
AAA616: Program Analysis

Lecture 2 — Operational Semantics

Hakjoo Oh
2018 Spring

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 1 / 68

Plan

Review: Inductive definition, inference rules, grammar

Operational semantics of While

Operational semantics of Fun

Basic concepts of programming languages

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 2 / 68

cf) Imperative vs. Functional Languages

Statement and expressions:

A statement does something.

An expression evaluates to a value.

Programming languages can be classified into

statement-oriented: C, C++, Java, Python, JavaScript, etc
I often called “imperative languages”

expression-oriented: ML, Haskell, Scala, Lisp, etc
I often called “functional languages”

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 3 / 68

cf) Static vs. Dynamic Languages

Programming languages are classified into:

Statically typed languages: type checking is done at compile-time.
I type errors are detected before program executions
I C, C++, Java, ML, Scala, etc

Dynamically typed languages: type checking is done at run-time.
I type errors are detected during program executions
I Python, JavaScript, Ruby, Lisp, etc

Statically typed languages are further classified into:

Type-safe languages guarantee that compiled programs do not have
type errors at run-time.

I All type errors are detected at compile time.
I Compiled programs do not stuck.
I ML, Haskell, Scala

Unsafe languages do not provide such a guarantee.
I Some type errors remain at run-time.
I C, C++

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 4 / 68

Review: Inductive Definition

Inductive definition is widely used in the study of programming languages:

Syntax

Semantics

Induction is a technique for formally defining a set:

The set is defined in terms of itself.

The only way of defining an infinite set by a finite means.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 5 / 68

Example

Definition (Top-Down)

A natural number n is in S if and only if

1 n = 0, or

2 n− 3 ∈ S.

Definition (Bottom-Up)

S is the smallest set such that S ⊆ N and S satisfies the following two
conditions:

1 0 ∈ S, and

2 if n ∈ S, then n+ 3 ∈ S.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 6 / 68

Rules of Inference

A
B

A: hypothesis (antecedent)

B: conclusion (consequent)

“if A is true then B is also true”.

B: axiom.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 7 / 68

Defining a Set by Rules of Inferences

Definition

0 ∈ S

n ∈ S
(n+ 3) ∈ S

Interpret the rules as follows:

“A natural number n is in S iff n ∈ S can be derived from the axiom by
applying the inference rules finitely many times”

ex) 3 ∈ S because

0 ∈ S the axiom

3 ∈ S the second rule

Note that this interpretation enforces that S is the smallest set closed
under the inference rules.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 8 / 68

Natural Numbers

The set of natural numbers:

N = {0, 1, 2, 3, . . .}

is inductively defined:

0
n

n+ 1

The inference rules can be expressed by a grammar:

n→ 0 | n+ 1

Interpretation:

0 is a natural number.

If n is a natural number then so is n+ 1.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 9 / 68

Strings

The set of strings over alphabet {a, . . . , z}, e.g., ε, a, b, . . . , z, aa, ab,
. . . , az, ba, . . . az, aaa, . . . , zzz, and so on. Inference rules:

ε
α
aα

α
bα · · ·

α
zα

or simply,

ε
α
xα x ∈ {a, . . . , z}

In grammar:
α → ε
| xα (x ∈ {a, . . . , z})

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 10 / 68

Expressions

Expression examples: 2, −2, 1 + 2, 1 + (2 ∗ (−3)), etc.
Inference rules:

n n ∈ Z
e
−e

e1 e2
e1 + e2

e1 e2
e1 ∗ e2

e
(e)

In grammar:
e → n (n ∈ Z)
| −e
| e+ e
| e ∗ e
| (e)

Example:

1

2

3
−3
(−3)

2 ∗ (−3)
(2 ∗ (−3))

1 + (2 ∗ (−3))
Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 11 / 68

Syntax vs. Semantics

A programming language is defined with syntax and semantics.

The syntax is concerned with the grammatical structure of programs.
I Context-free grammar

The semantics is concerned with the meaning of grammatically
correct programs.

I Operational semantics: The meaning is specified by the computation
steps executed on a machine. It is of intrest how it is obtained.

I Denotational semantics: The meaning is modelled by mathematical
objects that represent the effect of executing the program. It is of
interest the effect, not how it is obtained.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 12 / 68

The While Language

n will range over numerals, Num
x will range over variables, Var
a will range over arithmetic expressions, Aexp
b will range over boolean expressions, Bexp
c, S will range over statements, Stm

a → n | x | a1 + a2 | a1 ? a2 | a1 − a2
b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2
c → x := a | skip | c1; c2 | if b c1 c2 | while b c

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 13 / 68

Semantics of Arithmetic Expressions

The meaning of an expression depends on the values bound to the
variables that occur in the expression, e.g., x+ 3.

A state is a function from variables to values:

State = Var→ Z

The meaning of arithmetic expressions is a function:

A : Aexp→ State→ Z

A[[a]] : State→ Z

A[[n]](s) = n

A[[x]](s) = s(x)

A[[a1 + a2]](s) = A[[a1]](s) +A[[a2]](s)

A[[a1 ? a2]](s) = A[[a1]](s)×A[[a2]](s)

A[[a1 − a2]](s) = A[[a1]](s)−A[[a2]](s)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 14 / 68

Semantics of Boolean Expressions

The meaning of boolean expressions is a function:

B : Bexp→ State→ T

where T = {true, false}.

B[[b]] : State→ T

B[[true]](s) = true

B[[false]](s) = false

B[[a1 = a2]](s) = A[[a1]](s) = A[[a2]](s)

B[[a1 ≤ a2]](s) = A[[a1]](s) ≤ A[[a2]](s)

B[[¬b]](s) = B[[b]](s) = false

B[[b1 ∧ b2]](s) = B[[b1]](s) ∧ B[[b2]](s)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 15 / 68

Free Variables

The free variables of an arithmetic expression a are defined to be the set
of variables occurring in it:

FV (n) = ∅
FV (x) = {x}

FV (a1 + a2) = FV (a1) ∪ FV (a2)
FV (a1 ? a2) = FV (a1) ∪ FV (a2)
FV (a1 − a2) = FV (a1) ∪ FV (a2)

Exercise) Define free variables of boolean expressions.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 16 / 68

Property of Free Variables

Only the free variables influence the value of an expression.

Lemma

Let s and s′ be two states satisfying that s(x) = s′(x) for all
x ∈ FV (a). Then, A[[a]](s) = A[[a]](s′).

Lemma

Let s and s′ be two states satisfying that s(x) = s′(x) for all
x ∈ FV (b). Then, B[[b]](s) = B[[b]](s′).

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 17 / 68

Substitution

a[y 7→ a0]: the arithmetic expression that is obtained by replacing
each occurrence of y in a by a0.

n[y 7→ a0] = n

x[y 7→ a0] =

{
a0 if x = y
x if x 6= y

(a1 + a2)[y 7→ a0] = (a1[y 7→ a0]) + (a2[y 7→ a0])
(a1 ? a2)[y 7→ a0] = (a1[y 7→ a0]) ? (a2[y 7→ a0])
(a1 − a2)[y 7→ a0] = (a1[y 7→ a0])− (a2[y 7→ a0])

s[y 7→ v]: the state s except that the value bound to y is v.

(s[y 7→ v])(x) =

{
v if x = y
s(x) if x 6= y

The two concepts of substitutions are related:

Lemma

A[[a[y 7→ a0]]](s) = A[[a]](s[y 7→ A[[a0]](s)]) for all states s.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 18 / 68

Operational Semantics

Operational semantics is concerned about how to execute programs and
not merely what the execution results are.

Big-step operational semantics describes how the overall results of
executions are obtained.

Small-step operational semantics describes how the individual steps of
the computations take place.

In both kinds, the semantics is specified by a transition system (S,→)
where S is the set of states (configurations) with two types:

〈S, s〉: a nonterminal state (i.e. the statement S is to be executed
from the state s)

s: a terminal state

The transition relation (→) ⊆ S× S describes how the execution takes
place. The difference between the two approaches are in the definitions of
transition relation.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 19 / 68

Big-step Operational Semantics

The transition relation specifies the relationship between the initial state
and the final state:

〈S, s〉 → s′

Transition relation is defined with inference rules of the form: A rule has
the general form

〈S1, s1〉 → s′1, . . . , 〈Sn, sn〉 → s′n
〈S, s〉 → s′

if · · ·

S1, . . . , Sn are statements that constitute S.

A rule has a number of premises and one conclusion.

A rule may also have a number of conditions that have to be fulfilled
whenever the rule is applied.

Rules without premises are called axioms.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 20 / 68

Big-step Operational Semantics for While

〈x := a, s〉 → s[x 7→ A[[a]](s)]

〈skip, s〉 → s

〈S1, s〉 → s′ 〈S2, s
′〉 → s′′

〈S1;S2, s〉 → s′′

〈S1, s〉 → s′

〈if b S1 S2, s〉 → s′
if B[[b]](s) = true

〈S2, s〉 → s′

〈if b S1 S2, s〉 → s′
if B[[b]](s) = false

〈S, s〉 → s′ 〈while b S, s′〉 → s′′

〈while b S, s〉 → s′′
if B[[b]](s) = true

〈while b S, s〉 → s
if B[[b]](s) = false

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 21 / 68

Example

Let s be a state with s(x) = 3. Then, we have

(y:=1; while ¬(x=1) do (y:=y?x; x:=x-1), s)→ s[y 7→ 6][x 7→ 1]

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 22 / 68

Execution Types

We say the execution of a statement S on a state s

terminates if and only if there is a state s′ such that 〈S, s〉 → s′ and

loops if and only if there is no state s′ such that 〈S, s〉 → s′.

We say a statement S always terminates if its execution on a state s
terminates for all states s, and always loops if its execution on a state s
loops for all states s.
Examples:

while true do skip

while ¬(x=1) do (y:=y?x; x:=x-1)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 23 / 68

Semantic Equivalence

We say S1 and S2 are semantically equivalent, denoted S1 ≡ S2, if the
following is true for all states s and s′:

〈S1, s〉 → s′ if and only if 〈S2, s〉 → s′

Example:

while b do S ≡ if b then (S; while b do S) else skip

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 24 / 68

Semantic Function for Statements

The semantic function for statements is the partial function:

Sb : Stm→ (State ↪→ State)

Sb[[S]](s) =

{
s′ if 〈S, s〉 → s′

undef otherwise

Examples:

Sb[[y:=1; while ¬(x=1) do (y:=y?x; x:=x-1)]](s[x 7→ 3])

Sb[[while true do skip]](s)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 25 / 68

Summary of While

The syntax is defined by the grammar:

a → n | x | a1 + a2 | a1 ? a2 | a1 − a2
b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2
c → x := a | skip | c1; c2 | if b c1 c2 | while b c

The semantics is defined by the functions:

A[[a]] : State→ Z

B[[b]] : State→ T

Sb[[c]] : State ↪→ State

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 26 / 68

Small-step Operational Semantics

The individual computation steps are described by the transition relation
of the form:

〈S, s〉 ⇒ γ

where γ either is non-terminal state 〈S′, s′〉 or terminal state s′. The
transition expresses the first step of the execution of S from state s.

If γ = 〈S′, s′〉, then the execution of S from s is not completed and
the remaining computation continues with 〈S′, s′〉.
If γ = s′, then the execution of S from s has terminated and the
final state is s′.

We say 〈S, s〉 is stuck if there is no γ such that 〈S, s〉 ⇒ γ (no stuck
state for While).

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 27 / 68

Small-step Operational Semantics for While

〈x := a, s〉 ⇒ s[x 7→ A[[a]](s)]

〈skip, s〉 ⇒ s

〈S1, s〉 ⇒ 〈S′1, s′〉
〈S1;S2, s〉 ⇒ 〈S′1;S2, s

′〉

〈S1, s〉 ⇒ s′

〈S1;S2, s〉 ⇒ 〈S2, s
′〉

〈if b S1 S2, s〉 ⇒ 〈S1, s〉
if B[[b]](s) = true

〈if b S1 S2, s〉 ⇒ 〈S2, s〉
if B[[b]](s) = false

〈while b S, s〉 ⇒ 〈if b (S; while b S) skip, s〉

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 28 / 68

Derivation Sequence

A derivation sequence of a statement S starting in state s is either

A finite sequence
γ0, γ1, γ2, · · · , γk

which is sometimes written

γ0 ⇒ γ1 ⇒ γ2 ⇒ · · · ⇒ γk

such that

γ0 = 〈S, s〉, γi ⇒ γi+1 for 0 ≤ i ≤ k
and γk is either a terminal configuration or a stuck configuration.
An infinite sequence

γ0, γ1, γ2, · · ·
which is sometimes written

γ0 ⇒ γ1 ⇒ γ2 ⇒ · · ·
consisting of configurations satisfying γ0 = 〈S, s〉 and γi ⇒ γi+1

for 0 ≤ i.
Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 29 / 68

Example

Let s be a state such that s(x) = 5, s(y) = 7, s(z) = 0. Consider the
statement:

(z := x; x := y); y := z

Compute the derivation sequence starting in s.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 30 / 68

Example: Factorial

Assume that s(x) = 3.

〈y:=1; while ¬(x=1) do (y:=y?x; x:=x-1), s〉
⇒ 〈while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 1]〉
⇒ 〈if ¬(x=1) then ((y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1))

else skip, s[y 7→ 1]〉
⇒ 〈(y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 1]〉
⇒ 〈x:=x-1;while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 3]〉
⇒ 〈while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 3][x 7→ 2]〉
⇒ 〈if ¬(x=1) then ((y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1))

else skip, s[y 7→ 3][x 7→ 2]〉
⇒ 〈(y:=y?x; x:=x-1);while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 3][x 7→ 2]〉
⇒ 〈x:=x-1;while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 6][x 7→ 2]〉
⇒ 〈while ¬(x=1) do (y:=y?x; x:=x-1), s[y 7→ 6][x 7→ 1]〉
⇒ s[y 7→ 6][x 7→ 1]

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 31 / 68

Other Notations

We write γ0 ⇒i γi to indicate that there are i steps in the execution
from γ0 to γi.

We write γ0 ⇒∗ γi to indicate that there are a finite number of
steps.

We say that the execution of a statement S on a state s terminates if
and only if there is a finite derivation sequence starting with 〈S, s〉.
The execution loops if and only if there is an infinite derivation
sequence starting with 〈S, s〉.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 32 / 68

Semantic Function

The semantic function Ss for small-step semantics:

Ss : Stm→ (State ↪→ State)

Ss[[S]](s) =

{
s′ if 〈S, s〉 ⇒∗ s′
undef

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 33 / 68

Summary of While

We have defined the operational semantics of While.

Big-step operational semantics describes how the overall results of
executions are obtained.

Small-step operational semantics describes how the individual steps of
the computations take place.

The big-step and small-step operational semantics are equivalent:

Theorem

For every statement S of While, we have Sb[[S]] = Ss[[S]].

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 34 / 68

Scope and Procedures

Consider the simple expression-oriented language:

P → E

E → n
| x
| E + E
| E − E
| zero? E
| if E then E else E
| let x = E in E
| read

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 35 / 68

Examples

1, 2, x, y

1+(2+3), x+1, x+(y-2)

zero? 1, zero? (2-2), zero? (zero? 3)

if iszero 1 then 2 else 3, if 1 then 2 else 3

let x = read

in x + 1

let x = read

in let y = 2

in if iszero x then y else x

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 36 / 68

Values and Environments

The set of values includes integers and booleans:

v ∈ Val = Z + Bool

and an environment is a function from variables to values:

ρ ∈ Env = Var → Val

Notations:

[]: the empty environment.

[x 7→ v]ρ (or ρ[x 7→ v]): the extension of ρ where x is bound to v:

([x 7→ v]ρ)(y) =

{
v if x = y
ρ(y) otherwise

For simplicity, we write [x1 7→ v1, x2 7→ v2]ρ for the extension of ρ
where x1 is bound to v1, x2 to v2:

[x1 7→ v1, x2 7→ v2]ρ = [x1 7→ v1]([x2 7→ v2]ρ)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 37 / 68

Evaluation Rules

ρ ` e⇒ v

ρ ` n⇒ n ρ ` x⇒ ρ(x)

ρ ` E1 ⇒ n1 ρ ` E2 ⇒ n2

ρ ` E1 + E2 ⇒ n1 + n2

ρ ` E1 ⇒ n1 ρ ` E2 ⇒ n2

ρ ` E1 − E2 ⇒ n1 − n2

ρ ` read⇒ n

ρ ` E ⇒ 0

ρ ` zero? E ⇒ true

ρ ` E ⇒ n

ρ ` zero? E ⇒ false
n 6= 0

ρ ` E1 ⇒ true ρ ` E2 ⇒ v

ρ ` if E1 E2 E3 ⇒ v

ρ ` E1 ⇒ false ρ ` E3 ⇒ v

ρ ` if E1 E2 E3 ⇒ v

ρ ` E1 ⇒ v1 [x 7→ v1]ρ ` E2 ⇒ v

ρ ` let x = E1 in E2 ⇒ v

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 38 / 68

cf) Precise Interpretation

The inference rules define a set S of triples (ρ, e, v). For readability,
the triple was written by ρ ` e⇒ v in the rules.

We say an expression e has semantics w.r.t. ρ iff there is a triple
(ρ, e, v) ∈ S for some value v.

That is, we say an expression e has semantics w.r.t. ρ iff we can
derive ρ ` e⇒ v for some value v by applying the inference rules.

We say an initial program e has semantics if [] ` e⇒ v for some v.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 39 / 68

Procedures

P → E

E → n
| x
| E + E
| E − E
| zero? E
| if E then E else E
| let x = E in E
| read

| proc x E
| E E

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 40 / 68

Example

let f = proc (x) (x-11)

in (f (f 77))

((proc (f) (f (f 77))) (proc (x) (x-11)))

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 41 / 68

Free/Bound Variables of Procedures

An occurrence of the variable x is bound when it occurs without
definitions in the body of a procedure whose formal parameter is x.

Otherwise, the variable is free.

Examples:
I proc (y) (x+y)
I proc (x) (let y = 1 in x + y + z)
I proc (x) (proc (y) (x+y))
I let x = 1 in proc (y) (x+y)
I let x = 1 in proc (y) (x+y+z)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 42 / 68

Static vs. Dynamic Scoping

What is the result of the program?

let x = 1

in let f = proc (y) (x+y)

in let x = 2

in let g = proc (y) (x+y)

in (f 1) + (g 1)

Two ways to determine free variables of procedures:

In static scoping (lexical scoping), the procedure body is evaluated in
the environment where the procedure is defined (i.e.
procedure-creation environment).

In dynamic scoping, the procedure body is evaluated in the
environment where the procedure is called (i.e. calling environment)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 43 / 68

Why Static Scoping?

Most modern languages use static scoping. Why?

Reasoning about programs is much simpler in static scoping.

In static scoping, renaming bound variables by their lexical definitions
does not change the semantics, which is unsafe in dynamic scoping.

let x = 1

in let f = proc (y) (x+y)

in let x = 2

in let g = proc (y) (x+y)

in (f 1) + (g 1)

In static scoping, names are resolved at compile-time.

In dynamic scoping, names are resolved only at runtime.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 44 / 68

Semantics of Procedures: Static Scoping

Domain:

Val = Z + Bool + Procedure
Procedure = Var × E × Env

Env = Var → Val

The procedure value is called closures. The procedure is closed in its
creation environment.

Semantics rules:

ρ ` proc x E ⇒ (x,E, ρ)

ρ ` E1 ⇒ (x,E, ρ′) ρ ` E2 ⇒ v [x 7→ v]ρ′ ` E ⇒ v′

ρ ` E1 E2 ⇒ v′

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 45 / 68

Examples

[] `

let x = 1

in let f = proc (y) (x+y)

in let x = 2

in (f 3)

⇒ 4

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 46 / 68

Semantics of Procedures: Dynamic Scoping

Domain:

Val = Z + Bool + Procedure
Procedure = Var × E

Env = Var → Val

Semantics rules:

ρ ` proc x E ⇒ (x,E)

ρ ` E1 ` (x,E) ρ ` E2 ⇒ v [x 7→ v]ρ ` E ⇒ v′

ρ ` E1 E2 ⇒ v′

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 47 / 68

Adding Recursive Procedures

The current language does not support recursive procedures, e.g.,

let f = proc (x) (f x)

in (f 1)

for which evaluation gets stuck:

[f 7→ (x, f x, [])] ` f ⇒ (x, f x, [])

[x 7→ 1] ` f ⇒? [x 7→ 1] ` x⇒ 1

[x 7→ 1] ` f x⇒?

[f 7→ (x, f x, [])] ` (f 1)⇒?

Two solutions:

go back to dynamic scoping :-(

modify the language syntax and semantics for procedure :-)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 48 / 68

Recursion is Not Special in Dynamic Scoping

With dynamic scoping, recursive procedures require no special mechanism.
Running the program

let f = proc (x) (f x)

in (f 1)

via dynamic scoping semantics

ρ ` E1 ⇒ (x,E) ρ ` E2 ⇒ v [x 7→ v]ρ ` E ⇒ v′

ρ ` E1 E2 ⇒ v′

proceeds well:

...
[f 7→ (x, f x), x 7→ 1] ` f x⇒
[f 7→ (x, f x), x 7→ 1] ` f x⇒

[f 7→ (x, f x)] ` f 1⇒
[] ` let f = proc (x) (f x) in (f 1)⇒

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 49 / 68

Adding Recursive Procedures

P → E

E → n
| x
| E + E
| E − E
| zero? E
| if E then E else E
| let x = E in E
| read

| letrec f(x) = E in E
| proc x E
| E E

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 50 / 68

Example

letrec double(x) =

if zero?(x) then 0 else ((double (x-1)) + 2)

in (double 1)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 51 / 68

Semantics of Recursive Procedures

Domain:

Val = Z + Bool + Procedure + RecProcedure
Procedure = Var × E × Env

RecProcedure = Var ×Var × E × Env
Env = Var → Val

Semantics rules:

[f 7→ (f, x, E1, ρ)]ρ ` E2 ⇒ v

ρ ` letrec f(x) = E1 in E2 ⇒ v

ρ ` E1 ⇒ (f, x, E, ρ′) ρ ` E2 ⇒ v

[x 7→ v, f 7→ (f, x, E, ρ′)]ρ′ ` E ⇒ v′

ρ ` E1 E2 ⇒ v′

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 52 / 68

States

So far, our language only had the values produced by computation.

But computation also has effects: it may change the state of memory.

We will extend the language to support computational effects:
I Syntax for creating and using memory locations
I Semantics for manipulating memory states

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 53 / 68

Motivating Example

How can we compute the number of times f has been called?

let f = proc (x) (x)

in (f (f 1))

Does the following program work?

let counter = 0

in let f = proc (x) (let counter = counter + 1

in x)

in let a = (f (f 1))

in counter

The binding of counter is local. We need global effects.

Effects are implemented by introducing memory (store) and locations
(reference).

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 54 / 68

Two Approaches

Programming languages support references explicitly or implicitly.

Languages with explicit references provide a clear account of
allocation, dereference, and mutation of memory cells.

I e.g., OCaml, F#

In languages with implicit references, references are built-in.
References are not explicitly manipulated.

I e.g., C and Java.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 55 / 68

A Language with Explicit References

P → E

E → n | x
| E + E | E − E
| zero? E | if E then E else E
| let x = E in E
| proc x E | E E
| ref E
| ! E
| E := E
| E;E

ref E allocates a new location, store the value of E in it, and returns it.

! E returns the contents of the location that E refers to.

E1 := E2 changes the contents of the location (E1) by the value of E2.

E1;E2 executes E1 and then E2 while accumulating effects.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 56 / 68

Example 1

let counter = ref 0

in let f = proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = let counter = ref 0

in proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = proc (x) (let counter = ref 0

in (counter := !counter + 1; !counter))

in let a = (f 0)

in let b = (f 0)

in (a - b)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 57 / 68

Example 2

We can make chains of references:

let x = ref (ref 0)

in (!x := 11; !(!x))

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 58 / 68

Semantics

Memory is modeled as a finite map from locations to values:

Val = Z + Bool + Procedure+Loc
Procedure = Var × E × Env
ρ ∈ Env = Var → Val
σ ∈ M = Loc → Val

Semantics rules additionally describe memory effects:

ρ, σ ` E ⇒ v, σ′

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 59 / 68

Semantics
Existing rules are enriched with memory effects:

ρ, σ ` n⇒ n, σ ρ, σ ` x⇒ ρ(x), σ

ρ, σ0 ` E1 ⇒ n1, σ1 ρ, σ1 ` E2 ⇒ n2, σ2

ρ, σ0 ` E1 + E2 ⇒ n1 + n2, σ2

ρ, σ0 ` E ⇒ 0, σ1

ρ, σ0 ` zero? E ⇒ true, σ1

ρ, σ0 ` E ⇒ n, σ1

ρ, σ0 ` zero? E ⇒ false, σ1
n 6= 0

ρ, σ0 ` E1 ⇒ true, σ1 ρ, σ1 ` E2 ⇒ v, σ2

ρ, σ0 ` if E1 E2 E3 ⇒ v, σ2

ρ, σ0 ` E1 ⇒ false, σ1 ρ, σ1 ` E3 ⇒ v, σ2

ρ, σ0 ` if E1 E2 E3 ⇒ v, σ2

ρ, σ0 ` E1 ⇒ v1, σ1 [x 7→ v1]ρ, σ1 ` E2 ⇒ v, σ2

ρ, σ0 ` let x = E1 in E2 ⇒ v, σ2

ρ, σ ` proc x E ⇒ (x,E, ρ), σ

ρ, σ0 ` E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ` E2 ⇒ v, σ2 [x 7→ v]ρ′, σ2 ` E ⇒ v′, σ3

ρ, σ0 ` E1 E2 ⇒ v′, σ3

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 60 / 68

Semantics

Rules for new constructs:

ρ, σ0 ` E ⇒ v, σ1

ρ, σ0 ` ref E ⇒ l, [l 7→ v]σ1
l 6∈ dom(σ1)

ρ, σ0 ` E ⇒ l, σ1

ρ, σ0 ` ! E ⇒ σ1(l), σ1

ρ, σ0 ` E1 ⇒ l, σ1 ρ, σ1 ` E2 ⇒ v, σ2

ρ, σ0 ` E1 := E2 ⇒ v, [l 7→ v]σ2

ρ, σ0 ` E1 ⇒ v1, σ1 ρ, σ1 ` E2 ⇒ v2, σ2

ρ, σ0 ` E1;E2 ⇒ v2, σ2

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 61 / 68

A Language with Implicit References

P → E

E → n | x
| E + E | E − E
| zero? E | if E then E else E
| let x = E in E
| proc x E | E E
| set x = E
| E;E

In this design, every variable denotes a reference and is mutable.

set x = E changes the contents of x by the value of E.

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 62 / 68

Examples

Computing the number of times f has been called:

let counter = 0

in let f = proc (x) (set counter = counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = let counter = 0

in proc (x) (set counter = counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = proc (x) (let counter = 0

in (set counter = counter + 1; counter))

in let a = (f 0)

in let b = (f 0)

in (a-b)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 63 / 68

Exercise

What is the result of the program?

let f = proc (x)

proc (y)

(set x = x + 1; x - y)

in ((f 44) 33)

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 64 / 68

Semantics

References are no longer values and every variable denotes a reference:

Val = Z + Bool + Procedure
Procedure = Var × E × Env
ρ ∈ Env = Var → Loc
σ ∈ M = Loc → Val

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 65 / 68

Semantics

ρ, σ ` n⇒ n, σ ρ, σ ` x⇒ σ(ρ(x)), σ

ρ, σ0 ` E1 ⇒ n1, σ1 ρ, σ1 ` E2 ⇒ n2, σ2

ρ, σ0 ` E1 + E2 ⇒ n1 + n2, σ2

ρ, σ0 ` E ⇒ 0, σ1

ρ, σ0 ` zero? E ⇒ true, σ1

ρ, σ0 ` E1 ⇒ true, σ1 ρ, σ1 ` E2 ⇒ v, σ2

ρ, σ0 ` if E1 E2 E3 ⇒ v, σ2

ρ, σ ` proc x E ⇒ (x,E, ρ), σ

ρ, σ0 ` E ⇒ v, σ1

ρ, σ0 ` set x = E ⇒ v, [ρ(x) 7→ v]σ1

ρ, σ0 ` E1 ⇒ v1, σ1 [x 7→ l]ρ, [l 7→ v1]σ1 ` E2 ⇒ v, σ2

ρ, σ0 ` let x = E1 in E2 ⇒ v, σ2
l 6∈ dom(σ1)

ρ, σ0 ` E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ` E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ` E ⇒ v′, σ3

ρ, σ0 ` E1 E2 ⇒ v′, σ3
l 6∈ dom(σ2)

ρ, σ0 ` E1 ⇒ v1, σ1 ρ, σ1 ` E2 ⇒ v2, σ2

ρ, σ0 ` E1;E2 ⇒ v2, σ2

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 66 / 68

Summary

Big-step semantics of While

Small-step semantics of While

Big-step semantics of Fun

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 67 / 68

Homework 1

Define the semantics of the language that combines While and Fun:

E → skip

| n | x | true | false | E1 + E2 | E1 < E2

| x := E
| if E1 E2 E3

| while E1 E2

| for x := E1 to E2 do E3

| let x := E1 in E2

| let proc f(x) = E1 in E2

| f(E)
| E1;E2

Use LATEX and submit the document via email to TA (Due 3/25 24:00).

Hakjoo Oh AAA616 2018 Spring, Lecture 2 March 14, 2018 68 / 68

