
AAA616: Program Analysis

Lecture 0 — Course Overview

Hakjoo Oh
2018 Spring

Hakjoo Oh AAA616 2018 Spring, Lecture 0 March 7, 2018 1 / 9

Basic Information

Instructor: Hakjoo Oh

Position: Assistant professor in Computer Science and Engineering,
Korea University

Expertise: Programming Languages

Office: 616c, Science Library

Email: hakjoo_oh@korea.ac.kr

Office Hours: 1:00pm–3:00pm Mondays (by appointment)

Course Website:

http://prl.korea.ac.kr/~pronto/home/courses/aaa616/2018/

Course materials will be available here.

Hakjoo Oh AAA616 2018 Spring, Lecture 0 March 7, 2018 2 / 9

http://prl.korea.ac.kr/~pronto/home/courses/aaa616/2018/

Software Failures in History

(1996) The Arian-5 rocket, whose development required 10 years and
$8 billion, exploded just 37s after launch due to software error (unsafe
type conversion).

(1998) NASA’s Mars climate orbiter lost in space. Cost: $125 million
(2000) Accidents in radiation therapy system. Cost: 8 patients died
(2007) Air control system shutdown in LA airport. Cost: 6,000
passengers stranded
(2012) Glitch in trading software of Knight Captal. Cost: $440 million
(2014) Airbag malfunction of Nissan vehicles. Cost: $1 million
vehicles recalled
. . . Countless software projects failed in history.

Hakjoo Oh AAA616 2018 Spring, Lecture 0 March 7, 2018 3 / 9

Recent Security Vulnerabilities

Hakjoo Oh AAA616 2018 Spring, Lecture 0 March 7, 2018 4 / 9

Towards Safe Software Technology

The technology for efficient software is mature.

Program → Interpreter → Result

However, technology for safe software is not. Current language
systems put almost all the burden of writing safe programs on the
programmers. This manual approach to safe software has proven
extremely unsuccessful.

Automated technology for analyzing the safety of programs:

Program → Analyzer → Interpreter → Result

Hakjoo Oh AAA616 2018 Spring, Lecture 0 March 7, 2018 5 / 9

Static Program Analysis

Technology for predicting SW behavior statically and automatically
I static: before execution, before sell / embed
I automatic: sw is analyzed by sw (“static analyzer”)

Applications
I bug-finding: e.g., find runtime failures of programs
I security: e.g., is this app malicious or benign?
I verification: e.g., does the program meet its specification?
I compiler optimization: e.g., automatic parallelization
I program synthesis, automatic patch generation, etc

Hakjoo Oh AAA616 2018 Spring, Lecture 0 March 7, 2018 6 / 9

Topics

In this course, we will focus on principles of program analysis (rather than
applications):

Programming language theory: semantic formalism, operational
semantics, denotational semantics

Static analysis approaches: Data-flow analysis, Constraint-based
analysis, Abstract Interpretation, Type and effect system

Prerequisites:

Programming languages, compiler, theory of computation

Hakjoo Oh AAA616 2018 Spring, Lecture 0 March 7, 2018 7 / 9

Course Materials

The Formal Semantics of Programming Languages by Glynn Winskel.
MIT Press.

Principles of Program Analysis by Flemming Nielson, Hanne Riis
Nielson, and Chris Hankin. Springer.

Hakjoo Oh AAA616 2018 Spring, Lecture 0 March 7, 2018 8 / 9

Grading (tentative)

Homework – 20%

Mid/Final exams – 30/40%

Attendance – 10%

Hakjoo Oh AAA616 2018 Spring, Lecture 0 March 7, 2018 9 / 9

