## AAA616: Program Analysis

# Lecture 2 - Operational Semantics 

Hakjoo Oh
2018 Spring

## Plan

- Review: Inductive definition, inference rules, grammar
- Operational semantics of While
- Operational semantics of Fun
- Basic concepts of programming languages


## cf) Imperative vs. Functional Languages

Statement and expressions:

- A statement does something.
- An expression evaluates to a value.

Programming languages can be classified into

- statement-oriented: C, C++, Java, Python, JavaScript, etc
- often called "imperative languages"
- expression-oriented: ML, Haskell, Scala, Lisp, etc
- often called "functional languages"


## cf) Static vs. Dynamic Languages

Programming languages are classified into:

- Statically typed languages: type checking is done at compile-time.
- type errors are detected before program executions
- C, C++, Java, ML, Scala, etc
- Dynamically typed languages: type checking is done at run-time.
- type errors are detected during program executions
- Python, JavaScript, Ruby, Lisp, etc

Statically typed languages are further classified into:

- Type-safe languages guarantee that compiled programs do not have type errors at run-time.
- All type errors are detected at compile time.
- Compiled programs do not stuck.
- ML, Haskell, Scala
- Unsafe languages do not provide such a guarantee.
- Some type errors remain at run-time.
- C, C++


## Review: Inductive Definition

Inductive definition is widely used in the study of programming languages:

- Syntax
- Semantics

Induction is a technique for formally defining a set:

- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.


## Example

## Definition (Top-Down)

A natural number $\boldsymbol{n}$ is in $\boldsymbol{S}$ if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

## Definition (Bottom-Up)

$S$ is the smallest set such that $S \subseteq \mathbb{N}$ and $S$ satisfies the following two conditions:
(1) $0 \in S$, and
(2) if $n \in S$, then $n+3 \in S$.

## Rules of Inference

$$
\frac{A}{B}
$$

- A: hypothesis (antecedent)
- B: conclusion (consequent)
- "if $\boldsymbol{A}$ is true then $\boldsymbol{B}$ is also true".
- $\bar{B}$ : axiom.


## Defining a Set by Rules of Inferences

## Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number $\boldsymbol{n}$ is in $\boldsymbol{S}$ iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"
ex) $\mathbf{3} \in S$ because

$$
\begin{aligned}
& \overline{\mathbf{0 \in S}} \\
& \overline{3 \in S}
\end{aligned} \text { the axiom }
$$

Note that this interpretation enforces that $S$ is the smallest set closed under the inference rules.

## Natural Numbers

The set of natural numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

is inductively defined:

$$
\overline{0} \quad \frac{n}{n+1}
$$

The inference rules can be expressed by a grammar:

$$
n \rightarrow 0 \mid n+1
$$

Interpretation:

- 0 is a natural number.
- If $\boldsymbol{n}$ is a natural number then so is $\boldsymbol{n}+\mathbf{1}$.


## Strings

The set of strings over alphabet $\{\mathrm{a}, \ldots, \mathrm{z}\}$, e.g., $\epsilon, \mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \mathrm{aa}, \mathrm{ab}$, $\ldots, a z, b a, \ldots a z, a a a, \ldots, z z z$, and so on. Inference rules:

$$
\begin{array}{lllll}
\bar{\epsilon} & \frac{\alpha}{\mathrm{a} \alpha} & \frac{\alpha}{\mathrm{~b} \alpha} & \ldots & \frac{\alpha}{\mathrm{z} \alpha}
\end{array}
$$

or simply,

$$
\bar{\epsilon} \quad \frac{\boldsymbol{\alpha}}{\boldsymbol{x} \boldsymbol{\alpha}} \boldsymbol{x} \in\{\mathrm{a}, \ldots, \mathrm{z}\}
$$

In grammar:

$$
\begin{array}{rll}
\alpha & \rightarrow & \\
& \mid x \alpha
\end{array} \quad(x \in\{\mathrm{a}, \ldots, \mathrm{z}\})
$$

## Expressions

Expression examples: $2,-\mathbf{2}, \mathbf{1}+\mathbf{2}, \mathbf{1}+(2 *(-3))$, etc. Inference rules:

$$
\bar{n} n \in \mathbb{Z} \quad \frac{e}{-e} \quad \frac{e_{1} e_{2}}{e_{1}+e_{2}} \quad \frac{e_{1} e_{2}}{e_{1} * e_{2}} \quad \frac{e}{(e)}
$$

In grammar:

$$
\begin{aligned}
& e \\
& \mid \\
& \left\lvert\, \begin{array}{l}
n \\
e+e \\
e * e \\
(e)
\end{array}\right. \\
& e
\end{aligned}
$$

Example:

$$
\begin{array}{r}
\frac{\overline{3}}{\frac{-3}{(-3)}} \\
\frac{\overline{1}}{\frac{2 *(-3)}{(2 *(-3))}} \\
1+(2 *(-3))
\end{array}
$$

## Syntax vs. Semantics

A programming language is defined with syntax and semantics.

- The syntax is concerned with the grammatical structure of programs.
- Context-free grammar
- The semantics is concerned with the meaning of grammatically correct programs.
- Operational semantics: The meaning is specified by the computation steps executed on a machine. It is of intrest how it is obtained.
- Denotational semantics: The meaning is modelled by mathematical objects that represent the effect of executing the program. It is of interest the effect, not how it is obtained.


## The While Language

$n$ will range over numerals, Num
$\boldsymbol{x}$ will range over variables, Var
$a$ will range over arithmetic expressions, Aexp
$b$ will range over boolean expressions, Bexp
$c, S$ will range over statements, Stm

$$
\begin{aligned}
a & \rightarrow n|x| a_{1}+a_{2}\left|a_{1} \star a_{2}\right| a_{1}-a_{2} \\
b & \rightarrow \text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2} \\
c & \rightarrow x:=a \mid \text { skip }\left|c_{1} ; c_{2}\right| \text { if } b c_{1} c_{2} \mid \text { while } b c
\end{aligned}
$$

## Semantics of Arithmetic Expressions

- The meaning of an expression depends on the values bound to the variables that occur in the expression, e.g., $\boldsymbol{x}+\mathbf{3}$.
- A state is a function from variables to values:

$$
\text { State }=\operatorname{Var} \rightarrow \mathbb{Z}
$$

- The meaning of arithmetic expressions is a function:

$$
\begin{aligned}
& \mathcal{A}: \text { Aexp } \rightarrow \text { State } \rightarrow \mathbb{Z} \\
& \mathcal{A} \llbracket a \rrbracket: \\
& \text { State } \rightarrow \mathbb{Z} \\
& \mathcal{A} \llbracket n \rrbracket(s)=n \\
& \mathcal{A} \llbracket x \rrbracket(s)=s(x) \\
& \mathcal{A} \llbracket a_{1}+a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s)+\mathcal{A} \llbracket a_{2} \rrbracket(s) \\
& \mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s) \times \mathcal{A} \llbracket a_{2} \rrbracket(s) \\
& \mathcal{A} \llbracket a_{1}-a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s)-\mathcal{A} \llbracket a_{2} \rrbracket(s)
\end{aligned}
$$

## Semantics of Boolean Expressions

- The meaning of boolean expressions is a function:


## $\mathcal{B}: \operatorname{Bexp} \rightarrow$ State $\rightarrow$ T

where $\mathbf{T}=\{$ true, false $\}$.
$\mathcal{B} \llbracket b \rrbracket \quad: \quad$ State $\rightarrow \mathbf{T}$
$\mathcal{B} \llbracket$ true $\rrbracket(s)=$ true
$\mathcal{B} \llbracket \mathrm{false} \rrbracket(s)=$ false
$\mathcal{B} \llbracket a_{1}=a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s)=\mathcal{A} \llbracket a_{2} \rrbracket(s)$
$\mathcal{B} \llbracket a_{1} \leq a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s) \leq \mathcal{A} \llbracket a_{2} \rrbracket(s)$
$\mathcal{B} \llbracket \neg b \rrbracket(s)=\mathcal{B} \llbracket b \rrbracket(s)=$ false
$\mathcal{B} \llbracket b_{1} \wedge b_{2} \rrbracket(s)=\mathcal{B} \llbracket b_{1} \rrbracket(s) \wedge \mathcal{B} \llbracket b_{2} \rrbracket(s)$

## Free Variables

The free variables of an arithmetic expression $\boldsymbol{a}$ are defined to be the set of variables occurring in it:

$$
\begin{aligned}
F V(n) & =\emptyset \\
F V(x) & =\{x\} \\
F V\left(a_{1}+a_{2}\right) & =\boldsymbol{F V}\left(a_{1}\right) \cup F V\left(a_{2}\right) \\
F V\left(a_{1} \star a_{2}\right) & =F V\left(a_{1}\right) \cup \boldsymbol{F V}\left(a_{2}\right) \\
F V\left(a_{1}-a_{2}\right) & =F V\left(a_{1}\right) \cup \boldsymbol{F V}\left(a_{2}\right)
\end{aligned}
$$

Exercise) Define free variables of boolean expressions.

## Property of Free Variables

Only the free variables influence the value of an expression.

## Lemma

Let $s$ and $s^{\prime}$ be two states satisfying that $s(x)=s^{\prime}(x)$ for all $x \in \boldsymbol{F} \boldsymbol{V}(a)$. Then, $\mathcal{A} \llbracket a \rrbracket(s)=\mathcal{A} \llbracket a \rrbracket\left(s^{\prime}\right)$.

## Lemma

Let $s$ and $s^{\prime}$ be two states satisfying that $s(x)=s^{\prime}(x)$ for all $\boldsymbol{x} \in \boldsymbol{F} \boldsymbol{V}(\boldsymbol{b})$. Then, $\mathcal{B} \llbracket b \rrbracket(s)=\mathcal{B} \llbracket b \rrbracket\left(s^{\prime}\right)$.

## Substitution

- $a\left[y \mapsto a_{0}\right]$ : the arithmetic expression that is obtained by replacing each occurrence of $\boldsymbol{y}$ in $\boldsymbol{a}$ by $\boldsymbol{a}_{0}$.

$$
\begin{aligned}
n\left[y \mapsto a_{0}\right] & =n \\
x\left[y \mapsto a_{0}\right] & = \begin{cases}a_{0} & \text { if } x=y \\
x & \text { if } x \neq y\end{cases} \\
\left(a_{1}+a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right)+\left(a_{2}\left[y \mapsto a_{0}\right]\right) \\
\left(a_{1} \star a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right) \star\left(a_{2}\left[y \mapsto a_{0}\right]\right) \\
\left(a_{1}-a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right)-\left(a_{2}\left[y \mapsto a_{0}\right]\right)
\end{aligned}
$$

- $s[\boldsymbol{y} \mapsto \boldsymbol{v}]$ : the state $s$ except that the value bound to $\boldsymbol{y}$ is $\boldsymbol{v}$.

$$
(s[y \mapsto v])(x)= \begin{cases}v & \text { if } x=y \\ s(x) & \text { if } \boldsymbol{x} \neq \boldsymbol{y}\end{cases}
$$

The two concepts of substitutions are related:

## Lemma

$\mathcal{A} \llbracket a\left[y \mapsto a_{0}\right] \rrbracket(s)=\mathcal{A} \llbracket a \rrbracket\left(s\left[y \mapsto \mathcal{A} \llbracket a_{0} \rrbracket(s)\right]\right)$ for all states $s$.

## Operational Semantics

Operational semantics is concerned about how to execute programs and not merely what the execution results are.

- Big-step operational semantics describes how the overall results of executions are obtained.
- Small-step operational semantics describes how the individual steps of the computations take place.
In both kinds, the semantics is specified by a transition system $(\mathbb{S}, \rightarrow)$ where $\mathbb{S}$ is the set of states (configurations) with two types:
- $\langle\boldsymbol{S}, s\rangle$ : a nonterminal state (i.e. the statement $\boldsymbol{S}$ is to be executed from the state $s$ )
- $s$ : a terminal state

The transition relation $(\rightarrow) \subseteq \mathbb{S} \times \mathbb{S}$ describes how the execution takes place. The difference between the two approaches are in the definitions of transition relation.

## Big-step Operational Semantics

The transition relation specifies the relationship between the initial state and the final state:

$$
\langle S, s\rangle \rightarrow s^{\prime}
$$

Transition relation is defined with inference rules of the form: A rule has the general form

$$
\frac{\left\langle S_{1}, s_{1}\right\rangle \rightarrow s_{1}^{\prime}, \ldots,\left\langle S_{n}, s_{n}\right\rangle \rightarrow s_{n}^{\prime}}{\langle S, s\rangle \rightarrow s^{\prime}} \text { if } \ldots
$$

- $S_{1}, \ldots, S_{n}$ are statements that constitute $\boldsymbol{S}$.
- A rule has a number of premises and one conclusion.
- A rule may also have a number of conditions that have to be fulfilled whenever the rule is applied.
- Rules without premises are called axioms.


## Big-step Operational Semantics for While

$$
\begin{gathered}
\overline{\langle x:=a, s\rangle \rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket(s)]} \\
\overline{\langle\text { skip }, s\rangle \rightarrow s} \\
\frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime} \quad\left\langle S_{2}, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime \prime}} \\
\frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b S_{1} S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { true } \\
\frac{\left\langle S_{2}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b S_{1} S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { false } \\
\frac{\langle S, s\rangle \rightarrow s^{\prime} \quad\left\langle\text { while } b S, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\langle\text { while } b S, s\rangle \rightarrow s^{\prime \prime}} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { true } \\
\frac{\langle\text { while } b S, s\rangle \rightarrow s}{} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { false }
\end{gathered}
$$

## Example

Let $s$ be a state with $s(x)=3$. Then, we have

$$
(\mathrm{y}:=1 ; \text { while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s) \rightarrow s[y \mapsto 6][x \mapsto 1]
$$

## Execution Types

We say the execution of a statement $S$ on a state $s$

- terminates if and only if there is a state $s^{\prime}$ such that $\langle S, s\rangle \rightarrow s^{\prime}$ and
- loops if and only if there is no state $s^{\prime}$ such that $\langle S, s\rangle \rightarrow s^{\prime}$.

We say a statement $S$ always terminates if its execution on a state $s$ terminates for all states $s$, and always loops if its execution on a state $s$ loops for all states $s$.
Examples:

- while true do skip
- while $\neg(x=1)$ do ( $y:=y \star x ; x:=x-1)$


## Semantic Equivalence

We say $S_{1}$ and $S_{2}$ are semantically equivalent, denoted $S_{1} \equiv S_{2}$, if the following is true for all states $s$ and $s^{\prime}$ :

$$
\left\langle\boldsymbol{S}_{1}, s\right\rangle \rightarrow s^{\prime} \quad \text { if and only if } \quad\left\langle\boldsymbol{S}_{2}, s\right\rangle \rightarrow s^{\prime}
$$

Example:
while $\boldsymbol{b}$ do $\boldsymbol{S} \equiv$ if $\boldsymbol{b}$ then ( $\boldsymbol{S}$; while $\boldsymbol{b}$ do $\boldsymbol{S}$ ) else skip

## Semantic Function for Statements

The semantic function for statements is the partial function:

$$
\begin{gathered}
\mathcal{S}_{b}: \operatorname{Stm} \rightarrow(\text { State } \hookrightarrow \text { State }) \\
\mathcal{S}_{b} \llbracket S \rrbracket(s)= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \rightarrow s^{\prime} \\
\text { undef } & \text { otherwise }\end{cases}
\end{gathered}
$$

Examples:

- $\mathcal{S}_{b} \llbracket \mathrm{y}:=1$; while $\neg(\mathrm{x}=1)$ do $(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1) \rrbracket(s[x \mapsto 3])$
- $\mathcal{S}_{b} \llbracket$ while true do skip $\rrbracket(s)$


## Summary of While

The syntax is defined by the grammar:

$$
\begin{aligned}
a & \rightarrow n|x| a_{1}+a_{2}\left|a_{1} \star a_{2}\right| a_{1}-a_{2} \\
b & \rightarrow \text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2} \\
c & \rightarrow x:=a \mid \text { skip }\left|c_{1} ; c_{2}\right| \text { if } b c_{1} c_{2} \mid \text { while } b c
\end{aligned}
$$

The semantics is defined by the functions:

$$
\begin{aligned}
& \mathcal{A} \llbracket a \rrbracket: \\
& \mathcal{B} \llbracket b \rrbracket \text { State } \rightarrow \mathbb{Z} \\
& \mathcal{S}_{b} \llbracket c \rrbracket \text { State } \rightarrow \mathbf{T} \\
& \text { State } \hookrightarrow \text { State }
\end{aligned}
$$

## Small-step Operational Semantics

The individual computation steps are described by the transition relation of the form:

$$
\langle S, s\rangle \Rightarrow \gamma
$$

where $\gamma$ either is non-terminal state $\left\langle S^{\prime}, s^{\prime}\right\rangle$ or terminal state $s^{\prime}$. The transition expresses the first step of the execution of $S$ from state $s$.

- If $\gamma=\left\langle\boldsymbol{S}^{\prime}, s^{\prime}\right\rangle$, then the execution of $\boldsymbol{S}$ from $s$ is not completed and the remaining computation continues with $\left\langle S^{\prime}, s^{\prime}\right\rangle$.
- If $\gamma=s^{\prime}$, then the execution of $S$ from $s$ has terminated and the final state is $s^{\prime}$.
We say $\langle\boldsymbol{S}, s\rangle$ is stuck if there is no $\gamma$ such that $\langle\boldsymbol{S}, s\rangle \Rightarrow \gamma$ (no stuck state for While).


## Small-step Operational Semantics for While

$$
\begin{gathered}
\overline{\langle x:=a, s\rangle \Rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket(s)]} \\
\overline{\langle\operatorname{skip}, s\rangle \Rightarrow s} \\
\frac{\left\langle S_{1}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, s^{\prime}\right\rangle} \\
\frac{\left\langle S_{1}, s\right\rangle \Rightarrow s^{\prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s^{\prime}\right\rangle} \\
\frac{\text { if } \left.b S_{1} S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}, s\right\rangle}{} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { true } \\
\frac{\text { if } \left.b S_{1} S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s\right\rangle}{} \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { false }
\end{gathered}
$$

$$
\overline{\langle\text { while } b} \boldsymbol{S}, s\rangle \Rightarrow\langle\text { if } \boldsymbol{b}(\boldsymbol{S} \text {; while } \boldsymbol{b} \boldsymbol{S}) \text { skip, } s\rangle
$$

## Derivation Sequence

A derivation sequence of a statement $S$ starting in state $s$ is either

- A finite sequence

$$
\gamma_{0}, \gamma_{1}, \gamma_{2}, \cdots, \gamma_{k}
$$

which is sometimes written

$$
\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots \Rightarrow \gamma_{k}
$$

such that

$$
\gamma_{0}=\langle S, s\rangle, \quad \gamma_{i} \Rightarrow \gamma_{i+1} \text { for } 0 \leq i \leq k
$$

and $\gamma_{\boldsymbol{k}}$ is either a terminal configuration or a stuck configuration.

- An infinite sequence

$$
\gamma_{0}, \gamma_{1}, \gamma_{2}, \cdots
$$

which is sometimes written

$$
\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots
$$

consisting of configurations satisfying $\gamma_{0}=\langle S, s\rangle$ and $\gamma_{i} \Rightarrow \gamma_{i+1}$ for $\mathbf{0} \leq \boldsymbol{i}$.

## Example

Let $s$ be a state such that $s(x)=5, s(y)=7, s(z)=0$. Consider the statement:

$$
(\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}) ; \mathrm{y}:=\mathrm{z}
$$

Compute the derivation sequence starting in $s$.

## Example: Factorial

Assume that $s(x)=3$.

$$
\begin{aligned}
& \langle\mathrm{y}:=1 \text {; while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s\rangle \\
& \Rightarrow\langle\text { while } \neg(\mathrm{x}=1) \text { do ( } \mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[y \mapsto 1]\rangle \\
& \Rightarrow\langle\text { if } \neg(x=1) \text { then ( }(y:=y \star x ; x:=x-1) \text {; while } \neg(x=1) \text { do ( } y:=y \star x ; x:=x-1) \text { ) } \\
& \text { else skip, } s[\boldsymbol{y} \mapsto 1]\rangle \\
& \Rightarrow\langle(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1) \text {; while } \neg(\mathrm{x}=1) \text { do ( } \mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[\boldsymbol{y} \mapsto 1]\rangle \\
& \Rightarrow\langle\mathrm{x}:=\mathrm{x}-1 \text {; while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[\boldsymbol{y} \mapsto 3]\rangle \\
& \Rightarrow\langle\text { while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[\boldsymbol{y} \mapsto 3][\boldsymbol{x} \mapsto 2]\rangle \\
& \Rightarrow \text { 〈if } \neg(x=1) \text { then ( }(y:=y \star x ; x:=x-1) \text {; while } \neg(x=1) \text { do ( } y:=y \star x ; x:=x-1) \text { ) } \\
& \text { else skip, } s[y \mapsto 3][x \mapsto 2]\rangle \\
& \Rightarrow\langle(y:=y \star x ; x:=x-1) \text {; while } \neg(x=1) \text { do ( } \mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[y \mapsto 3][x \mapsto 2]\rangle \\
& \Rightarrow\langle\mathrm{x}:=\mathrm{x}-1 \text {; while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[\boldsymbol{y} \mapsto 6][\boldsymbol{x} \mapsto 2]\rangle \\
& \Rightarrow\langle\text { while } \neg(\mathrm{x}=1) \text { do }(\mathrm{y}:=\mathrm{y} \star \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1), s[y \mapsto 6][x \mapsto 1]\rangle \\
& \Rightarrow s[y \mapsto 6][x \mapsto 1]
\end{aligned}
$$

## Other Notations

- We write $\gamma_{0} \Rightarrow^{i} \gamma_{i}$ to indicate that there are $i$ steps in the execution from $\gamma_{0}$ to $\gamma_{i}$.
- We write $\gamma_{0} \Rightarrow^{*} \gamma_{i}$ to indicate that there are a finite number of steps.
- We say that the execution of a statement $\boldsymbol{S}$ on a state $s$ terminates if and only if there is a finite derivation sequence starting with $\langle S, s\rangle$.
- The execution loops if and only if there is an infinite derivation sequence starting with $\langle S, s\rangle$.


## Semantic Function

The semantic function $\mathcal{S}_{s}$ for small-step semantics:
$\mathcal{S}_{s}: \mathrm{Stm} \rightarrow($ State $\hookrightarrow$ State $)$

$$
\mathcal{S}_{s} \llbracket S \rrbracket(s)= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \Rightarrow^{*} s^{\prime} \\ \text { undef } & \end{cases}
$$

## Summary of While

We have defined the operational semantics of While.

- Big-step operational semantics describes how the overall results of executions are obtained.
- Small-step operational semantics describes how the individual steps of the computations take place.
The big-step and small-step operational semantics are equivalent:


## Theorem

For every statement $S$ of While, we have $\mathcal{S}_{b} \llbracket S \rrbracket=\mathcal{S}_{s} \llbracket S \rrbracket$.

## Scope and Procedures

Consider the simple expression-oriented language:

| $P \rightarrow$ | E |
| :---: | :---: |
| $E \rightarrow$ | $n$ |
| \| | $\boldsymbol{x}$ |
| \| | $\boldsymbol{E}+\boldsymbol{E}$ |
| \| | $E-E$ |
| \| | zero? $\boldsymbol{E}$ |
| \| | if $\boldsymbol{E}$ then $\boldsymbol{E}$ else $\boldsymbol{E}$ |
| \| | let $\boldsymbol{x}=\boldsymbol{E}$ in $\boldsymbol{E}$ |
|  | read |

## Examples

- 1, 2, x, y
- $1+(2+3), x+1, x+(y-2)$
- zero? 1, zero? (2-2), zero? (zero? 3)
- if iszero 1 then 2 else 3, if 1 then 2 else 3
- let $\mathrm{x}=\mathrm{read}$ in $\mathrm{x}+1$
- let $\mathrm{x}=\mathrm{read}$

$$
\begin{aligned}
& \text { in let } \mathrm{y}=2 \\
& \text { in if iszero } x \text { then } y \text { else } x
\end{aligned}
$$

## Values and Environments

The set of values includes integers and booleans:

$$
v \in \operatorname{Val}=\mathbb{Z}+\text { Bool }
$$

and an environment is a function from variables to values:

$$
\rho \in E n v=\operatorname{Var} \rightarrow V a l
$$

Notations:

- []: the empty environment.
- $[\boldsymbol{x} \mapsto \boldsymbol{v}] \rho($ or $\rho[\boldsymbol{x} \mapsto \boldsymbol{v}])$ : the extension of $\boldsymbol{\rho}$ where $\boldsymbol{x}$ is bound to $\boldsymbol{v}$ :

$$
([x \mapsto v] \rho)(y)= \begin{cases}v & \text { if } x=y \\ \rho(y) & \text { otherwise }\end{cases}
$$

For simplicity, we write $\left[\boldsymbol{x}_{1} \mapsto \boldsymbol{v}_{1}, \boldsymbol{x}_{2} \mapsto \boldsymbol{v}_{2}\right] \rho$ for the extension of $\rho$ where $x_{1}$ is bound to $v_{1}, x_{2}$ to $\boldsymbol{v}_{2}$ :

$$
\left[x_{1} \mapsto v_{1}, x_{2} \mapsto v_{2}\right] \rho=\left[x_{1} \mapsto v_{1}\right]\left(\left[x_{2} \mapsto v_{2}\right] \rho\right)
$$

## Evaluation Rules

$$
\rho \vdash e \Rightarrow v
$$

$$
\overline{\rho \vdash n \Rightarrow n} \quad \overline{\rho \vdash x \Rightarrow \rho(x)}
$$

$$
\frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}} \quad \frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}-E_{2} \Rightarrow n_{1}-n_{2}}
$$

$$
\frac{\rho \vdash E \Rightarrow 0}{\rho \vdash \operatorname{read} \Rightarrow n} \quad \frac{\rho \vdash E \Rightarrow n}{\rho \vdash \text { zero } ? E \Rightarrow \text { true }} \quad \frac{\rho \neq 0}{\rho \vdash \text { zero? } E \Rightarrow \text { false }} n \neq 0
$$

$$
\frac{\rho \vdash E_{1} \Rightarrow \text { true } \quad \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \text { if } E_{1} E_{2} E_{3} \Rightarrow v} \quad \frac{\rho \vdash E_{1} \Rightarrow \text { false } \quad \rho \vdash E_{3} \Rightarrow v}{\rho \vdash \text { if } E_{1} E_{2} E_{3} \Rightarrow v}
$$

$$
\frac{\rho \vdash E_{1} \Rightarrow v_{1} \quad\left[x \mapsto v_{1}\right] \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \operatorname{let} x=E_{1} \text { in } E_{2} \Rightarrow v}
$$

## cf) Precise Interpretation

- The inference rules define a set $S$ of triples $(\rho, e, v)$. For readability, the triple was written by $\rho \vdash e \Rightarrow \boldsymbol{v}$ in the rules.
- We say an expression $e$ has semantics w.r.t. $\rho$ iff there is a triple $(\rho, e, v) \in S$ for some value $\boldsymbol{v}$.
- That is, we say an expression $e$ has semantics w.r.t. $\rho$ iff we can derive $\boldsymbol{\rho} \vdash \boldsymbol{e} \Rightarrow \boldsymbol{v}$ for some value $\boldsymbol{v}$ by applying the inference rules.
- We say an initial program $\boldsymbol{e}$ has semantics if []$\vdash \boldsymbol{e} \Rightarrow \boldsymbol{v}$ for some $\boldsymbol{v}$.


## Procedures

$$
\begin{array}{lll}
\boldsymbol{P} & \rightarrow & \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow & \boldsymbol{n} \\
& \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \\
& \boldsymbol{E}-\boldsymbol{E} \\
& \text { zero? } \boldsymbol{E} \\
& \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{read} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \\
& \boldsymbol{E} \boldsymbol{E}
\end{array}
$$

## Example

- let $f=\operatorname{proc}(x)(x-11)$
in (f (f 77))
- ( $(\operatorname{proc}(f)(f(f 77)))(p r o c(x)(x-11)))$


## Free/Bound Variables of Procedures

- An occurrence of the variable x is bound when it occurs without definitions in the body of a procedure whose formal parameter is x .
- Otherwise, the variable is free.
- Examples:
- proc (y) ( $\mathrm{x}+\mathrm{y}$ )
- proc (x) (let $y=1$ in $x+y+z)$
- proc (x) (proc (y) ( $x+y$ ))
- let $x=1$ in proc ( $y$ ) ( $x+y$ )
- let $x=1$ in proc ( $y$ ) ( $x+y+z$ )


## Static vs. Dynamic Scoping

What is the result of the program?

```
let x = 1
in let f = proc (y) ( }\textrm{x}+\textrm{y}\mathrm{ )
    in let x = 2
        in let g = proc (y) (x+y)
        in (f 1) + (g 1)
```

Two ways to determine free variables of procedures:

- In static scoping (lexical scoping), the procedure body is evaluated in the environment where the procedure is defined (i.e. procedure-creation environment).
- In dynamic scoping, the procedure body is evaluated in the environment where the procedure is called (i.e. calling environment)


## Why Static Scoping?

Most modern languages use static scoping. Why?

- Reasoning about programs is much simpler in static scoping.
- In static scoping, renaming bound variables by their lexical definitions does not change the semantics, which is unsafe in dynamic scoping.

```
let x = 1
in let f = proc (y) ( }\textrm{x}+\textrm{y}\mathrm{ )
    in let x = 2
    in let g = proc (y) (x+y)
        in (f 1) + (g 1)
```

- In static scoping, names are resolved at compile-time.
- In dynamic scoping, names are resolved only at runtime.


## Semantics of Procedures: Static Scoping

- Domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure } \\
\text { Procedure } & =\operatorname{Var} \times \boldsymbol{E} \times \text { Env } \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

The procedure value is called closures. The procedure is closed in its creation environment.

- Semantics rules:

$$
\begin{gathered}
\overline{\rho \vdash \operatorname{proc} x E \Rightarrow(x, E, \rho)} \\
\frac{\rho \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right) \quad \rho \vdash E_{2} \Rightarrow v}{\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}} \quad[x \mapsto v] \rho^{\prime} \vdash E \Rightarrow v^{\prime}
\end{gathered}
$$

## Examples

$$
\begin{aligned}
& \text { let } x=1 \\
& {[] \vdash \text { in let } f=\operatorname{proc}(y)(x+y) \Rightarrow 4} \\
& \text { in let } x=2 \\
& \text { in }(f 3)
\end{aligned}
$$

## Semantics of Procedures: Dynamic Scoping

- Domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure } \\
\text { Procedure } & =\operatorname{Var} \times \boldsymbol{E} \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

- Semantics rules:

$$
\overline{\rho \vdash \operatorname{proc} x} \boldsymbol{E} \Rightarrow(\boldsymbol{x}, \boldsymbol{E})
$$

$$
\begin{array}{ll}
\rho \vdash E_{1} \vdash(x, E) \quad & \rho \vdash E_{2} \Rightarrow v \quad[x \mapsto v] \rho \vdash E \Rightarrow v^{\prime} \\
& \rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}
\end{array}
$$

## Adding Recursive Procedures

The current language does not support recursive procedures, e.g.,
let $\mathrm{f}=\operatorname{proc}(\mathrm{x})(\mathrm{f} x)$
in (f 1)
for which evaluation gets stuck:

$$
[f \mapsto(x, f x,[])] \vdash f \Rightarrow(x, f x,[]) \quad \frac{[x \mapsto 1] \vdash f \Rightarrow ? \quad[x \mapsto 1] \vdash x \Rightarrow 1}{[x \mapsto 1] \vdash f x \Rightarrow ?}
$$

Two solutions:

- go back to dynamic scoping :-(
- modify the language syntax and semantics for procedure :-)


## Recursion is Not Special in Dynamic Scoping

With dynamic scoping, recursive procedures require no special mechanism. Running the program
let $f=\operatorname{proc}(x)(f x)$ in (f 1)
via dynamic scoping semantics

$$
\frac{\rho \vdash E_{1} \Rightarrow(x, E) \quad \rho \vdash E_{2} \Rightarrow v \quad[x \mapsto v] \rho \vdash E \Rightarrow v^{\prime}}{\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}}
$$

proceeds well:

$$
\frac{\frac{\vdots}{[f \mapsto(x, f x), x \mapsto 1] \vdash \mathrm{f} \times \Rightarrow}}{\frac{[f \mapsto(x, f x), x \mapsto 1] \vdash \mathrm{f} \mathrm{x} \Rightarrow}{[f \mapsto(x, f x)] \vdash \mathrm{f} 1 \Rightarrow}} \frac{\text { let } \mathrm{f}=\operatorname{proc}(\mathrm{x})(\mathrm{f} \text { x) in (f } 1) \Rightarrow}{}
$$

## Adding Recursive Procedures

| $P \rightarrow$ | $E$ |
| :---: | :---: |
| $E \rightarrow$ | $n$ |
| , | $\boldsymbol{x}$ |
| - | $E+E$ |
| \| | $E-E$ |
| \| | zero? $\boldsymbol{E}$ |
| \| | if $\boldsymbol{E}$ then $\boldsymbol{E}$ else $\boldsymbol{E}$ |
| 1 | $\begin{aligned} & \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\ & \text { read } \end{aligned}$ |
| 1 | $\begin{aligned} & \text { letrec } f(x)=E \text { in } E \\ & \text { proc } x \boldsymbol{E} \end{aligned}$ |
| 1 | $\boldsymbol{E} E$ |

## Example

```
letrec double(x) =
    if zero?(x) then 0 else ((double (x-1)) + 2)
in (double 1)
```


## Semantics of Recursive Procedures

- Domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure }+ \text { RecProcedure } \\
\text { Procedure } & =\text { Var } \times \boldsymbol{E} \times \text { Env } \\
\text { RecProcedure } & =\text { Var } \times \operatorname{Var} \times \boldsymbol{E} \times \text { Env } \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

- Semantics rules:

$$
\begin{gathered}
\frac{\left[f \mapsto\left(f, x, E_{1}, \rho\right)\right] \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \operatorname{letrec} f(x)=E_{1} \text { in } E_{2} \Rightarrow v} \\
\rho \vdash E_{1} \Rightarrow\left(f, x, E, \rho^{\prime}\right) \quad \rho \vdash E_{2} \Rightarrow v \\
{\left[x \mapsto v, f \mapsto\left(f, x, E, \rho^{\prime}\right)\right] \rho^{\prime} \vdash E \Rightarrow v^{\prime}} \\
\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}
\end{gathered}
$$

## States

- So far, our language only had the values produced by computation.
- But computation also has effects: it may change the state of memory.
- We will extend the language to support computational effects:
- Syntax for creating and using memory locations
- Semantics for manipulating memory states


## Motivating Example

- How can we compute the number of times $f$ has been called?

```
let f = proc (x) (x)
in (f (f 1))
```

- Does the following program work?
let counter $=0$

```
in let f = proc (x) (let counter = counter + 1
                                in x)
in let a = (f (f 1))
    in counter
```

- The binding of counter is local. We need global effects.
- Effects are implemented by introducing memory (store) and locations (reference).


## Two Approaches

Programming languages support references explicitly or implicitly.

- Languages with explicit references provide a clear account of allocation, dereference, and mutation of memory cells.
- e.g., OCaml, F\#
- In languages with implicit references, references are built-in. References are not explicitly manipulated.
- e.g., C and Java.


## A Language with Explicit References

$$
\begin{array}{ll}
\boldsymbol{P} & \rightarrow \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow \\
& \boldsymbol{n} \mid \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \mid \boldsymbol{E}-\boldsymbol{E} \\
& \text { zero? } \boldsymbol{E} \mid \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \mid \boldsymbol{E} \boldsymbol{E} \\
& \operatorname{ref} \boldsymbol{E} \\
!\boldsymbol{E} \\
\mid & \boldsymbol{E}:=\boldsymbol{E} \\
\boldsymbol{E} ; \boldsymbol{E}
\end{array}
$$

- ref $\boldsymbol{E}$ allocates a new location, store the value of $\boldsymbol{E}$ in it, and returns it.
- ! $\boldsymbol{E}$ returns the contents of the location that $\boldsymbol{E}$ refers to.
- $\boldsymbol{E}_{1}:=\boldsymbol{E}_{2}$ changes the contents of the location $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ by the value of $\boldsymbol{E}_{\boldsymbol{2}}$.
- $\boldsymbol{E}_{\mathbf{1}} ; \boldsymbol{E}_{\mathbf{2}}$ executes $\boldsymbol{E}_{\mathbf{1}}$ and then $\boldsymbol{E}_{\boldsymbol{2}}$ while accumulating effects.


## Example 1

- let counter = ref 0

$$
\begin{aligned}
& \text { in let } f=\text { proc }(x) \text { (counter }:=\text { ! counter }+1 ; \text { ! counter) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

- let $f=$ let counter $=$ ref 0 in proc (x) (counter := !counter + 1; !counter)
in let $a=(f 0)$

$$
\begin{gathered}
\text { in let } b=(f 0) \\
\text { in }(a-b)
\end{gathered}
$$

- let $f=\operatorname{proc}(x)$ (let counter $=$ ref 0


$$
\begin{gathered}
\text { in let } a=\left(\begin{array}{l}
f \\
\text { in let } b
\end{array}=(f 0)\right. \\
\text { in }(a-b)
\end{gathered}
$$

## Example 2

We can make chains of references:

```
let x = ref (ref 0)
in (!x := 11; !(!x))
```


## Semantics

Memory is modeled as a finite map from locations to values:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure }+ \text { Loc } \\
\text { Procedure } & =\operatorname{Var} \times \boldsymbol{E} \times \text { Env } \\
\rho \in \boldsymbol{E n v} & =\text { Var } \rightarrow \text { Val } \\
\sigma \in \mathbb{M} & =\text { Loc } \rightarrow \text { Val }
\end{aligned}
$$

Semantics rules additionally describe memory effects:

$$
\rho, \sigma \vdash E \Rightarrow v, \sigma^{\prime}
$$

## Semantics

Existing rules are enriched with memory effects:

$$
\begin{gathered}
\overline{\rho, \sigma \vdash n \Rightarrow n, \sigma} \quad \overline{\rho, \sigma \vdash x \Rightarrow \rho(x), \sigma} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow n_{1}, \sigma_{1}}{\rho, \sigma_{0} \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}, \sigma_{2}} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow{n_{2}}_{2} \\
\frac{\rho, \sigma_{0} \vdash E \Rightarrow 0, \sigma_{1}}{\rho, \sigma_{0} \vdash \text { zero? } E \Rightarrow \text { true, } \sigma_{1}} \quad \frac{\rho, \sigma_{0} \vdash E \Rightarrow n, \sigma_{1}}{\rho, \sigma_{0} \vdash \text { zero? } E \Rightarrow \text { false, } \sigma_{1}} n \neq 0 \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow \text { true, } \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { if } E_{1} E_{2} E_{3} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow \text { false }, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{3} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { if } E_{1} E_{2} E_{3} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad\left[x \mapsto v_{1}\right] \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { let } x=E_{1} \text { in } E_{2} \Rightarrow v, \sigma_{2}} \\
\frac{\rho, \sigma \vdash \operatorname{proc} x E \Rightarrow(x, E, \rho), \sigma}{\rho, \sigma_{0} \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right), \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2} \quad[x \mapsto v] \rho^{\prime}, \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3}} \\
\rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3}
\end{gathered}
$$

## Semantics

Rules for new constructs:

$$
\begin{gathered}
\frac{\rho, \sigma_{0} \vdash E \Rightarrow v, \sigma_{1}}{\rho, \sigma_{0} \vdash \operatorname{ref} E \Rightarrow l,[l \mapsto v] \sigma_{1}} l \notin \operatorname{dom}\left(\sigma_{1}\right) \\
\frac{\rho, \sigma_{0} \vdash E \Rightarrow l, \sigma_{1}}{\rho, \sigma_{0} \vdash!E \Rightarrow \sigma_{1}(l), \sigma_{1}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow l, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1}:=E_{2} \Rightarrow v,[l \mapsto v] \sigma_{2}} \\
\frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v_{2}, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1} ; E_{2} \Rightarrow v_{2}, \sigma_{2}}
\end{gathered}
$$

## A Language with Implicit References

$$
\begin{array}{ll}
\boldsymbol{P} & \rightarrow \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow \\
& \boldsymbol{n} \mid \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \mid \boldsymbol{E}-\boldsymbol{E} \\
& \text { zero? } \boldsymbol{E} \mid \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \mid \boldsymbol{E} \boldsymbol{E} \\
& \operatorname{set} \boldsymbol{x}=\boldsymbol{E} \\
\boldsymbol{E} ; \boldsymbol{E}
\end{array}
$$

- In this design, every variable denotes a reference and is mutable.
- set $\boldsymbol{x}=\boldsymbol{E}$ changes the contents of $\boldsymbol{x}$ by the value of $\boldsymbol{E}$.


## Examples

Computing the number of times f has been called:

- let counter $=0$

$$
\begin{aligned}
& \text { in let } f=\text { proc }(x) \text { (set counter }=\text { counter }+1 \text {; counter) } \\
& \text { in let } a=(f 0) \\
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

- let $f=$ let counter $=0$ in proc (x) (set counter = counter + 1; counter)
in let $a=(f 0)$

$$
\begin{aligned}
& \text { in let } b=(f 0) \\
& \text { in }(a-b)
\end{aligned}
$$

- let $f=\operatorname{proc}(x)$ (let counter $=0$
in (set counter = counter + 1; counter))

$$
\begin{aligned}
& \text { in let } a=\left(\begin{array}{l}
f \\
\text { in let } b=(f 0) \\
\text { in }(a-b)
\end{array}\right.
\end{aligned}
$$

## Exercise

What is the result of the program?

```
let f = proc (x)
    proc (y)
        (set x = x + 1; x - y)
in ((f 44) 33)
```


## Semantics

References are no longer values and every variable denotes a reference:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure } \\
\text { Procedure } & =\text { Var } \times \boldsymbol{E} \times \text { Env } \\
\rho \in \text { Env } & =\text { Var } \rightarrow \text { Loc } \\
\sigma \in \mathbb{M} & =\text { Loc } \rightarrow \text { Val }
\end{aligned}
$$

## Semantics

$$
\begin{aligned}
& \overline{\rho, \sigma \vdash n \Rightarrow n, \sigma} \quad \overline{\rho, \sigma \vdash x \Rightarrow \sigma(\rho(x)), \sigma} \\
& \frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow n_{1}, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow n_{2}, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}, \sigma_{2}} \quad \frac{\rho, \sigma_{0} \vdash E \Rightarrow 0, \sigma_{1}}{\rho, \sigma_{0} \vdash \text { zero? } E \Rightarrow \text { true, } \sigma_{1}} \\
& \frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow \text { true, } \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \text { if } E_{1} E_{2} E_{3} \Rightarrow v, \sigma_{2}} \\
& \frac{\rho, \sigma_{0} \vdash E \Rightarrow v, \sigma_{1}}{\rho, \sigma \vdash \operatorname{proc} x E \Rightarrow(x, E, \rho), \sigma} \quad \frac{\rho, \sigma_{0} \vdash \operatorname{set} x=E \Rightarrow v,[\rho(x) \mapsto v] \sigma_{1}}{} \\
& \frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad[x \mapsto l] \rho,\left[l \mapsto v_{1}\right] \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2}}{\rho, \sigma_{0} \vdash \operatorname{let} x=E_{1} \text { in } E_{2} \Rightarrow v, \sigma_{2}} l \notin \operatorname{dom}\left(\sigma_{1}\right) \\
& \rho, \sigma_{0} \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right), \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v, \sigma_{2} \\
& {[x \mapsto l] \rho^{\prime},[l \mapsto v] \sigma_{2} \vdash E \Rightarrow v^{\prime}, \sigma_{3}} \\
& \rho, \sigma_{0} \vdash E_{1} E_{2} \Rightarrow v^{\prime}, \sigma_{3} \\
& \frac{\rho, \sigma_{0} \vdash E_{1} \Rightarrow v_{1}, \sigma_{1} \quad \rho, \sigma_{1} \vdash E_{2} \Rightarrow v_{2}, \sigma_{2}}{\rho, \sigma_{0} \vdash E_{1} ; E_{2} \Rightarrow v_{2}, \sigma_{2}}
\end{aligned}
$$

## Summary

- Big-step semantics of While
- Small-step semantics of While
- Big-step semantics of Fun


## Homework 1

Define the semantics of the language that combines While and Fun:

$$
\boldsymbol{E} \rightarrow \begin{aligned}
& \text { skip } \\
& \boldsymbol{n}|\boldsymbol{x}| \text { true } \mid \text { false }\left|\boldsymbol{E}_{1}+\boldsymbol{E}_{2}\right| \boldsymbol{E}_{1}<\boldsymbol{E}_{2} \\
& \boldsymbol{x}:=\boldsymbol{E} \\
& \text { if } \boldsymbol{E}_{1} \boldsymbol{E}_{2} \boldsymbol{E}_{3} \\
& \text { while } \boldsymbol{E}_{1} \boldsymbol{E}_{2} \\
& \text { for } \boldsymbol{x}:=\boldsymbol{E}_{1} \text { to } \boldsymbol{E}_{2} \text { do } \boldsymbol{E}_{3} \\
& \text { let } \boldsymbol{x}:=\boldsymbol{E}_{1} \text { in } \boldsymbol{E}_{2} \\
& \text { let proc } \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{E}_{1} \text { in } \boldsymbol{E}_{2} \\
& \boldsymbol{f ( \boldsymbol { E } )} \\
& \boldsymbol{E}_{1} ; \boldsymbol{E}_{\mathbf{2}}
\end{aligned}
$$

Use $A^{A T} E X$ and submit the document via email to TA (Due 3/25 24:00).

