \times \mathcal{A} \llbracket a_{2} \rrbracket(s) \\
\mathcal{A} \llbracket a_{1}-a_{2} \rrbracket(s) & =\mathcal{A} \llbracket a_{1} \rrbracket(s)-\mathcal{A} \llbracket a_{2} \rrbracket(s) \\
\mathcal{B} \llbracket b \rrbracket & : \text { State } \rightarrow \mathbf{T} \\
\mathcal{B} \llbracket \text { true } \rrbracket(s) & =\text { true } \\
\mathcal{B} \llbracket \mathrm{false} \rrbracket(s) & =\text { false } \\
\mathcal{B} \llbracket a_{1}=a_{2} \rrbracket(s) & =\mathcal{A} \llbracket a_{1} \rrbracket(s)=\mathcal{A} \llbracket a_{2} \rrbracket(s) \\
\mathcal{B} \llbracket a_{1} \leq a_{2} \rrbracket(s) & =\mathcal{A} \llbracket a_{1} \rrbracket(s) \leq \mathcal{A} \llbracket a_{2} \rrbracket(s) \\
\mathcal{B} \llbracket \neg b \rrbracket(s) & =\mathcal{B} \llbracket b \rrbracket(s)=\text { false } \\
\mathcal{B} \llbracket b_{1} \wedge b_{2} \rrbracket(s) & =\mathcal{B} \llbracket b_{1} \rrbracket(s) \wedge \mathcal{B} \llbracket b_{2} \rrbracket(s)
\end{aligned}
$$

Denotational Semantics of Commands

$$
\begin{aligned}
\mathcal{C} \llbracket c \rrbracket & : \text { State } \hookrightarrow \text { State } \\
\mathcal{C} \llbracket x:=a \rrbracket(s) & =s[x \mapsto \mathcal{A} \llbracket a \rrbracket(s)] \\
\mathcal{C} \llbracket \text { skip } & =\text { id } \\
\mathcal{C} \llbracket c_{1} ; c_{2} \rrbracket & =\mathcal{C} \llbracket c_{2} \rrbracket \circ \mathcal{C} \llbracket c_{1} \rrbracket \\
\mathcal{C} \llbracket \text { if } b c_{1} c_{2} \rrbracket & =\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{C} \llbracket c_{1} \rrbracket, \mathcal{C} \llbracket c_{2} \rrbracket\right) \\
\mathcal{C} \llbracket \text { while } b c \rrbracket & =\text { fix } F
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{cond}(f, g, h) & =\lambda s \cdot \begin{cases}g(s) & \cdots f(s)=\text { true } \\
h(s) & \cdots f(s)=\text { false }\end{cases} \\
F(g) & =\operatorname{cond}(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{C} \llbracket c \rrbracket, \text { id })
\end{aligned}
$$

Denotational Semantics of Loops

The meaning of the while loop is the mathematical object (i.e. partial function in State \hookrightarrow State) that satisfies the equation:

$$
\mathcal{C} \llbracket \text { while } b c \rrbracket=\operatorname{cond}(\mathcal{B} \llbracket b \rrbracket, \mathcal{C} \llbracket \text { while } b c \rrbracket \circ \mathcal{C} \llbracket c \rrbracket, \mathrm{id})
$$

Rewrite the equation:

$$
\mathcal{C} \llbracket \text { while } \boldsymbol{b} \boldsymbol{c} \rrbracket=\boldsymbol{F}(\mathcal{C} \llbracket \text { while } \boldsymbol{b} \boldsymbol{c} \rrbracket)
$$

where

$$
F(g)=\operatorname{cond}(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{C} \llbracket c \rrbracket, i d)
$$

The meaning of the while loop is defined as the least fixed point of \boldsymbol{F} :

$$
\mathcal{C} \llbracket \text { while } \boldsymbol{b} c \rrbracket=f i x \boldsymbol{F}
$$

where $\boldsymbol{f i x} \boldsymbol{F}$ denotes the least fixed point of \boldsymbol{F}.

Example

$$
\text { while } \neg(x=0) \text { skip }
$$

- F
- $\boldsymbol{f i x F}$

Questions

- Does the least fixed point fixF exist?
- Is fixF unique?
- How to compute $\boldsymbol{f i x F}$?

Fixed Point Theory

Theorem

Let $\boldsymbol{f}: \boldsymbol{D} \rightarrow \boldsymbol{D}$ be a continuous function on a CPO \boldsymbol{D}. Then \boldsymbol{f} has a (unique) least fixed point, fix(f), and

$$
f i x(f)=\bigsqcup_{n \geq 0} f^{n}(\perp) .
$$

The denotational semantics is well-defined if

- State \hookrightarrow State is a CPO, and
- $F:($ State \hookrightarrow State) \rightarrow (State \hookrightarrow State) is a continuous function.

Plan

- Complete Partial Order
- Continuous Functions
- Least Fixed Point

Partially Ordered Set

Definition (Partial Order)

We say a binary relation \sqsubseteq is a partial order on a set \boldsymbol{D} iff \sqsubseteq is

- reflexive: $\forall \boldsymbol{p} \in \boldsymbol{D} . \boldsymbol{p} \sqsubseteq p$
- transitive: $\forall \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r} \in \boldsymbol{D} \boldsymbol{p} \sqsubseteq \boldsymbol{q} \wedge \boldsymbol{q} \sqsubseteq r \Longrightarrow \boldsymbol{p} \sqsubseteq r$
- anti-symmetric: $\forall p, q \in D . p \sqsubseteq q \wedge q \sqsubseteq p \Longrightarrow p=q$

We call such a pair $(\boldsymbol{D}, \sqsubseteq)$ partially ordered set, or poset.

Lemma

If a partially ordered set $(\boldsymbol{D}, \sqsubseteq)$ has a least element \boldsymbol{d}, then \boldsymbol{d} is unique.

Exercise 1

Let S be a non-empty set. Prove that $(\wp(S), \subseteq)$ is a partially ordered set.

Exercise 2

Let $\boldsymbol{X} \hookrightarrow \boldsymbol{Y}$ be the set of all partial functions from a set \boldsymbol{X} to a set \boldsymbol{Y}, and define $\boldsymbol{f} \sqsubseteq \boldsymbol{g}$ iff

$$
\operatorname{dom}(f) \subseteq \operatorname{dom}(g) \wedge \forall x \in \operatorname{dom}(f) \cdot f(x)=g(x)
$$

Prove that $(\boldsymbol{X} \hookrightarrow \boldsymbol{Y}, \sqsubseteq)$ is a partially ordered set.

Least Upper Bound

Definition (Least Upper Bound)

Let ($\boldsymbol{D}, \sqsubseteq$) be a partially ordered set and let \boldsymbol{Y} be a subset of \boldsymbol{D}. An upper bound of \boldsymbol{Y} is an element \boldsymbol{d} of \boldsymbol{D} such that

$$
\forall d^{\prime} \in Y . d^{\prime} \sqsubseteq d .
$$

An upper bound d of \boldsymbol{Y} is a least upper bound if and only if $d \sqsubseteq d^{\prime}$ for every upper bound $\boldsymbol{d}^{\boldsymbol{\prime}}$ of \boldsymbol{Y}. The least upper bound of \boldsymbol{Y} is denoted by $\sqcup \boldsymbol{Y}$. The least upper bound (lub, join) of \boldsymbol{a} and \boldsymbol{b} is written as $\boldsymbol{a} \sqcup \boldsymbol{b}$.

Lemma

If \boldsymbol{Y} has a least upper bound \boldsymbol{d}, then \boldsymbol{d} is unique.

Greatest Lower Bound

Definition (Greatest Lower Bound)

Let $(\boldsymbol{D}, \sqsubseteq)$ be a partially ordered set and let \boldsymbol{Y} be a subset of \boldsymbol{D}. A lower bound of \boldsymbol{Y} is an element \boldsymbol{d} of \boldsymbol{D} such that

$$
\forall d^{\prime} \in Y . d \sqsubseteq d^{\prime}
$$

An lower bound \boldsymbol{d} of \boldsymbol{Y} is a greatest lower bound if and only if $\boldsymbol{d}^{\prime} \sqsubseteq \boldsymbol{d}$ for every lower bound \boldsymbol{d}^{\prime} of \boldsymbol{Y}. The greatest lower bound of \boldsymbol{Y} is denoted by $\Pi \boldsymbol{Y}$. The greatest lower bound (glb, meet) of \boldsymbol{a} and \boldsymbol{b} is written as $\boldsymbol{a} \sqcap \boldsymbol{b}$.

Chain

Definition (Chain)

Let $(\boldsymbol{D}, \sqsubseteq)$ be a poset and \boldsymbol{Y} a subset of $\boldsymbol{D} . \boldsymbol{Y}$ is called a chain if \boldsymbol{Y} is totally ordered:

$$
\forall y_{1}, y_{2} \in \boldsymbol{Y} . y_{1} \sqsubseteq y_{2} \text { or } \boldsymbol{y}_{2} \sqsubseteq \boldsymbol{y}_{1} .
$$

Example

Consider the poset $(\wp(\{a, b, c\}), \subseteq)$.

- $Y_{1}=\{\emptyset,\{a\},\{a, c\}\}$
- $Y_{2}=\{\emptyset,\{a\},\{c\},\{a, c\}\}$

Complete Partial Order (CPO)

Definition (CPO)

A poset $(\boldsymbol{D}, \sqsubseteq)$ is a CPO, if every chain $\boldsymbol{Y} \subseteq \boldsymbol{D}$ has $\bigsqcup \boldsymbol{Y} \in \boldsymbol{D}$.
Lemma
If $(\boldsymbol{D}, \sqsubseteq)$ is a CPO, then it has a least element \perp given by $\perp=\bigsqcup \emptyset$.

* We denote the least element and the greatest element in a poset as \perp and T, respectively, if they exist.

Examples

Example

Let S be a non-empty set. Then, $(\wp(S), \subseteq)$ is a CPO. The lub $\bigsqcup Y$ for \boldsymbol{Y} is $\cup \boldsymbol{Y}$. The least element is \emptyset.

Examples

Example

The poset ($\boldsymbol{X} \hookrightarrow \boldsymbol{Y}, \sqsubseteq$) of all partial functions from a set \boldsymbol{X} to a set \boldsymbol{Y}, equipped with the partial order

$$
\operatorname{dom}(f) \subseteq \operatorname{dom}(g) \wedge \forall x \in \operatorname{dom}(f) . f(x)=g(x)
$$

is a CPO (but not a complete lattice). The lub of a chain \boldsymbol{Y} is the partial function f with $\operatorname{dom}(f)=\bigcup_{f_{i} \in Y} \operatorname{dom}\left(f_{i}\right)$ and

$$
f(x)= \begin{cases}f_{n}(x) & \cdots x \in \operatorname{dom}\left(f_{i}\right) \text { for some } f_{i} \in Y \\ \text { undef } & \cdots \text { otherwise }\end{cases}
$$

The least element $\perp=\lambda x$.undef.

Lattices

Ordered sets with richer structures.

Definition (Lattice)

A lattice $(D, \sqsubseteq, \sqcup, \sqcap)$ is a poset where the lub and glb always exist:

$$
\forall a, b \in D . a \sqcup b \in D \wedge a \sqcap b \in D
$$

Definition (Complete Lattice)

A complete lattice $(D, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$ is a poset such that every subset $\boldsymbol{Y} \subseteq \boldsymbol{D}$ has $\bigsqcup \boldsymbol{Y} \in \boldsymbol{D}$ and $\Pi \boldsymbol{Y} \in \boldsymbol{D}$, and \boldsymbol{D} has a least element $\perp=\bigsqcup \emptyset=\Pi \boldsymbol{D}$ and a greatest element $\top=\Pi \emptyset=\bigsqcup \boldsymbol{D}$.

* A complete lattice is a CPO.

Derived Ordered Structures

When $\left(D_{1}, \sqsubseteq_{1}, \sqcup_{1}, \sqcap_{1}, \perp_{1}, \top_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}, \sqcup_{2}, \sqcap_{2}, \perp_{2}, \top_{2}\right)$ are complete lattices (resp., CPO), so are the following ordered sets:

- Lifting: $\left(D_{1} \cup\{\perp\}, \sqsubseteq, \sqcup, \sqcap, \perp, \top\right)$
- $\perp \notin D_{1}$ is a new element
- $a \sqsubseteq b \Longleftrightarrow a=\perp \vee a \sqsubseteq_{1} b$
- $\perp \sqcup a=a \sqcup \perp=a$ and otherwise $a \sqcup b=a \sqcup_{1} b$ (similar for \sqcap)
- $\top=\top_{1}$
- Cartesian product: $\left(D_{1} \times D_{2}, \sqsubseteq, \sqcup, \sqcap, \perp, \top\right)$.
- Pointwise lifting: $(S \rightarrow D, \sqsubseteq, \sqcup, \sqcap, \perp, \top)(S$ is a set $)$
- $a \sqsubseteq b \Longleftrightarrow \forall s \in S . a(s) \sqsubseteq_{1} b(s)$
- $\forall s \in S .(a \sqcup b)(s) \Longleftrightarrow a(s) \sqcup_{1} b(s)$
- $\forall s \in S . \perp(s)=\perp_{1}$

Monotone Functions

Definition (Monotone Functions)
A function $\boldsymbol{f}: \boldsymbol{D} \rightarrow \boldsymbol{E}$ between posets is monotone iff

$$
\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \Longrightarrow f(d) \sqsubseteq f\left(d^{\prime}\right) .
$$

Example

Consider $(\wp(\{a, b, c\}), \subseteq)$ and $(\wp(\{d, e\}), \subseteq)$ and two functions $f_{1}, f_{2}: \wp(\{a, b, c\}) \rightarrow \wp(\{d, e\})$

$$
\begin{array}{c|cccccccc}
X & \{a, b, c\} & \{a, b\} & \{a, c\} & \{b, c\} & \{a\} & \{b\} & \{c\} & \emptyset \\
\hline f_{1}(X) & \{d, e\} & \{d\} & \{d, e\} & \{d, e\} & \{d\} & \{d\} & \{e\} & \emptyset \\
X & \{a, b, c\} & \{a, b\} & \{a, c\} & \{b, c\} & \{a\} & \{b\} & \{c\} & \emptyset \\
\hline f_{2}(X) & \{d\} & \{d\} & \{d\} & \{e\} & \{d\} & \{e\} & \{e\} & \{e\}
\end{array}
$$

Exercise

Determine which of the following functionals of

(State \hookrightarrow State) \rightarrow (State \hookrightarrow State)

are monotone:
(1) $F_{0}(g)=g$.
(2) $F_{1}(g)=\left\{\begin{array}{ll}g_{1} & \cdots g=g_{2} \\ g_{2} & \cdots \text { otherwise }\end{array}\right.$ where $g_{1} \neq g_{2}$.
(3) $F_{2}(g)=\lambda s . \begin{cases}g(s) & \cdots s(x) \neq 0 \\ s & \cdots s(x)=0\end{cases}$

Properties of Monotone Functions

Lemma

Let $\left(D_{1}, \sqsubseteq_{1}\right),\left(D_{2}, \sqsubseteq_{2}\right)$, and $\left(D_{3}, \sqsubseteq_{3}\right)$ be CPOs. Let $f: D_{1} \rightarrow D_{2}$ and $g: D_{2} \rightarrow D_{3}$ be monotone functions. Then, $g \circ f: D_{1} \rightarrow D_{3}$ is a monotone function.

Properties of Monotone Functions

Lemma

Let $\left(\boldsymbol{D}_{1}, \sqsubseteq_{1}\right)$ and $\left(\boldsymbol{D}_{2}, \sqsubseteq_{2}\right)$ be CPOs. Let $\boldsymbol{f}: \boldsymbol{D}_{1} \rightarrow \boldsymbol{D}_{2}$ be a monotone function. If \boldsymbol{Y} is a chain in \boldsymbol{D}_{1}, then $f(Y)=\{f(d) \mid d \in Y\}$ is a chain in $D_{\mathbf{2}}$. Furthermore,

$$
\bigsqcup f(Y) \sqsubseteq f(\bigsqcup Y) .
$$

Continuous Functions

Definition (Continuous Functions)

A function $f: D_{1} \rightarrow D_{2}$ defined on $\operatorname{CPOs}\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ is continuous if it is monotone and it preserves least upper bounds of chains:

$$
\bigsqcup f(Y)=f(\bigsqcup Y)
$$

for all non-empty chains \boldsymbol{Y} in D_{1}. If $f(\sqcup \boldsymbol{Y})=\bigsqcup f(\boldsymbol{Y})$ holds for the empty chain (that is, $\perp=f(\perp)$), then we say that f is strict.

Properties of Continuous Functions

Lemma

Let $f: D_{1} \rightarrow D_{2}$ be a monotone function defined on posets (D_{1}, \sqsubseteq_{1}) and $\left(D_{2}, \sqsubseteq_{2}\right)$ and D_{1} is a finite set. Then, f is continuous.

Properties of Continuous Functions

Lemma

Let $\left(D_{1}, \sqsubseteq_{1}\right),\left(D_{2}, \sqsubseteq_{2}\right)$, and $\left(D_{3}, \sqsubseteq_{3}\right)$ be CPOs. Let $f: D_{1} \rightarrow D_{2}$ and $g: D_{2} \rightarrow D_{3}$ be continuous functions. Then, $g \circ f: D_{1} \rightarrow D_{3}$ is a continuous function.

Least Fixed Points

Definition (Fixed Point)

Let $(\boldsymbol{D}, \sqsubseteq)$ be a poset. A fixed point of a function $f: D \rightarrow D$ is an element $d \in D$ such that $f(d)=d$. We write $\boldsymbol{f i x}(f)$ for the least fixed point of f, if it exists, such that

- $f(f i x(f))=f i x(f)$
- $\forall d \in D . f(d)=d \Longrightarrow f i x(f) \sqsubseteq d$
* More notations:
- x is a fixed point of f if $f(x)=x$. Let $\mathrm{fp}(f)=\{x \mid f(x)=x\}$ be the set of fixed points.
- x is a pre-fixed point of f if $x \sqsubseteq f(x)$.
- x is a post-fixed point of f if $x \sqsupseteq f(x)$.
- $\operatorname{Ifp}(f)$: the least fixed point
- $\operatorname{gfp}(f)$: the greatest fixed point

Fixed Point Theorem

Theorem (Kleene Fixed Point)
Let $\boldsymbol{f}: \boldsymbol{D} \rightarrow \boldsymbol{D}$ be a continuous function on a CPO \boldsymbol{D}. Then \boldsymbol{f} has a least fixed point, fix(f), and

$$
f i x(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)
$$

where $f^{n}(\perp)= \begin{cases}\perp & n=0 \\ f\left(f^{n-1}(\perp)\right) & n>0\end{cases}$

Proof

We show the claims of the theorem by showing that $\bigsqcup_{n \geq 0} f^{n}(\perp)$ exists and it is indeed equivalent to $f i x(f)$. First note that $\bigsqcup_{n \geq 0} f^{n}(\perp)$ exists because $f^{0}(\perp) \sqsubseteq f^{1}(\perp) \sqsubseteq f^{2}(\perp) \sqsubseteq \ldots$ is a chain. We show by induction that $\forall n \in \mathbb{N} . f^{n}(\perp) \sqsubseteq f^{n+1}(\perp)$:

- $\perp \sqsubseteq f(\perp)(\perp$ is the least element $)$
- $f^{n}(\perp) \sqsubseteq f^{n+1}(\perp) \Longrightarrow f^{n+1}(\perp) \sqsubseteq f^{n+2}(\perp)$ (monotonicity of f)

Now, we show that $f x(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)$ in two steps:

- We show that $\bigsqcup_{n \geq 0} f^{n}(\perp)$ is a fixed point of f :

$$
\begin{aligned}
f\left(\bigsqcup_{n \geq 0} f^{n}(\perp)\right) & =\bigsqcup_{n \geq 0} f\left(f^{n}(\perp)\right) \quad \text { continuity of } f \\
& =\bigsqcup_{n \geq 0} f^{n+1}(\perp) \\
& =\bigsqcup_{n \geq 0} f^{n}(\perp)
\end{aligned}
$$

Proofs

- We show that $\bigsqcup_{n \geq 0} f^{n}(\perp)$ is smaller than all the other fixed points. Suppose d is a fixed point, i.e., $f(d)=d$. Then,

$$
\bigsqcup_{n \geq 0} f^{n}(\perp) \sqsubseteq d
$$

since $\forall n \in \mathbb{N} . f^{n}(\perp) \sqsubseteq d$:

$$
f^{0}(\perp)=\perp \sqsubseteq d, \quad f^{n}(\perp) \sqsubseteq d \Longrightarrow f^{n+1}(\perp) \sqsubseteq f(d)=d
$$

Therefore, we conclude

$$
f i x(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)
$$

Well-definedness of the Semantics

The function \boldsymbol{F}

$$
F(g)=\operatorname{cond}(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{C} \llbracket c \rrbracket, \mathrm{id})
$$

is continuous.
Lemma
Let \boldsymbol{g}_{0} : State \hookrightarrow State, \boldsymbol{p} : State $\rightarrow \mathbf{T}$, and define

$$
F(g)=\operatorname{cond}\left(p, g, g_{0}\right)
$$

Then, \boldsymbol{F} is continuous.
Lemma
Let \boldsymbol{g}_{0} : State \hookrightarrow State, and define

$$
F(g)=g \circ g_{0} .
$$

Then \boldsymbol{F} is continuous.

