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Series foreword

'practice is widely recognized. Stimulated by technological advances, theoreticians have
been rapidly expanding the areas under study, and the time delay between theoreti- -
cal progress and its practical impact has been decreasing dramatically. Much publicity
has been given recently to breakthroughs in cryptography and linear programming, and
steady progress is being made on programming language semantics, computational ge-
ometry, and eflicient data structures. Newer, more speculative, areas of study include
relational databases, VLSI theory, and parallel and distributed computation. As this list
of topics continues expanding, it is becoming more and more difficult to stay abreast
of the progress that is being made and increasingly important that the most significant

Lrovides a forum in which important research topics can be presented in their entirety
and placed in perspective for researchers, students, and practitioners alike.

Michael R. Garey
Albert R. Meyer






Preface

about how programs behave. Not only is a mathematical model useful for various kinds
of analysis and verification, but also, at a more fundamental level, because simply the
activity of trying to define the meaning of program constriictions j:irecisely. can reveal
all kinds of subtleties of which it is important to be aware. _This'b_ook'i'ntrt)dﬁces the -
mathematics, techniques and concepts on which formal semantics rests.

For historical reasons the semantics of programming languages is often viewed as con-
sisting of three strands: | | '

Operational semantics describes the meaning of a programming language by spec-
ifying how it executes on an abstract machine. We concentrate on the method
-advocated by Gordon Plotkin in his lectures at Aarhus on “structural operational
semantics” in which evaluation and execution relations are specified by rules in a
way directed by the syntax.

Denotational semantics is a technique for defining the meaning of programming
languages pioneered by Christopher Strachey and provided with a mathematical
foundation by Dana Scott. At one time called “mathematicél"semantics,” it uses
the more abstract mathematical concepts of complete partial orders, continuous
functions and least fixed points. | |

ing proof rules for it within a program logic. The chief names associated with
this approach are that of R.W.Floyd and C.A.R.Hoare. Thus axiomatic 'sem‘an'tric's'
emphasises proof of correctness right from the start. - - +-

It would however be wrong to view these three styles as in opposition to each other. They

each have their uses. A clear operational semantics is ver;_fr,1,h_<-:-rl_1;>_f1'11'j in implementation.
tems, ﬁéeful 1 devel-;)ping as well as verifying programs. Denotational semantics provides
the deepest and most widely applicable techniques, underpinned by a rich mathematical
theory. Indeed, the different styles of semantics are highly dependent on eachother. For
example, showing that the proof rules of an axiomatic semantics are correct relies on an
underlying denotational or operational semantics. To show an _irhplementa.tion correct,
as judged against a denotational semantics, requires a proof that the operational and
denotaﬁiona,l semantics agree. And, in arguing about an operational semantics it can
be an enormous help to use a denotational semantics, which often has the advantage of
abstracting away from unimportant, implementation details, as well as providing higher-
level éoncepts with which to understand computational behaviour. Research of the last
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few years promises a unification of the different approaches, an approach in which we
can hOpe to see denotational, operatlona.l and loglcs of programs developed hand-in-hand.

An aim of thls book has been to show how operational and denotational semantlcs ﬁt-
together o .

The techmques used in semantics lean heavily on mathematical logic. They are not.
always easily accessible to a student of computer science or mathematics, without a good
background in logic. There is an attempt here to present them in a thorough and yet as
elementary a way as possible. For instance, a presentation of operational semantics leads
to a treatment of inductive definitions, and techniques for reasoning about operational
semantics, and this in turn places us in a good position to take the step of abstraction
to complete partial orders and continuous functions—the foundation of denotational
semantics. It is hoped that this passage from finitary rules of the operational semantics,
to continuous operators on sets, to continuous functions is also a help in understanding
why continuity is to be expected of computable functions. Various induction principles
are treated, including a general version of well-foundcd recursion, which is important
for defining functions on a set with a well-founded relation. In the more advanced work
on languages with recursive types the use of information systems not only provides an
elementary way of solving recursive domain equations, but also yields techniques for
relating operational and denotational semantics. |

Book description: This is a book based on lectures given at Cambridge and Aarhus
Universities. It is introductory and is primarily addressed to undergraduate and graduate
students in Computer Science and Mathematics beginning a study of the methods used
to formalise and reason about programming languages. It provides the mathematical
background necessary for the reader to invent, formalise and justify rules with which to -
reason about a variety of programming languages. Although the treatment is elementary,
several of the topics covered are drawn from recent résearch. The book contains many
exercises ranging from the simple to mini projects. | |
Starting with basic set theory, structural operational semantics (as advocated by
Plotkin) is introduced as a means to define the meaning of programming languages along
with the basic proof techniques to accompany such definitions. Denotational and ax-
iomatic semantics are illustrated on a simple language of while-programs, and full proofs
are given of the equivalence of the operational and denotational semantics and soundness
and relative completeness of the axiomatic semantics. A proof of Gddel’s incompleteness
theorem is included. It emphasises the impossibility of ever achlevmg a fully complete
axiomatic semantics. This is backed up by an appendix providing an introduction to the
theory of computability based or while programs. After domain theory, the foundations
of denotational semantics is presented, anid the semantics and methods of proof for sev-
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eral functional languages are treated. The simplest language is that of recursion equations
with both call-by-value and call-by-name evaluation. This work is extended to languages
with higher and recursive types, which includes a treatment of the eager and lazy -
calculi. Throughout, the relationship between denotational and operational semantics
is stressed, and proofs of the correspondence between the operational and denotational
semantics are provided. The treatment of recursive types—one of the more advanced
parts of the book—relies on the use of information systems to represent domains. The
book concludes with a chapter on parallel prdgramming languages, accompanied by a
discussion of methods for verifying nondeterministic and parallel programs.

How to use this book

The dependencies between the chapters are indicated below. It is hoped that this is a
help in reading, reference and designing lecture courses. For example, an Introductory
course on “Logic and computation” could be based on chapters 1 to 7 with additional
use of the Appendix. The Appendix covers computability, on’ the concepts of which
Chapter 7 depends—it could be bypassed by readers with a prior knowledge of this topic.
Instead, a mini course on “Introductory semantics” might be built on chapters 1 to 5,
perhaps supplemented by 14. The chapters 8, 10 and 12 could form a primer in “Domain
theory” —this would require a very occasional and easy reference to Chapter 5. Chapters
8-13 provide “A mathematical foundation for functional programming.” Chapter 14,
a survey of “Nondeterminism and parallelism,” is fairly self-contained relying, in the
main, just on Chapter 2; however, its discussion of model checking makes use of the
Knaster-Tarski Theorem, of which a proof can be found in Chapter 5.

Some of the exercises include small implementation tasks. In the course at Aarhus
it was found very helpful to use Prolog, for example to enliven the early treatment of
the operational semantics. The use of Standard ML or Miranda is perhaps even more
appropriate, given the treatment of such languages in the later éhapters‘-_.

Acknowledgements

Right at the start I should acknowledge the foundational work of Dana Scott and Gordon
Plotkin as having a basic influence on this book. As will be clear from reading the book,
it has been influenced a great deal by Gordon Plotkin’s work, especially by his notes for
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1 Basic set theory

This chapter presents the informal, logical and set-theoretic notation and coricepts we
shall use to write down and reason about our ideas. It simply presents an extension
of our everyday language, extended to talk about mathematical objects like sets; it is
not to be confused with the formal languages of programming languages or the formal
assertions about them that we’ll encounter later. |

This chapter is meant as a review and for future reference. It is suggested that on a
first reading it is read fairly quickly, without attempting to absorb it fully. |

1.1 Logical notation

We shall use some informal logical notation in order to stop our mathematicé.‘l sta,teme-nts‘
getting out of hand. For statements (or assertions) A and B, we shall commonly use
abbreviations like:

e A& B for (A and B), the conjunction of A and B,
* A= B for (4 implies B), which means (if A then B),

e A <= DB tomean (A iff B), which abbreviates (A if and only if B), and expresses
the logical equivalence of A and B.

We shall also make statements by forming disjunctions (A or B), with the self-evident

meaning, and negations (not 4), sometimes written —A, which is true iff A is false. There

1s a tradition to write for instance 7 £ O instead of =(7 < 5), which reflects what we

generally say: “7 is not less than 5” rather than “not 7 is less than 5.” |
The statements may contain variables (or unknowns, or place-holders), as in

(<3)& (y<7)

which is true when the variables r and y over integers stand for integers less than or
equal to 3 and 7 respectively, and false otherwise. A statement like P(z,y), which
invelves variables z, y, is called a predicate (or property, or relation, or condition) and it
only becomes true or false when the pair z, y stand for particular things. |
We use logical quantifiers 3, read “there exists”, and V, read “ for all”. Then you can

read assertions like |
Jdz. P(z)

as abbreviating “for some z, P(x)” or “there exists z such that P(x)”, and

Vz. P(:z:):
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‘as abbreviating “ for all z, P(x)” or “for any z, P(x)”. The statement

Sx,y,---,z.'P(:c,y,---,z)

abb;evia,tes | - | ,~ |
| Jzdy---3Jz. P(z,y,- -, 2),
and '
Vﬂ;:y: Tty 2. P(SE,y,"',Z)
abbreviates

VzVy.--Vz. P(z,y,---, 2).

Later, we often wish to specify a set X over which a quantifier ranges. Then one
 writes Vz € X. P(z) instead of Vz. z € X = P(a:) and Jdz € -X. P(z) instead of
3z.z € X & P(z).

There is another useful notation associated with quantifiers. Occasionally one wants
to say not just that there exists some z satisfying a property P(z) but also that z is the
unique object satisfying P(x). It is traditional to write

Jlz. P(x)
- as an abbreviation for
(3z. P(z)) & (Vy,2. P(y) & P(z) = y = 2)

which means that there is some z satisfying the property P and also that if any v, 2
both satisfy the property P they are equal. This expresses that there exists a unique z
satisfying P(x).

1.2 Sets

\
Intuitively, a set is an (unordered) collection of objects, called its elements or members.
We write a € X when a is an element of the set X. Sometimes we write e.g. {a,b,c,---}
for the set of elements a, b, c,
A set X is said to be a subset of a set 'Y, written X C Y, iff every element of X is an

element of Y, i.e.
XCY << Vze X. zeY.

A set is determined solely by its elements in the sense that two sets are equal iff they
have the same elements. So, sets X and Y are equal, written X = Y, iff every element
of A is a element of B and wice versa. This furnishes a method for showing two sets X
and Y are equal and, of course, is equivalent to showing X CY and Y C X.

{
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1.2.1 Sets and propertiés

Sometimes a, set is determined by a property, in the sense that the set has as elements
precisely those Wthh satisfy the property. Then we write o

X ={z | P(z)},

meaning the set X has as elements precisely all those z for which P(z) is true.
When set theory was being invented it was thought, first of all, that any property P(:r)

determmed a, set
{z | P(z)}.

It came as a shock when Bertrand Russell realised that assuming the existence of certain
sets described in this way gave rise to contradictions.

Russell’s paradox is really the demonstration that a contradiction arises from the liberal
way of constructing sets above. It proceeds as follows: consider the property

T

a way of writing “z is not an element of 2”. If we assume that properties determine sets,
Just as described, we can form the set

.R-——{:z':|3:¢$-}.

Either R € R or not. If so, i.e. R € R, then in order for R to qualify as an element of
R, from the definition of R, we deduce R ¢ R. So we end up asserting both something
and is negation—a contradiction. If, on the other hand, R ¢ R then from the definition
of R we see R € R—a contradiction again. Either R € R or R ¢ R lands us in trouble.

We need to have some way which stops us from considering things like R as a sets. In
general terms, the solution is to discipline the way in which sets are constructed, so that
starting from certain given sets, new sets can only be formed when they are constructed
by using particular, safe ways from old sets. We shall not be formal about 1t, but state
those sets we assume to exist right from the start and methods we allow for constructmg
new sets. Provided these are followed we avoid trouble like Russell’s paradox a,nd at the
same time have a rich enough world of sets to support most mathematics.

1.2.2 Some important sets

We take the existence of the empty set for granted, along with certain sets of basic
elements. |

Write (@ for the null. or empty set, and

w tor the set of natural numbers 0, 1.2.-- .
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- We shall also take sets of symbols like
{uan, “bna “Cﬂ, udyi, “B”, . 1- f:zn}

for granted, although we could, alternatively have represented them as particular num-
bers, for example. The equality relation on a set of symbols is that given by syntactic
identity; two symbols are equal iff they are the same. |

1.2.3 Constructions on sets

We shall take for granted certain operations on sets which enable us to construct sets
from given sets.

Comprehension: If X is a set and P(z) is a property, we can form the set
(z € X | P(z)}
which i1s another way of writing -
{x|ze X & P(z)}.

This is the subset of X' consisting of all elements x of X which satisfy P(z).

Sometimes we'll use a further abbreviation. Suppose e(z4,...,z,) is some expression
which for particular elements z; € X;,---z, € X, yields a particular element and
P(x,,...,z,) is a property of such z;,...,z,. We use

{C(IIZI}...,SCH) I.'I]_ = Xj[ & & xn-GXn & P(mla'-'mxn)}

to abbreviate

{y ' EII = Xl*:""':In S X?‘l' Yy = 8(.’51,...,!1:”)& P(:El!f"wxn)};
For exampile, .
{Z2m+1|lmew&m>1}

1s the set of odd numbers greater than 3.

Powerset: We can form a set consisting of the set of all subsets of a set, the so-called.
powerset:

Pow(X) = {Y | Y C X}.

Indexed sets: Suppose I is a set and that for any ¢ € { there is a unique object z;,
maybe a set itself. Then

tzi [2el}

s a set. The elements x; are said to be indezed by the elements i € 1.
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Big union: Let X be a set of sets. Their union

UX={a|3:rE-X.aEa:}

1s a set. When X = {z; |ie T } for some indexing set I we often write | X as

iel Ti-
Intersection: FElements are in the intersection X NY, of two sets X and Y, iff they

are 1n both sets, i.e. |
XﬂY={'a|a€X&a€Y}.-

Big intersection: Let X be a, nonempty set of sets. Then

ﬂXz{aIV:z:EX.aE:z:}

1s a set called its intersection.

When X = {z; [ie I} for a nonempty indexing set I we
often write (1 X as N -

icl Li-

Product: Given two elements a,b we can for

m a set (a, b) which is their ordered pair.
To be definite we can

take the ordered pair (a,b) to be the set {{a}, {a,b}}—this is
one particular way. of coding the idea of ordered pair as a set. As

ordered pairs, represented in this way, are
their second components are equal too, i.e

one would hope, two
equal iff their first components are equal and

(a,6) = (a",b) «= a=a' &b=1"
In proving pfdperties of ordered

pairs Zthlis' property should be sufficient irr@spective- of
the way in which we have represe

nted,o_rdered pairs as sets. ;

Exercise 1.1 Prove the property above holds of the suggested representation of ordered

paurs. {Don’t expect it to be too easy: Consult [39], page 36, or [47], page 23, in case of

difficulty.) | u
For sets X and Y, their product is the set

the set of ordered pairs of elements with the fi

A triple (a,b,c) is the set (a, (b, c)), and the product X x V x Z is the set of triples
{{z.y,2) |z€e X &yeY & 2 Z}. More generally X, x X2 X --+ x X, consists of the
set of n-tuples (z;,z,, ...  ZEn) = (z1, (z2. (23, - --))).

rst from X and the second from Y.
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Disjoint union: Frequently we want to join sets together but, in a way which, unlike
union, does not identify the same element when it comes from different sets. We do this
by making. copies of the elements so that when they are copies from different sets they
are forced to be dlstmct |

XoW X 1 W---W X, —({U}XXo)U({l}Xxl)U U ({n} x Xa).

In particular, for X &Y the copies ({0} x X) and ({1} x Y) have to be disjoint, in the
sense that

_ ({0} x X) N ({1} x Y) = 0
because any common element would be a pair with first element both equal to 0 and 1,
clearly impossible.

Set difference: We can subtract one set Y from another X , an operation which re-
moves all elements from X which are also in Y.

X\Y={zlzeX &xdY}.
1.2.4 The axiom of foundation

A set is built-up starting from basic sets by using the constructions above. We remark
that a property of sets, called the axiom of foundation, follows from our informal un-
derstanding of sets and how we can construct them. Consider an element b; of a set bg.
It is either .a basic element, like an 1nteger or a symbol, or a set. If b; is a set then it
must have been constructed from sets which have themselves been constructed earlier.
Intuitively, we expect any chain of memberships |

..bne...ebl.ebo

to end in some b,, which is some basic element or the empty set. The statement that any
such descending chain of memberships must be finite is called the axiom of foundation,
and is an assumption generally made in set theory Notice the axiom implies that no set
X can be a member of itself as, if this were so, we’d get the infinite descending chain

- Xe---eXeX,

—a contradiction.

1.3 Relations and funections

A binary relation between X and Y is an element of ’Pow(X X Y'), and so a subset of
pairs in the relation. When R is a relation R € X x Y we shall often write z Ry for

(z.y) € R.
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A partial functzon from X toY is a relatlon f CX X Y for whlch

Vfcy,y (Iy)ef&(wy)efiy Y.

- We use the notatmn f () = y when there is a y such that (z,y) € f and then say f (z)
is defined, and otherwise say f(z) is undefined. Sometimes we write f:xz— g, or just
T — y when f is understood, for y = f(zx). Occasmna.lly we write JllSt fz, w1thout the
brackets, for f(x).

A (total) function from X to Y is a partlal function from X to Y such that for all
z € X there is some y € Y such that f(z) = y. Although total functions are a special
kind of partial function it is traditional to understand something described as simply a
function to be a total function, so we always say explicitly when a function is partial.

Note that relations and functions are also sets.

To stress the fact that we are thinking of a partial function J from X to Y as taking
an element of X and vielding an element of Y we generally writeit as f: X — Y. To
indicate that a function f from X to Y is total we write f: X — Y.

We write (X — Y') for the set of all partial functions from.X to Y, and (X —Y) for
the set of all total functions.

Exercise 1.2 Why are we justified in calling (X — Y) and (X — Y) sets when X Y
are sets? | O

1.3.1 Lambda notation

It is sometimes useful to use the lambda notation (or A-notation) to describe functions. It
provides a way of refering to functions without having to name them. Suppose f: X - Y
1s a function which for any element z in X gives a value f(z) which is exactly described
by expression e, probably involving z. Then we sometime write

Ar € X.e

forthe function f. Thus
| | Az € X.e = {(z,e) | z € X},

so Az € X.e is just an abbreviation for the set of input-output values determined by the
expression e. For example, Az € w.(z + 1) is the successor function.

1.3.2 Composing relations and functions

We compose relations, and so partial and total functions, R between X and Y and S
between Y and Z by defining their composition, a relation between X- and Z, by

SoR=gef {(z,2) EX xZ |y €Y. (z,y) € R& (y.2) € S}
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Thus for functions f : X — Y andg:Y — Z thelr composition is the function gof : X —
Z. Each set X is associated with an identity function I'd y where Idy = {(z,z) | z € X}.

Exercise 1.3 Let R C X X Y SCYxZand T C 4 X W Convince yourself that
To(SoR) = (T'oS)oR (i.e. composition is associative)-and that RoIdy = =IdyoR=R
(i.e. identity functions act like identities with'respect to composition). O

A function f : X — Y has an inverse g : Y — X iff 9(f(x)) =z for all x € X, and
flg(y)) =y for all y Y. Then the sets X and Y are said to be in 1-I correspondence.
(Note a function with an inverse has to be total.)

Any set in 1-1 correspondence with a subset of natural numbers w is said to be count-

able.

Exercise 1.4 Let X and Y be sets. Show there is a 1-1 correspendence between the set
of functions (X — Pow(Y’)) and the set of relations Pow(X x Y). O

Cantor’s diagonal argument

Late last century, Georg Cantor, one of the pioneers in set theory, invented a method
of argument, the gist of which reappears frequently in the theory of computation. Cantor
used a diagonal argument to show that X and Pow(X ) are never in 1-1 correspondence
for any set X. This fact is intuitively clear for finite sets but also holds for infinite sets.
He argued by reductio ad absurdum, i.e., by showing that supposing otherwise led to a
contradiction:

Suppose & set X is in 1-1 corre5pondence with its powerset Pow(X). Let 6 : X —
Pow(X) be the 1-1 correspondence. Form the set

Y={£€X|-’B¢.9($)}

which is clearly a subset of X and therefore in correspondence with an element y € X.
That is f(y) = Y. Either y € Y or y ¢ Y. But both possibilities are absurd. For, if
y € ¥ then y € 6(y) soy ¢ Y, while, if y ¢ Y then y ¢ 6(y) so y € Y. We conclude
that our first supposition must be false so there is no set in 1-1 correspondence with its
powerset. |

Cantor’s argument is reminiscient of Russell’s paradox. But whereas the contradiction
in Russell’s paradox arises out of a fundamental, mistaken assumption about how to
construct sets, the contradiction in Cantor’s argument comes from denying the fact one
wishes to prove.

To see why it is called a diagonal argument, imagine that the set X, which we suppose IS
in 1-1 correspendence with Pow(X), can be enumerated as z¢, 21, Z9,* - -, Z,,. .. Imagine
we draw a, table to represent the I-1 correspondence 6 along the followmg lines. In the
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ith row and jth column is placed 1 if z; € 6(z;) and 0 otherwise. The table below for
instance, represents a situation where z¢ ¢ 6(z), z; € f(zg) and z; & 0(z;).

O(zo) O(z1) 6(z2) ---
o 0 1 1 : 1
I 1 1 1 0
o 0 0 1 0
I; 0 1 0 1

The set Y which plays a key role in Cantor’s argument is defined by running down the
diagonal of the table interchanging 0’s and 1’s in the sense that T 1S put in the set iff
the nth entry along the diagonal is a 0.

Exercise 1.5 Show for any sets X and Y, with Y containing at least two elements, that
there cannot be a 1-1 correspondence between X and the set of functions (X —-Y) O

1.3.3 Direct and inverse image of a relation

We extend relations, and thus partial and total functions, R : X x Y to functions on
subsets by taking

RA={yeY |3z €A (z,y) € R}
for A C X. The set RA is called the direct image of A under R. We define
R™'B={z€ X |3yeB. (z,y) € R}

for BCY. The set R"IB i1s called the inverse image of B under R. Of course, the same
notions of direct and inverse 1mage also apply in the spec1a1 case where the relation is a
function.

1.3.4 Equivalence relations

An eguivalence relation is a relation RC X x X on a set X which is

e reflexive: Vx € X. z Rz,
e symmetric: Vz,y € X. zRy = yRz and
e transitive: Vz,y,z € X. zRy & yRz = zRz2.

[f R 1s an equivalence relation on X then the (R-)equivalence class of an element T c X
s the subset {z}, =4.5 {y € X | yRx}.
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Exercise 1.6 Let R be an e,quiv.alence relation on a set X. Show if {z} , N{y}y # @
then {z}, = {y} g, for any elements z,y € X. | | D

Exercise 1.7 Let zRy be a relation on a set of sets X' which holds iff the sets x and Y
in X are in 1-1 correspondénce. Show that R-is an equivalence relation. C

Let R be a relation on a set X. Deﬁne R° = Idyx, the identity relation on the set X,
and R! = R and, assuming R" is defined, define

Rn+1 — RORR.

So, R™ is the relation R o --- o R, obtained by taking n compositions of R. Define the
transztwe closure of R to be the relation

U Rl

- new

Define the transitive, reflexive closure of a relation R on X to be the relation

= U R

néw -

so R* =Idx UR™.

Exerciée 1.8 Let R be a relation on a set X. Write R for the opposite, or converse,
relation R°? = {(y,z) | (z,y) € R}. Show (RU R°P)" is an equivalence relation. Show

R* U (R°P)* need not be an equivalence relation. )

1.4 Further reading -

Our presentation amounts to an informal introduction to the Zermelo-Fraenkel axioma-
-tisation of set theory but with atoms, to avoid thinking of symbols as being coded by
sets. If you'd like more material to read I recommend Halmos’s “Naive Set Theory” 147]
for a very readable introduction to sets. Another good book is Enderton’s “Elements of
set theory” [39], though this is a much larger work.



2 Introduction to operational semantics

This chapter presents the syntax of a programming language, IMP, a smal] language
of while programs. IMP is called an “imperative” language because program execution

involves carrying-out a series of explicit commands to change state. Formally, IMP’s
behaviour is described by rules which specify how its expressions are evaluated and its
commands are executed. The rules provide ari Operailonal semantics of IMP in that they
are close to giving an implementation of the language, for example, in the programming
language Prolog. It is also shown how they furnish a basis for simple proofs of equivalence

between commands: |
2.1 IMP—a simp'lé i’mperat-_ivé language

Firstly, we list the syntactic sets associated with IMP:

-

e numbers N, consisting of positive and negative integers with zero,
 truth values T = {true false}, |

* locations Loc,

¢ arithmetic expressions Aexp,

¢ boolean expressions Bexp,

e commands Com.

We assume the syntactic structure of numbers and locations is given. For instance,
the set Loc might consist of non-empty strings of letters or such strings followed by
digits, while N might be the set of signed decimal numerals for positive and negative
whole numbers—indeed these are the representations we use when considefing sp_eciﬁc
examples. (Locations are oft_e'n called program 'vla,riables but we reserve that term for
another concept.) o | o - | '

For the other syntactic sets we have to say how their elements are built-up. We’ll use
a variant of BNF (Backus-Naur form) as a way of writing down the rules of formation of
the elements of these syntactic sets. The formation rules will express things like:

It ag and a; are arithmetic expressions. then so is ag + a.

It’s clear that the symbols ag and a; are being used to stand for any arithmetic expression.
In our informal presentation of syntax we’ll use such metavariables to range over the
syntactic sets—the metavariables 20, a1 above are understood to range over the set of
arithmetic expressions. In presenting the syntax of IMP we']] follow the convention that
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® 711, range over numbers IN,
¢ X,Y range over lo'(ﬁa,tiOns Loc,
® a ran_géS"-“ovér afithmetie expressions Aexp,
* b ranges over boolean expressions Bexp, '
e cranges over commands Com.
The metavariables we use to ra.nge over the syntactic categoriés can be primed or sub-

scripted. So, e.g., X, X', Xo, X1,Y" stand for locations.
We describe the formation rules for arithmetic expressions Aexp by:

a::=n|X{ag+a1|ag—a1|a0xa,1.

The symbol. “:=" should be read as “can be” and the symbol “|” as “or”. Thus an
arithmetic expression a can be a number n or a location X or ag +'a; or ag — aj or
ag X ay, built from arithmetic expressions ag and a;.

Notice our notation for the formation rules of anthmetlc expressions does not tell us

how to parse
24+3x4-—035,

whether as 2+ ((3 x 4) — 5) or as (2 + 3) x (4 —5) etc.. The notation gives the so-called
abstract syntax of arithmetic expressions in that it simply says how to build up new
arithmetic expressions. For any arithmetic expression we care to write down it leaves us
the task of putting in enough parentheses to ernsure it has been built-up in a unique way.
It is helpful to think of abstract syntax as spemfylng the parse trees of a language; it 1S
the job of concrete syntaz to provide enough information through parentheses or orders
of precedence between operation symbols for a string to parse uniquely. Our concerns
are with the meaning of programming languages and not with the theory of how to write
them down. Abstract syntax suffices for our purposes.

Here are the formation rules for the whole of IMP

- For Aexp: |
ax=n|Xl|lay+a1|ay—a1|agxa.
For Bexp:
b 1= true-llfalse | ag = ag I ag S ai I—lb l bo /\bl l bo Vbl
For Com:

c:=skip | X :=a | co; | if b then Co else c1 | while b do ¢
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From a set-theory point of view this notation provides an inductive definition of the
syntactic sets of IMP, which are the least sets closed under the formation rules, in a
sense we'll make-clear in the next two chapters. For the moment, this notation should
be viewed as simply telling us how to construct elements of the syntactic sets.

We need some notation to express when two elements €9, €1 of the same syntactic set
are identical, in the sense of having been built-up in exactly the same way according to
the abstract syntax or, equivalently. having the same parse tree. We use €g = €; to mean
eo s identical to e;. The arithmetic expression 3 + 5 built up from the numbers 3 and
o 1s not syntactically identical to the expression 8 or 5 4 3, though of course we expect
them to evaluate to the same 1number; Thus we donot have 3+ 5 =5 + 3. Note we do

with the programming language Prolog (see e.g.[31]) program the formation rules of IMP
in it. Write a program to check whether or not €o = ey holds of syntactic elements €g,
€. - | (]

So much for the syntax of IMP. Let’s turn to its semantics, how programs behave
when we run them. |

2.2 The evaluation of arithmetic expressions

Most probably, the reader has an intuitive model with which to understand the be-
haviours of programs written in IMP, Underlying most models is an idea of - state
determined by what contents are in the locations. With respect to a state, an arithmetic
expression evaluates to an integer and a boolean expression evaluates to a truth value.
The resulting values can influence the execution of commands which will lead to changes
in state. Our formal description of the behaviour of IMP will follow this line. First we
define states and then the evaluation of integer and boolean expressions, and finally the
execution of commands. ,

The set of states 32 consists of functions ¢ : Loc —» N from locations to numbers. Thus
o(X) is the value, or contents, of location X in state o.

Consider the evaluation of an arithmetic expression a in a state ¢. We can represent
the situation of expression a walting to be evaluated in state o by the pair (a,0). We
shall define an evaluation relation between such pairs and numbers |

(a,0) - n
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meaning: expression a in state o evaluates to n. Call pairs (a, o), where a is an arithmetic
expression and o is a state, arithmetic-expression configurations.

Consider how we might expla.m to someone how to evaluate an anthmetm expressmn -
(ag + a1). We might say something along the lines of:

1. Evaluate ag to get a number ng as result and
2. Evaluate a; to get a number n, as result.

3. Then add ng and n; to get n, séy, as the result of evaluating ag + aj.

Although informal we can see that this specifies how to evaluate 4 sum in te’rmsl of how
to evaluate its summands; the specification is syntaz-directed. The formal specification of
the evaluation relation is given by rules which follow intuitive and informal descnptlons
like this rather closely.
- We specify the evaluation relation in a syntax—dlrected way, by the following ruIes
Evaluation of numbers:
(n,o) = n

Thus any number is already evaluated with itself as value.-

Evaluation of locations:
(X,0) — o(X)

Thus a location evaluates to its contents in a state.

" Evaluadiion of sums:

(ag,O') - T1Q (al O‘) — T .
i - where n is the sum of ng and n;.

(ap + a1,0) = n

Evaluation of subtractions:

(GU;J)_ — g (al_,a_) — 111

_ where n is the result of subtracting n; from ng.
(ap — a;,0) = n | | | | |

‘Evaluation of broducts:

(‘10:0) — 10 (alj G) — Ty

where n is the product of ng and n;.
- {ap X a1,0) = n |

How are we to read such rules? The rule for sums can be read as:
If {(ap,0) — ng and {(ay,0) — ny then {ag +a;,0) — n, where n is the sum of ng and n,.
The rule has a premise and a conclusion and we have followed the common practice of
wrltmg_ the rule with the premise above and the conclusion below a solid line. The rule
will be applied in derivations where the facts below the line are derived from facts above.
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Some rules like those for evaluating nuibers or locations require no premise. Sometimes
they are written with a line, for example, as in |

(n,0) = n’

Rules with empty premises are called azioms. Given any arithmetic expression a, state
o and number n, we take a in o to evaluate to n, i.e. (a,0) — n, if it can be derived from
the rules starting from the axioms, in a way to be made precise soon.

The rule for sums expresses that the sum of two expressions evaluates to the number
which is obtained by summing the two numbers which the summands evaluate to. It
leaves unexplained the mechanism by which the sum of two numbers is obtained. I
have chosen not to analyse in detail how numerals are constructed and the above rules
only express how locations and operations +,—, X can be eliminated from expressions
to give the number they evaluate to. If, on the other hand, we chose to describe a
particular numeral system, like decimal or roman, further rules would be required to
specify operations like multiplication. Such a level of description can be important when
considering devices in hardware, for example. Here we want to avoid such details—we
‘all know how to do simple arithmetic! |

The rules for evaluation are written using metavariables n, X, ap,a; ranging over the
appropriate syntactic sets as well as ¢ ranging over states. A rulé tnstance is obtained
by instantiating these to particular numbers, locations and expressions and states. For
example, when oy is the particular state, with 0 in each location, this is a rule instance:

(2,00) — 2 (3,00) — 3
(2 X 3,,0'0) — 6

So is this: | | '

(2x3,00) =12

though not one in which the premises, or conclusion, can ever be derived.

To see the structure of derivations, consider the evaluation of ¢ = (Init + 5) + (7 + 9)
in state gg, where Init is a location with o (Init) = 0. Inspecting the ful_es we see that
this requires the evaluation of (Init + 5) and (7 + 9) and these in turn may depend on
other evaluations. In fact the evaluation of {a,0¢) can be seen as depending on a tree of

evaluations:

(Init,00) =0 (5,00) =5  (7,00) =7 (9,00) — 3
((Init + 5),09) — 5 (7T+9,00) — 16 -
((Init + 5) + (7 + 9), 0g) — 21
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We call such a structure a derivation tree or simply a derivation. It is built out of
instances of the rules in such a way that all the premises of instances of rules which
occur are conclusions of instances of rules immediately above them, so nght at the top
come the axioms, marked by the lines with no premises above them. The conclusion of
the bottom-most rule is called the conclusion of the derivation. Something is said to be
derived from the rules precisely when there is a derivation with it as conclusion. |
In g_enera’.l, we write (a, o) — n, and say a in o evaluates to n, iff it can be derived from
the rules for the evaluation of arithmetic expressions. The particular derivation above
concludes with
B | ((Imt+5)+(7+9) ao)—+21

It follows that (Init + 5) + (7 +9) in state o evaluates to 21—just what we want.

Consider the problem of evaluating an arithmetic expression a in some state o. This
amounts to finding a derivation in which the left part of the conclusion matches {(a, o).
The search for a derivation is best achieved by trying to build a derivation in an upwards
fashion: Start by finding a rule with conclusion matching (a,#); if this is an axiom the
derivation is complete; otherwise try to build derivations up from the premises, and, if
successful, fill in the conclusion of the first rule to complete the derivation with conclision
of the form (a,0) — n.

Although it doesn’t happen for the evaluation of arithmetic expressions, in general,
more than one rule has a left part which matches a given configuration. To guarantee
finding a derivation tree with conclusion that matches, when one exists, all of the rules
with left part matching the configuration must be considered, to see if they can be the
conclusions of derivations. All possible derivations with conclusion of the right form must
be constructed “in parallel”.

In this way the rules provide an algorithm for the evaluation of arithmetic expressions
based on the search for a derivation tree. Because it can be implemented fairly directly
the rules specify the meaning, or semantics, of arithmetic expressions in an operational
way, and the rules are said to give an operational semantics of such expressions. There
_ are other ways to give the meaning of expressions in a way that leads fairly directly
to an implementation. The way we have chosen is just one—any detailed description
of an implementation is also an operational semantics. The style of semantics we have
chosen is one which is _'becbming prevalent however. It is one which is often called
structural operational semantics because of the syntax-directed way in which the rules
are presented. It is also called natural semantics because of the way derivations resemble
proofs in natural deduction—a method of constructing formal proofs. We shall see more
complicated, and perhaps more convincing, examples of operational semantics later.

The evaluation relation determines a natural equivalence relation on expressions. De-
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fine - -
ag ~ aj iff (Vn € NVo € L. (ag,a) — N < (al,a) — n),

which makes two"‘a';rithmetic expressions equivalent if they evaluate to the same value in
all states.

Exercise 2.2 Program the rules for the evaluation of arithmetic expreésions in Prolog
and/or ML (or another language of your choice). This, of course, requires a representation
of the abstract syntax of such expressions in Prolog and for ML. | D

2.3 The evaluation of boolean expressions

We show how to evaluate boolean expressions to truth values (true, false) with the
following rules:

(true, o) — true

-

(false, o) — false

(ag,0) — n (a1,0) = m

if n and m are equal
(a9 = a;1,0) — true ' -

(ag,0) > n {aj,0) —» m

if n and m are unequal
(ap = a1, 0) — false

(a0, 0) = n (a1,0) - m

It n is less than or equal to m
(ag < a;,0) — true

((10-,0’) — 71 (&1,0’) — TN

(a0 < ) > fal: if  is not less than or equal to m
Qg <~ a3,0) — 1alse -

(b,0) — true (b,0) — false

il e———

| (-—16, o) — false (—b,0) — true
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(bo,0) = tg  (b1,0) — 1
(bOAbI:G-) — 1

where ¢ is true if {o = true and ¢; = true, and is false otherwise.

_(_bg, 0‘_)_-—-* Lo (bl,cr) — 1)
(boVblEO’) — 1

where t 1s true if ‘to = true or {; = true, and is félse otherwise.

This time the rules tell us how to eliminate all boolean operators and connectives and
so reduce a boolean expression to a truth value. ,

Again, there is a natural equivalence relation on boolean expressions. Two expressions
are equivalent if they evaluate to the same truth value in all states. Define

bp ~ by iff ViVo € . {(bp,0) =t < (b;,0) — ¢.

It may be a concern that our method of evaluating expressions is not the most efficient.
For exampie, acéording to the present rules, to evaluate a conjunction by A b, we must
evaluate both by and b; which is clearly unnecessary if by evaluates to false before by is
fully evaluated. A more efficient evaluation strategy is to first evaluate bg and then only
in the case where its evaluation yields true to proceed with the evaluation of b,. We can
call this strategy left-first-sequential evaluation. Its evaluation rules are:

(bg,ﬂ') — false
(bg A by, 0) — false

(bg,0) — true (b;,o) — false
 (bgAby,0) — false
(bo,0) — true (b;,0) — true

| —Zgg Aby, o) — true

‘Exercise 2.3 Write down rules to evaluate boolean expressions of the form bog V b ,
which take advantage of the fact that there is no need to evaluate b in true V b as the
result will be true independent of the result of evaluating b. The rules written down
should describe a method of left-sequential evaluation. Of course, by symmetry, there is
a method of right-sequential evaluation. | C

Exercise 2.4 Write down rules which express the “parallel” evaluation of bo and b in
bo Vb, so that by Vb, evaluates to true if either by evaluates to true, and b, 1s unevaluated.

or by evaluates to true, and by is unevaluated.
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It may have been felt that we side-stepped too many issues by assuming we were given
mechanisms to perform addition or conjunction of truth values for example. If so try:

Exercise 2.5 Give a semantics in the same style but for expressions which evaluate to
strings (or lists) instead of integers and truth-values. Choose your own basic operations
on strings, define expressions based on them, define the evaluation of expressions in the =
style used above. Can you see how to use your language to implement the expression
part of IMP by representing integers as strings and operations on integers as operations
on strings? (Proving that you have implemented the operations on integers correctly is

quite hard.) O

2.4 The execution of commands

The role of expressions is to evaluate to values in a particular state. The role of a
program, and so commands, is to execute to change the state. When we execute an
IMP program we shall assume that initially the state is such that all locations are set to
zero. 5o the initial state oo has the property that oy (X)) =0 for all locations X. As we
all know the execution may terminate in a final state, or may diverge and never yield a
final state. A pair (c,o) represents the ( command) configuration from which it remains
to execute command c¢ from state . We shall define a relation

(c,0) — o’

which means the (full) execution of command c in state ¢ terminates in final state o’.

For example,
(X :=5,0) > ¢

where ¢’ is the state ¢ updated to have 5 in location X. We shall use this notation:

Notation: Let o be a state. Let m € N. Let X € Loe. We write tr[’m/jX | for the state
Q_bt&imd from o by replacing its contents in X by m, i.e. define -
m ifY =X,
olm/X)(Y) = {U(Y) ifY # X.
Now we can instead write

(X :=5,0) — 0[5/ X]}.

The execution relation for arbitrary commands and states is given by the following rules.
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Rules for commands

Atomic commands:
(skip,0) — o

(@,0) —=m
(X :=a,0) — olm/X]}

Sequencing:
7 g " ey, 0") — o
)

(co,0) — 0"
(CO; Ci, U) — J’

Conditionals:
| | (b,0) — true (cg,0) — o’

(if b then c¢g else ¢;,0) — o

(b,0) — false (c1,0) — 0

-~

(if b then ¢ else ¢;,0) — o’
While-loops:

(b, o) — false

(while b do c,0) — o

(b,0) — true (¢,0) = o” (while bdo c,o") — 0’

(while b do c, c;_)_*-z» o

Again there is a natural equivalence relation on commands. Define
co ~ ¢ iff Vo,0" € Z. {cg,0) —= 0’ <= {(¢1,0) = 0"

Exercise 2.6 Complete Exercise 2.2 of Section 2.2, by coding the rules for the evaluation

of boolean expressions and execution of commands in Prolog and/or ML. .

Exercise 2.7 Let w = while true do skip. By considering the form of derivations,
explain why, for any state o, there is no state o’ such that {w,o) — o’. O

2.5 A simple proof

The operational semantics of the syntactic sets Aexp, Bexp and Com has been given
using the same method. By means of rules we have specified the evaluation relations of
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both types of expressions and the execution relation of commands. All three relations
are examples of the general notion of transition relations, or transition systems, in which
‘the configurations are thought of as some kind of state and the relations as expressing
possible transitions, or changes, between states. For Instance, we can consider each of

(3,0) — 3, (true, O'); --> true, (X .= 2, o) — tr[2/X ].

to be transitions. |
Because the transition systems for IMP are given by rules, we have an elementary, but

very useful, proof technique for proving properties of the operational semantics IMP.
As an illustration, consider the execution of a while-command w = while b do ¢, with
b € Bexp,c € Com, in a state 0. We expect that if b evaluates to true in o then w
executes as ¢ followed by w again, and otherwise, in the case where b evaluates to false,
that the execution of w terminates immediately with the state unchanged. This informal
explanation of the execution of commands leads us to expect that for all states 0,0’

(w,0) — o' iff (if b then c;w else skip, o) — o',
t..e., that the following proposition holds.
Proposition 2.8 Let w = while b do ¢ with b € Bexp, ¢ € Com. Then
W ~ lf b then c;w else skip.
Proof: We want to show I
(w,0) — o iff (if b then ¢;w else skip,o) — o',

for all states o, o’

“=": Suppose (w,o) — ¢’ for states o,¢’. Then there must be a derivation of (w,o) —
o'. Consider the possible forms such a derivation can take. Inspecting the rules for
commands we-see the final rule of the derivation is either

(b,c) — false

5 1 =)
(‘IU,O‘) — T ( )

or (b,0) — true {(c,0) — o” (w,0") — o
- - c_\WY9/,—0o \WwW, 0 )— a0 2 =)

(w,0) — o'

In case (1 =), the derivation of (w,s) — ¢’ must have the form

(b,0) — false

(w,0) - o
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which includes a derivation of (b,0) — false. Usmg this derivation we can build the
followmg derivation of (if b then c; w else skip,g) — o: '

(b, o) ——> false (skip,0) — o

(if b then c;w else skip,o) — o

In case (2 =), the derivation of (w, o) — o’ must take the form

(b, a) — true (c, a) — g’ (w,_ g’y — o’

(w,o0) — o’

which includes derivations of (b, o) — true, (c,0) — ¢” and (w,o”) — o’. From these
we can obtain a derivation of {¢;w,0) — o', viz

=l e———

(c,0) = 0" (w,o") — &

(c;w,o0) — of

We can incorporate this into a derivation:

-(—(:,:(T) N7 (w—:gﬁ';_} p

(b,c) — true (c;w,0) — o

(lf b then ':C; w else S]:(ip, 0') — 7!
In either case, (1 =) or (2 =), we obtain a derivation of
(if b then ¢;w else skip,o) — ¢’
from a derivation of
(w,o) — o’.
Thus
(w,0) — ¢ implies (if b then c;w else skip, o) — o’

for a.ny states o.¢’.

. We also want to show the converse, that (if b then c; w else skip, o) — ¢’ implies
{w o) — ', for all states a,a’. | )
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Suppose (if b then c; w else skip, o) — o, for states o, 0’. Then there is a derivation
with one of two possible forms: . e R
 (b,0) — false (skip.o) = o -
(if b then c;w else skip,c) — ¢ . |
(b,0) — true (é;w,a) — o'
— 2 <)

(if b then c;w else skip, o) — o'

where in the first case, we also have o’ = ¢, got by noting the fact that

(skip,o) — o
is the only possible derivation associated with skip.

From either derivation, (1 <=) or (2 <), we can construct a derivation of (w,0) — o’.

The second case, (2 <), is the more complicated. Derivation (2 <) includes a derivation
of {(¢;w, o) — o' which has to have the form

(e, a) — o (w,0") — o'

(c;w,0) - o

for some state o”. Using the derivations of {c,¢) — ¢ and (w, o” ) — o/ with that for
(b,0) — true, we can produce the derivation

(b:a) — true Z-c, o) — c:.r'_’ (w,d") — ¢

R

(w,0) — o

-AMore directly, from the derivation ( 1 <=), we can construct a derivation of (w,0) — o'
(How?). |

Thus if (if b then c; w else skip,o) — ¢’ then (w,0) — o' for any states o, 0”.
We can now conclude that

)

(w,o) — o' iff (if b then c;w else skip,o) — ¢’

tor all states o, 0, and hence

w ~ if b then c;w else skip

as required.
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~This simple proof of the equivalence of while-command and its conditional unfolding
exhibits an important technique: in order to prove a property of an operational semantics
it is helpful to consider the various possible forms of derivations. This idea will be used
again and again, though never again in such laborious detail. Later we shall meet other
techniques, like “rule induction” which, in prin¢iple, ¢an supplant the technique used
here. The other techniques are more abstract however, and sometimes more confusing
to apply. So keep in mind the technique of cons1der1ng the forms of derivations when
reasoning about operational semantics.

2.6 Alternative semantics

The evaluation relations |
(@,0) = nand (b,o) — ¢

specify the evaluation of expressions in rather large steps: given an expression and a
state they yield a value directly. It is possible to give rules for evaluation which capture
single steps in the evaluation of expressions. We could instead have defined an evaluation
relation between pairs of configurations, taking e.g.

(a': U) 1 (a’,a’) |

to mean one step in the evaluation of a in state o yields a’ in state ¢’. This intended
meaning is formalised by taking rules such as the following to specify single steps in the
left-to-right evaluation of sum.

(j{g,{)’) —1 (&6,0‘) B
(ao +- (11,0') — ((IB -+ (11,0')

(Ia'laal_"’l (a'i:llo')
(n+a1,a).—>1 (n—t—ai,a)

(n+m,o0) —; (p,o)

where p is the sum of m and n.

Note how the rules formalise the intention to evaluate sums in a left-to-right sequential
fashion. To spell out the meaning of the first sum rule above, it says: if one step in the
evaluation of ag in state o leads to ag in state o then one step in the evaluation of ag+a
1In state o leads to ay + a; in state 0. So to evaluate a sum first evaluate the componeht
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expression of the sum and when this leads to a number evaluate the second component
of the sum; and finally add the corresponding numerals (and we assumie a mechanism to
do this is given). . '- el

Exércise 29 _Complete the task, begun ':é.bove,_ of writing down the rules for — 1, one
step in _the evaluation of integer and boolean expressions. What evaluation strategy have -
you adopted (left-to-right sequential or ---) ? 0

We have chosen.to define full execution of commands in particular states through a
relation | | >
(¢,0) — o’ |
between command configurations. We could instead have based our explanation of the

execution of commands on a relation expressing single steps in the execution. A single
step relation between two command configurations

(c,0) —1 (¢, o)

means the execution of one instruction in ¢ from state o leads to the configuration in
which it remains to execute ¢’ in state o’/. For example,

(X =Y = 1,0') —1 (Y = 1,,0‘[5/X]).

Of course, as this example makes clear, if we consider contmuing the execution, we need
some way to represent the fact that the command is empty. A configuration with no
command left to execute can be represented by a state standing alone. So continuing the
execution above we obtain

(X :=5;Y :=1,0) =1 (Y := 1,0[5/X]) —, a5/ X][1/Y].

We leave the detailed presentation of rules for the definition of t_'his one-step execution
relation to an exercise. But note there is some choice in what is regarded as a single
step. If | '
(b,0) —1 (true, o)
do we wish - |
~ (if b then ¢ else ¢1,0) —1 (cg,0)
or |

(if b then ¢ elée c1,0) —; (if true then ¢j else ¢;, o)

to be a single step? For the language IMP these issues are not critical, but they become
so in languages where commands can be executed in parallel; then different choices can
effect the final states of execution sequences.
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Exercise 2.10 Write down a full set of rules for —; on command configurations, so
- stands for a single step in the execution of a command from a particular state, as
discussed above. Use command configurations of the form {c, o) and ¢ when there is no
more command left to execute. Point out where you have made a choice in the rules
between alternative understandmgs of what constitutes a single step in the execution.
(Showing {c,o) —} o' iff (c,0) — o' is hard and requlres the apphcatlon of induction

principles introduced in the next two chapters.) O

Exercise 2.11 In our language, the evaluation of expi'essions has no side effects—their
evaluation does not change the state. If we were to model side-effects it would be natural
to consider instead an evaluation relation of the form

{a,0) — (n,a‘f)

where ¢’ is the state that results from the evaluation of a in original state . To introduce
side efiects into the evaluation of arithmetic expressions of IMP, extend them by adding
a construct '

c resultis a

where ¢ is a command and a is an arithmetic expression. To evaluate such an expression,
the command c is first executed and then a evaluated in the changed state. Formalise
this 1dea by first giving the full syntax of the language and then giving it an operational
semantics. | - : im)

2.7 Further reading

A convincing demonstration of the wide applicability of “structural operational seman-
tics”, of which this chapter has given a taste, was first set out .by Gordon Plotkin in
his lecture notes for a course at Aarhus University, Denmark, in 1981 [81]. A research
group under the direction Gilles Kahn at INRIA in Sophia Antipolis, France are currently
working on mechanical tools to support semantics in this style; they have focussed on
evaluation or execution to a ﬁnal value or state, so following their lead this particular kind
of structural operational semantics is sometimes called “natural semantics” [26, 28, 29].
We shall take up the operational semantics of functional languages, and nondetermin-
1Ism and parallelism in later chapters, where further references will be presented. More
on abstract syntax can be found in Wikstrém’s book [101], Mosses’ chapter in [68] and
Tennent’s book {97].
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Proofs of properties of pfograms often rely on the application of a proof method, cir'really
- a family of proof methods, called induction. The most commonly used forms of induction
are mathematical induction and structural induction. These are both special cases of a

powerful proof method called well-founded induction.
3.1 Mathematical induction

The natural numbers are built-up by starting from 0 and repeatedly adjoining successors.
The natural numbers consist of no more than those elements which are obtained in this
way. There is a corresponding proof principle called mathematical induction.

Let P(n) be a a property of the natural numbers n = 0,1,--.. The principle of
mathematical induction Sa_.ys that in order to show P(n) holds for all natural numbers 7
it is sufficient to show | o | |

e P(0) is true

e If P(m) is true then so is P(m + 1) for any natural number m.

We can state it more succinctly, using some logical notation, as
(P(0) & (Vm € w. P(m) = P(m +1)) = ¥Yn € w. P(n).

The principle of mathematical induction is Intuitively clear: If we know P(0) and we
have a method of showing P(m -+ 1) from the assumption P(m) then from P(0) we
know P(1), and applying the method again, P(2), and then P(3), and so on. The
assertion P(m) is called the induction hypothesis, P(0) the basis of the induction and
(Vm € w. P(m) = P(m + 1)) the induction step. - I

Mathematical induction shares a feature with all other methods of proof by induction,
that the first most obvious choice of induction hypothesis may not work in a proof.
Imagine it is required to prove that a property P holds of all the natural numbers.
Certainly it is sensible to try to prove this with P(m) as induction hypothesis. But quite
often proving the induction step Ym € w. (P(m) = P(m+1)) is impossible. The rub can
come in proving P(m + 1) from the assumption P(m) because the assumption P(m) is
not stfong enough. The way to tackle this is to strengthen the induction hypothesis to a
property P’(m) which implies P(m). There is an art in finding P’(m) however, because
i proving the induction step, although we have a stronger assumption P/(m), it is at
the cost of having more to prove in P’(m + 1) which may be unnecessarily difficult, or
impossible. | B |

In showing a property @(m) holds inductively of all numbers m, it might be that the
property’s truth at m + 1 depends not just on its truth at the predecessor m but on
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its truth at other numbers preceding m as well. It is sensible to strengthen @Q(m) to an
induction hypothesis P(m) standing for Yk < m. Q(k). Taking P(m) to be this property
in the statement of ordinary mathematical induction we obtain |

Vk < 0. Q(k)
for the basis, and - .
Ym e w.((Vk <m. Q(k)) = (VE<m+1. Q(k)))
for the induction step. However, the basis is vacuously true—there are no natural num-
bers strictly below 0, and the step is equivalent to
vm € w.(Vk <m. Q(k)) = Q(m).
We have obtained course-of-values induction as a special form of mathematical induction:

(Vm € w.(Vk <m. Q(k)) = Q(m)) = Vn ¢ w. Q(n).

Exercise 3.1 Prove by mathematical induction that the following property P holds for

all natural numbers: |
P(n) ——— def):l__.l(zi — 1) = nz.'

(The notation ¥!_, s; abbreviates s + sk41 + - -- + s; when k,[ are integers with k < [.)

Exercise 3.2 A string is a sequence of symbols. A string ajas - - - a, with n positions
occupied by symbols is said to have length n. A string can be empty in which case it is
said to have length 0. Two strings s and ¢ can be concatenated to form the string st. )
Use mathematical induction to show there is no strmg u which satisfies au = ub for two

distinct symbols a and b.

3.2 Structural induction

‘We would like a technique to prove “obvious” facts like
(a,0) = m & {(a,0) > m'=m=m'

for all arithmetic expressions a, states ¢ and numbers m,m’. It says the evaluation of
“arithmetic expressions in IMP is deterministic. The standard tool is the principle of
structural induction. We state it for arlthmetlc expressions but of course it applies more

generally to all the syntactic sets of our language IMP.
Let P(a) be a property of arithmetic expressions a. To show P(a) holds for all arith-

mmctic expressions a it is Sufﬁment to show:
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o For all numerals m it is the case that P(m) holds.
e For all locations X it is the case that P(X) holds.

- & For alb aritl‘i“ni_’etic expressions dg and ay, if P(ag) and P(a) hold then so does

e For all arithmetic expressmns ao and a3, if P(ag) and P(ay) hold then so does
P (ao — (1.1) |

it 1s true of atomic expressmns and is preserved by all the methods of formmg arithmetic
expressions. Again this principle is intuitively obvious as arithmetic expressions are
precisely those built-up according to the cases above. It can be stated more compactly

using logical notation:

(Vm € N. P(m)) & (VX € Loc. P(X)) &

(Vao,a; € Aexp. P(ao) & P(a1) = P(ay + ay)) &
(Vag, a; € Aexp. P(ag) & P(a;) = Plag — a,)) &
(Vao,al € Aexp. P(ag) & P(al) = P(ag x a;))

equivalent to it. , |

Sometimes a degenerate form of structural induction is sufficient. An argument by
cases on the structure of expressions will do when a property is true of all €Xpressions
simply by virtue of the different forms expressions can take, without having to use the
fact that the property holds for subexpressions. An argument by cases on arithmetic
expressions uses the fact that if

(Vm € N. P(m))&

(VX € Loc.P(X)) &

(Vao, a1 € Aexp. P(ag + a;)) &
(Vag, a; € Aexp. P(ag —ay)) &
(‘v’ag,al € Aexp P(ag x al))
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then Va € Aexp. P(a). .
As an example of how to do proofs by structural induction we prove that the evaluation
of arithmetic expression is deterministic.

P’ropositibn 3.3 For all arithmetic é'zpfessi’ofzs'a, states o and numbers m,m’
(a,0) = m & {a,0) = m'=>m=m'.

Proof: We proceed by structural induction on arithmetic expressions a using the induc-
tion hypothesis P(a) where

P(a) iff Vo,m,m'. ({a,0) - m & {(a,0) = m' = m =m’).
For brevity we shall write {(a,0) — m,m’ for (a,d) — m and {a,0) — m’. Using
structural induction the proof splits into cases according to the structure of a:
a = n: If {(a,0) —» m,m’ then there is only one rule for the evaluation of numbers so
m=m'=n.
a = ag + a: If {(a,0) — m,m’ then considering the form of the single rule for the
evaluation of sums there must be my, my SO |

(ag,0) — mg and {(a;,0) — my with m = mg + m;
as well as my, m] so
(ag,0) — mg and {a;,0) — m; with m’' = mgy + m]

By the induction hypothesis applied to ag and a; we obtain mg = mg and m; = m].
Thus m = mg + my = mgy+my =m'.

The remaining cases follow in a similar way. We can conclude, by the principle of
structural induction, that P{a) holds for all a € Aexp. , 0

One can prove the evaluation of expressions always terminates by structural induction,
and corresponding facts about boolean expressions.

Exercise 3.4 Prove by structural induction that the evaluation of arithmetic expressions
always terminates, i.e., for all arithmetic expression a and states o there is some m such
that {(a,o) — m. []

Exercise 3.5 Using these facts about arithmetic expressions, by structural induction,

prove the evaluation of boolean expressions is firstly deterministic, and secondly total.
]

Exercise 3.6 What goes wrong when you try to prove the execution of commands is
deterministic by using structural induction on commands? (Later, in Section 3.4, we

shall give a proof using “structural induction” on derivations.)
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3.3 Well-founded induction

M&thematlcal and structural induction are special cases of a general and powerful proof
principle called: well-founded induction. In essence structural induction works because
breaking down an expression into subexpressions can not go on forever -eventually it must
lead to atomic expressions which can not be broken down any further. If a property fails
to hold of any expression then it must fail on some minimal expression which when it is
broken down yields subexpressions, all of which satisfy the property. This observation
justifies the principle of structural induction: to show a property holds of all expressions
it is sufficient to show that a property holds of an arbitrary expression if it holds of all
its subexpressions. Similarly with the natural numbers, if a property fails to hold of all
natural numbers then there has to be a smallest natural number at which it fails. The
essential feature shared by both the subexpression relation and the predecessor relation
on natural numbers is that do not give rise to infinite descending chains. This is the
feature required of a relation if it is to support well-founded induction.

Definition: A well-founded relation is a binary relation < on a set A such that there
are no infinite descending chains --- < a; < --- < a; < ag. When a < & we say a i1s a
predecessor of b.

Note a well-founded relation is necessarily irreflezive i.e., for no a do we have a < a,
as otherwise there would be the infinite decending chain - - - < a<---<a=<a. Weshall
generally write < for the reﬂexwe closure of the relatlon =, t.e.

a=<b <& a=borag=<b.

Sometimes one sees an e.lternatwe definition of well founded relatlon in terms of min-
imal elements.

Proposition 3.7 Let < be a binary relation on a set A. The relation < is well-founded
iff any nonempty subset Q of A has a minimal element, i.e. an element m such that

meQ &Vb<m.bé Q.

Proof:

“if: Suppose every nonempty subset of A has a minimal element. If --- < a; < v
+ < a1 < ag were an infinite descending chain then the set Q = {a; | i€ w} would

be nonempty without a minimal element, a contradiction. Hence < is well-founded.

“only if”: To see this, suppose Q is a nonempty subset of A. Construct a chain of

elements as follows. Take ag to be any element of Q. Inductively, assume a chain of
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elements a, < --- < ag has been constructed inside Q. Either there is some b < a,, such
that b € Q or there is not. If not stop the construction. Otherwise take Gnyi =b. As <
is well-founded the chain --- < a; < -+ < a; < a¢ cannot be infinite. Hence it 1s finite,
of the form Gn < -+ < ag With Vb < a,. b ¢ Q. Take the required minimal element m to
be a,,. o - - O

Exercise 3.8 Let < be a well-founded relation on a set B. Prove

1. its transitive closure <7 is also well-founded,
2. its reflexive, transitive closure <* is a partial order.

0

The principle of well-founded induction. }
Let < be a well founded relation on a set A. Let P be a property. Then Va € A. P(a)
iff |
Va € A. ([Vb < a. P(b)] = P(a)).

The principle says that to prove a property holds of all elements of a well-founded set it
suffices to show that if the property holds of all predecessors of an arbitrary element a
then the property holds of a. )

We now prove the principle. The proof rests on the observation that any nonempty
subset Q of a set A with a well-founded relation < has a minimal element. Clearly if
P(a) holds for all elements of A then Va € A. ([vb < a. P(b)] = P(a)). To show the
converse, we assume Va € A. ([Vb < a. P(b)] = P(a)) and produce a contradiction by
supposing —P(a) for some a € A. Then, as we have observed, there must be a minimal
element m of the set {a € A | =P(a)}. But then —P(m) and yet Vb < m. P(b), which
contradicts the assumption. |

In mathematics this principle is sometimes called Noetherian induction after the al-
gebraist Emmy Noether. Unfortunately, in some computer science texts (e.g. [59]) it is
misleadingly called “structural induction”.

Example: If we take the relation < to be the successor relation
n<mitm=n+1

on the non-negative integers the principle of well-founded induction specialises to math-
ematical induction.

Example: If we take < to be the “strictly less than” relation < on the non-negative

integers. the principle specialises to course-of-values induction.
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Example: If we take < to be the relation between expressions such that ¢ < b holds iff
~ a is an immediate subexpression of b we obtain the principle of structural induction as a
special case of well-founded induction. | 5 O

Proposition 3.7 provides an altérnative to proofs by well-founded induction. Suppose .
A 1s a well-founded set. Instead of using well-founded induction to show every element
of A satisfies a property P, we can consider the subset of A for whichi the property P
fails, i.e. the subset F' of counterexamples: By Proposition 3.7, to show F is @ it is
suficient to show that F cannot have a minimal element. This is done by obtaining 2
contradiction from the assumption that there is a minimal element in F. (See the proof
of Proposition 3.12 for an example of this approach.) Whether to use this approach or
the principle of well-founded induction is largely a matter of taste, though sometimes,
depending on the problem, one approach can be more direct than the other.

Exercise 3.9 For suitable well-founded relation on strings, use the “no counterexample”
approach described above to show there is no string u which satisfies au = ub for two
distinct symbols a and b. Compare your proof with another by well-founded induction
(and with the proof by mathematical induction asked for in Section 3.1). O

Proofs can often depend on a judicious choice of well-founded relation. In Chapter 10
we shall give some useful ways of constructing well-founded relations.

As an example of how the opera.tion_al semantics supports proofs we show that Euclid’s
algorithm for the ged (greatest common divisor) of two non-negative numbers terminates.
Though such proofs are often less clumsy when based on a denotational semantics. (Later,
Exercise 6.16 will show its correctness.) Euclid’s algorithm for the- greatest common
divisor of two positive integers can be written in IMP as: , | | %

Euclid = while ~(M = N) do
if M <N
then N:=N - M
else M :=M —~ N

Theorem 3.10 For all states o
o(M)>1& J(N) 2 1= 3o’. (Euclid, o) — ¢'.
Proof: We wish to show the prope.rty'

P(O‘) e 30’#.(Eu01id, J) — o
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holds for all states g in S={c € L |o(M) 21 & o(N) 2 1}.
We do this by well-founded induction on the relation < on 5 where
o <o iff (c/(M) <o(M) & d'(N)<o(N)) &
(o'(M) # o(M) or o'(N) # o(N))

for states ¢’,0 in S. Clearly < is well-founded as the values in M and N cannot be
decreased indefinitely and remain positive.

Let o € S. Suppose Vo' < 0. P(¢'). Abbreviate o(M) =m and ¢(N) = n.

If m = n then (~(M = N), o) — false. Using its derivation we construct the derivation

F(M= N)., c:r)l — false
(Euclid, o) — ¢

using the rule for while-loops which applies when the boolean condition evaluates to false.

In the case where m = n, (Euclid,o) — 0.
Otherwise m # n. In this case (-(M = N),0) — true. From the rules for the

execution of commands we derive
(f M <N then N:=N—Melse M:=M—N, g) —c"

where
p  Joln—m/N] ifm<n
- \lom—n/M] ifn<m.
In either case ¢” < o. Hence P(c") so (Euclid,c”) — o’ for some ¢'. Thus applying the
other rule for while-loops we obtain

(-—t(M = N),o) — true

(if M < N then N := N — M else M = M — N,o)—o” (Euchd,c”)—c"
(Buclid, o) — ¢’

a derivation of (Euclid,s) — ¢’. Therefore P(o). |
By well-founded induction we conclude Yo € S. P{o), as required. u

Well-founded induction is the most important principle in proving the termination
of programs. Uncertainties about termination arise because of loops or recursions in a
program. If it can be shown that execution of a loop or recursion in a programn decreases
the value in a well-founded set then it must eventually terminate.
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‘3.4 Induction on derivations

i

Structural induction alone is often inadequate to prove properties of operational seman-
tics. Often it is useful to do induction on the structure of derivations. _Putting this on a

firm basis involves formalising some of the ideas met in the last chapter.
Possible derivations are determined by means of rules. Instances of rules have the form

Tiy...,Tq
or —mm——
X I

where the former is an axiom with an empty set of premises and a conclusion z, while the
latter has {z1,...,z,} as its set of premises and z as its conclusion. The rules specify
how to construct derivations, and through these define a set. The set defined by the
rules consists precisely of those elements for which there is a derivation. A derivation of
an element z takes the form of a tree which is either an Instance of an axiom

T
or of the form
Ty y —
1 I,
T
which includes derivations of Z1,.--,ZTn, the premises of a rule instance with conclusion
z. In such a derivation we think of - ... ; == as subderivations of the larger derivation

of .

Rule instances are got from rules by snbstitﬁtiﬂg actual terms or values for metavari-
ables in them. All the rules we are interested in are finitary in that their premises are
finite. Consequently, all rule instances have a finite, possibly empty set of premises and a
conclusion. We start a formalisation of derivations from the idea of a set of rule instances.

A set of rule instances R consists of elements which are pairs (X/y) where X is a finite
set and y is an element. Such a pair (X/y) is called a rule instance with premises X
and conclusion y. | |

We are more used to seeing rule instances (X/y) as

if X =0, and as at SRR ifX={:z:1,---,:cn}.

Assume a set of rule instances R. An R-derivation of y is either a rule instance ((/y) or
a pair ({dy, -, d,}/y) where ({z1, -+, zn}/y) is a rule instance and d; 1s an R-derivation
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of 1, ..., dy is an R-derivation of z,,. We write d I y to mean d is an R-derivation of
y. Thus |

0/y) kg y if (B/y) € R, and o .
({dlw T :dn}/y) “-R Y 1f ({Ilj "t 1:511}/3/) € R& dy "_R, Il & T & _dn ”-R;:En-

We say y is derived from R if there is an R-derivation of y, i.e. d IFp y for some
derivation d. We write I g ¥ to mean y is derived from R. When the rules are understood

we shall write just d I y and IF v.
In operational semantics the premises and conclusions are tuples. There,

IF {¢,0) — o',

meaning (c,o) — o’ is derivable from the operational semantics of commands, is cus-
tomarily written as just {(c,0) — o’. It is understood that {c,0) — ¢" includes, as part
of its meaning, that it is derivable. We shall only write I- (c,0) — o' when we wish to

emphasise that there is a derivation.
Let d,d’ be derivations. Say d’ is an immediate subderivation of d, written d’ <i d, iff

d has the form (D/y) with d’ € D. Write < for the transitive closure of <1, .. <= -<+

We say d' is a proper subderivation of d iff d* < d.
Because derivations are finite, both relations of being an immediate subderivation ~ ]

and that of being a proper subderivation are well-founded. This fact can be used to show
the execution of commands is deterministic.

Theorem 3.11 Let ¢ be a command and J(}- a state. If {c,00) — o3 and {c,00) — g,
then o = o0, for all states o, 0.

Proof: The proof proceeds by well-founded induetion on the proper subderivation rela-
tion < between derivations for the execution of commands. The property we shall show
holds of all such derivations d is the followmg

P(d) < Vce Com,ao,d,al,e 2. d|l~'- (c,00) = 0 & (c,00) — 01 = 0 = 0.

By the principle of well-founded induction, it suffices to show Vd’ < d. P(d') implies
P(d).

Let d be a derivation from the operational semantics of commands. Assume
Vd' < d. P(d'). Suppose

d - (c,00) — 0 and IF {c,0¢) — 0.

Then d, IF (c, o) — o3 for some dy.
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Now we show by cases on the structure of ¢ that o — o1.

c = skip: In this case

|

d = dl = — - .
(skip, gg) — og

¢ = X := a: Both derivations have a similar form:

-———_—______.__

dl _ (&,Uo)iﬁ Tﬁl .

(X :=aq, Gd) — .Jo[m/X] (X = a, 7o) ._* aﬁ[ml_/X]

where 0 = go[m/X] and 01 = gg[m1/X]. As the evaluation of arithmetic expressions is
deterministic m = my, so ¢ = 0y.

a,00) — m
g (a,00) = m

¢ = cg;c;: In this case

_ (0,00 =o' {e1,0) 5o

d =

(co;c1,00) — o

Let d° be the subderivation

<_CU: UO) — g’

and d! the subderivation

(c1,0') = o

in d. Then d° < d and d! < d, so P(do) and P(dl) It follows that ¢’ = ¢4, and ¢ = o,
(why?).

¢ = if b then cq else ¢;: The rule for conditionals which abplies in this case is deter-
mined by how the boolean b evaluates. By the exercises of Section 3.2, its evaluation is

deterministic so either (b, 0g) — true or (b, oq) — false, but not both.
When (b, 0¢) — true we have: " |

L _ (b.oo) > true  {e5,00) — 0 . _ {b,00) - true  {cg,00) — o)

(if b then ¢, else C1,00) — O

~ (if b then co else ¢;,00) — o;
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Let d' be the subderivation of (cg,00) — o ind. Then d’' < d. Hence P(d’). Thus ¢ = 0y.
When (b, 0q¢) — false the argument is similar.

¢ = while b do ¢: The rule for while-loops which applies is again determined by how b
evaluates. Either (b,0¢) — true or (b,0) — false, but not both.

When (b, 0¢) — false we have :

g = — -(—b, O’o) —> fai;; 4 = (b, 0‘0) —-+ false
B (while b do ¢, 09) — 09 o (while b do ¢, 0q) — oy

so certainly 0 = og = 0.
When (b, 0g) — true we have:

ZE, ogg) — true (c,oq) — o’ (wh-i_fé- b do .c, 0';;—} o

d =
(while b do c¢,04) — o

; (b, J{;)__ — true (C;O'g)- — o3 -(_w.hil'e b do CE) — 6‘1
T | {(while b do ¢,0g) — 0

Let d’ be the subderivation of (¢, gp) — o’ and d” the subderivation of (while b do ¢, o’} —
o in d. Then d' < d and d” < d so P(d') and P(d"). It follows that ¢’ = ¢{, and subse-
quently that ¢ = g;. | | |

In all cases of ¢ we have shown d It {c,00) — o and (¢, 00} — o7 implies ¢ = gj.

By the principle of well-founded induction we conclude that P(d) holds for all deriva-
tions d for the execution of commands. This is equivalent to

Ve € Com, 0g, 7,071, € . {e, c:r_g}. — o & (¢,00) — 01 = 0 = 0y,
which proves the theorem. - B o 0

As was remarked, Proposition 3.7 provides an alternative to proofs by well-founded
induction. Induction on derivations is a special kind of well-founded induction used to
prove a property holds of all derivations. Instead, we can attempt to produce a contra-
diction from the assumption that there is a minimal derivation for which the property i1s
false. The a,pproa,ch 1S 1llustrated below:
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Proposition 3.12 For all states 0,0,
(while true do ski_p,,a) + o'

Proof: Abbreviate w while true do sklp Suppose (w,a) — o/ for some states cr, a'.
Then there is a minimal derivation d such that 30,0’ € . d I- (w o) — o’. Only one |
rule can be the final rule of d, makmg d of the form: |

(true,o) — true (c a) — o (while true do c,o") o

d =

(whlle true do c¢,0) — o’

But this contains a proper subderivation d’ I (w,o) — ¢/, contradicting the minimality
of d. . | O

3.5 Definitions by induction

Techniques like structural induction are often used to define operations on the set defined.
Integers and arithmetic expressions share a common property, that of being built-up in
a unique way. An integer 1s either zero or the successor of a unique integer, while an
arithmetic expression is either atomic or a sum, or product efc. of a unique pair of
expressions. It is by virtue of their being built up in a unique way that we can can make
definitions by induction on integers and expressions. For example to define the length
of an expression it is natural to define it in terms of the lengths of its components. For

arithmetic expressions we can define

length(n) = length(k) =1,.
length(ag + a;) = 1 + length(ag) + length(a;),

For future reference we define locp(c), the set of those locations which appear on the left
of an assignment in a command For a command ¢, the function loc L(c) 1s defined by

structural induction by ta,kmg

locy (skip) = 0, locp (X :=a) = {X},
locr(co;c1) = locp(cg) Ulocp(cy), loc, (if b then ¢ else c;) = loct(cp) Ulocp(c1),

locr (while b do 'c) = locy(c).

In a similar way one defines operations on the natural numbers by mathematical induc-
tion and operations defined on sets given by rules. In fact the proof of Proposition 3.7,
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that every nonempty subset of a well-founded set has a minimal element, contains an
implicit use of definition by induction on the natural numbers to construct a chain with
a minimal element in the nonempty set. .

Both definition by structural induction and definition by mathematical induction are
special cases of definition by well-founded induction, also called well-founded TeCUrsion.
To understand this name, notice that both definition by induction and structural in-
duction allow a form of recursive definition. For example, the length of an arithmetic
expression could have been defined in this manner:

1 : - if a = n, a number.
length(a) = { length(ao) + length(a;) if @ = (ap + a1),

How the length function acts on a particular argument, like (a¢+a;) is specified in terms -
of how the length function acts on other arguments, like ag and a;. In this sense the
definition of the length function is defined recursively in terms of itself. However this
recursion is done in such a way that the value on a particular argument is only specified
in terms of strictly smaller arguments. In a similar way we are entitled to define functions
on an arbitrary well-founded set. The general principle is more difficult to understand,
resting as it does on some relatively sophisticated constructions on sets, and for this
reason its full treatment is postponed to Section 10.4. (Although the material won’t be
needed until then, the curious or impatient reader might care to glance ahead. Despite
its late appearance that section does not depend on any additional concepts.)

Exercise 3.13 Give definitions by structural induction of loc(a), loc(b) and loc g(c), the:
sets of locations which appear in arithmetic expressions a, boolean expressions b and the
right-hand sides of assignments in commands c. | C

3.6 Further reading

The techniques and ideas discussed in this chapter are well-known, basic techniqﬁes
within mathematical logic. As operational semantics follows the lines of natural deduc-
tion, it 1s not surprising that it shares basic techniques with proof theory, as presented
in {84] for example—derivations are really a simple kind of proof. For a fairly advanced,
though accessible, account of proof theory with a computer science slant see [51, 40],
which contains much more on notations for proofs (and so derivations). Further expla-
nation and uses of well-founded induction can be found in [59] and [21], where it is called
“structural induction”, in {58| and {73]), and here, especially in Chapter 10.
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This chapter is an introduction to the theory of inductively defined sets, of which 'pre-
sentations of syntax and operational semantics are examples. Sets inductively defined
by rules are shown to be the least sets closed under the rules. As such, a principle of
induction, called rule induction, accompanies the constructions. It specialises to proof
rules for reasoning about the operational semantics of IMP.

4.1 Rule induction

We defined the syntactic set of arithmetic expressions Aexp as the set obtained from
the formation rules for arithmetic expressions. We have seen there is a corresponding
induction principle,- that of structural induction on arithmetic expressions. We have
defined the operational semantics of while-programs by defining evaluation and execution
relations as relations given by rules which relate evaluation or execution of terms to the
evaluation or execution of their components. For example, the evaluation relation on
arithmetic expressions was defined by the rules of Section 2.2 asa ternary relation which
i3 the set consisting of triples (a,0,n) of Aexp x £ x N such that {(a,0) — n. There is
a corresponding induction principle which we can see as a. special case of a principle we
call rule induction. |

We are interested in defining a set by rules. Viewed abstractly, instances of rules have
the form (/z) or ({z1,...,zn}/z). Given a set of rule instances R, we write I r for the
set defined by R cdnsisting of precisely of those elements z for which there is a derivation.

Put another way
| IR — {.’B I ”_R 33}

The principle of rule induction is useful to show a property is true of all the elements
In a set defined by some rules. It is based on the idea that if a property is preserved in
moving from the premises to the conclusion of all rule instances in a derivation then the
conclusion of the de:ivation has the property, so the property is true of all eleménts in
the set defined by the rules. - '

The gene_x_'a.l_ principle of rule in_du_.ction
Let Ip be de_ﬁned_ by rule instances R. Let P be a property. Then Vz € I r- P(z) iff
for all rule instances (X/y) in R for which X C I'p

(Vz € X. P(z)) = P(y).

Notice for rule instances of the form (X/y), with X = 0, the last condition is equivalent
to P(y). Certainly then Vx € X. z € I & P(z) is vacuously true because any z in §
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satisfies P—there are none. The staftement of rule induction amounts to the following.
For rule instances R, we have Vy € /g. P(y).iff for all instances of axioms

P(x) is true, and for all rule instances

T1y---43In

b

if £ € Ig & P(xy) is true for all the premises, when k ranges from 1 to n, then P(z) is
true of the conclusion. .

The principle of rule induction is fairly intuitive. It corresponds to a superficially
“different, but equivalent method more commonly employed in mathematics. (This ob-
servation will also lead to a proof of the validity of rule induction.) We say a set Q is
closed under rule instances R, or simply R-closed, iff for all rule instances (X/y)

XCQ=y€qQ.

In other words, a set is closed under the rule instances if whenever the premises of any
rule instance lie in the set so does its conclusion. In particular, an R-closed set must
contain all the instances of axioms. The set I is the least set closed under R in this

SCILSE.

Proposition 4.1 With respect to rule instances R
(i) Ir is R-closed, and
(ii) if @ s an R-closed set then Ir C Q.

Proof:

(i) It is easy to see Ig is closed under R. Suppose (X/y) is an instance of a rule in R
"and that X C Ip. Then from the definition of Ir there are derivations of each element
of X. If X is nonempty these derivations can be combined with the rule instance (X/y)
to provide a derivation of y, and, otherwise, (§/y) provides a derivation immediately. In
either case we obtain a derivation of ¥ which must therefore be in I r too. Hence IR is
closed under K.

(ii) Suppose that Q is R-closed. We want to show Ip C (). Any element of Ir is the
conclusion of some derivation. But any derivation is built out of rule instances (X/y).
If the premises X are in  then so is the conclusion y (in particular, the conclusion of
any axiom will be in Q). Hence we can work our way down any derivation, starting at
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axioms, to show its conclusion is in Q. More formally, we can do an induction on the
proper subderivation relatlon ~< to show

Vy € Ip. dII-Ry=:-y€Q
for all R—derwatmns d. Therefore I C Q. | ' ]
Exercise 4.2 Do the induction on derivations mentioned in the proof above. O

Suppose we wish to show a property P is true of all elements of I p, the set defined by
rules R. The conditions (i) and (ii) in the proposition above furnish a method. Defining

the set
Q={z €lr| P(z)},

the property P is true of all elements of Iy iff I C Q. By condition (11) toshow Ip C Q
it suffices to show that @ is R-closed. This will follow if for all rule instances (X/y)

;

(Ve X. z € Ip & P(z)) = P(y)

But this is precisely what Is required by rule induction to prove the property P holds for
all elements of Ig. The truth of this statement is not just sufficient but also necessary
to show the property P of all elements of f R- Suppose P(z) for all r € Ig. Let (X/y)
be a rule instance such that

VJIGX.:BEIR'&P(:E).

"By (i), saying IR is R—-closed we get y € /g, and so that P(y). And in this way we .
have derived the pr1nc1p1e of rule 1nduct10n from (i) and (ii), saying that I R is the least
R-closed set. |

Exercise 4.3 For rule instances R, show
| ﬂ {QI Q is R—closed}-
is R-closed. What is this set? - ' =

Exerc1se 4.4 Let the rules consist of (@/O) and ({n}/(n + 1)) where n is a natural
number. W ha.t 1s the set defined by the rules and what is rule induction in this case? O

In presenting rules we have followed the same style as that used In giving operational
semantlcs When it comes to defining syntactic sets by rules, BNF is the trad1t10na,l way
though it can be done differently. For instance, what 1S trad1t10na.llv wntten as

(I';Zf:."'lao'l‘(ll |1
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saying that if ag and a; are well-formed expressions arithmetic expressions then so is
ag + a;, could instead be written as

ag : Aexp aj: Aexp
ag + a1 : Aexp '

This way of presenting syntax is becoming more usual.

Exercise 4.5 What is rule induction in the case where the rules are the formation rules
for Aexp? What about when the rules are those for boolean expressions? (Careful! See

the next section.) , | D

4.2 Special rule induction

Thinking of the syntactic sets of boolean expressions and commands it is clear that
sometimes a syntactic set is given by rules which involve elemerits from another syntactic
set. For example, the formation rules for commands say how commands can be formed
from arithmetic and boolean expressions, as well as other commands. The formation

rules |
cui=---| X:=al|---|ifbthencgelsec; |---,

can, for the sake of uniformity, be written as

X :Loc a:Aexp nd E)_Bexp Co Com C1 : Com

X :=a: Com if b then ¢y else ¢; : Com

Rule induction works by showing properties are preserved by the rules. This means that
if we are to use rule induction to prove a property of all commands we must make sure
that the property covers all arithmetic and boolean expressions as well. As it stands,
the principle of rule induction does not instantiate to structural induction on commands,
but to a considerably more awkward proof principle, simultaneously combining structural
induction on commands with that on arithmetic and boolean expressions. ‘A modified -
principle of rule induction is required for establishing properties of subsets of the set
defined by rules. |

The special principle of rule induction |
Let Ir be defined by rule 1nstances R. Let A C I r. Let Q be a property. Then
Va € A. Q(a) iff for all rule instances (X /y) in R, with X C I'p and y € A,

'lq‘_

(Vz e XA Q(w)) = Q(v).
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The special principle of rule induction actually follows from the general principle. Let
R be a set of rule instances. Let A be a subset of Ig, the set defined by R. Suppose
Q(z) is a property we aré interested in showing is true of all elements of A. Define a
corresponding property P(z) by '

P(z) <= (z € A= Q(z))

Showing Q(a) for all a € A is equivalent to showing that P(z) is true for all z € I 5. By
the general principle of rule induction the latter is equivalent to |

V(X/y) €R. X CIn& (Vo€ X.(z€ A= Q(z)) = (y € A = Q(v)).
But this is logically equivalent to 1
. VIX/y)ER. (XCIp&kycA& (VzeX(z€e A= Q(a:)))) = Q(y).
This is equivalent to the condition required by the special principle of rule induction.

Exercise 4.6 Explain how structural induction for commands and booleans follows from

the special principle of rule induction. 0

Because ‘the special principle follows from the general, any proof using the special
principle can be replaced by one using the principle of general rule induction. But in
practice use of the special principle can drastically cut down the number of rules to
consider, a welcome feature when it comes to considering rule induction for operational
semantics. ' |

4.3 Proof rules for operational semantics

Not surprisingly, rule induction can be a useful toolf for proving properties of operational
semantics presented by rules, thbugh then it generally takes a superficially different
form because the sets defined by the rules are sets of tuples. This section presents the
special cases.of rule induction which we will use later in reasoning about the operational
behaviour of IMP programs. ' o

4.3.1 Rule induction for arithmetic expressions

The principle of rule induction for the evaluation of arithmetic expressions is got from
the rules for their operational semantics. It is an example of rule induction; a property
P(a,o,n) is true of all evaluations (a,0) — n iff it is preserved by the rules for building
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up the evaluation relation.

Va € Aexp,c € ,n € N. (a,0) = n= P(a,o,n)

iff - .

Vn € N,o € £. P(n,o,n)

&

VX € Loc,o0 € . P(X,0,0(X))

&

Vag,a; € Aexp,o € T, ng,n; € N.

(ap,0) — ng & P(ag,o0,ng) & (a1,0) — n & P(al,cr,ﬁnl)
= P(ag + a1,0,n9 + ny )

&

Vag,a; € Aexp,o € 3., ng,n; € N.

(@o,0) — no & Plap,0,ng) & {a,0) — n, & P(a,,o,n;)
= P(ag — a1,0,n9 — n1)

&

Vag,a1; € Aexp,o € 2, ng,n; € N.

(ag,0) — ng & P(ag,0,n9) & (a1,0) — ny & P(a,,o, nl)‘

= P(ag X a1,0,n9 X n1)].

Compare this specific ‘principle with that for general rule induction. Notice how all
possible rule instances are covered by considering one evaluation rule at a time.

4.3.2 Rule induction for boolean expressions

The rules for the evaluation of boolean expressions involve those for the evaluation of
arithmetic expressions. Together the rules define a subset of

(Aexp x 2 x N)U (Bexp x X x T).

A principle useful for reasoning about the operational semantics of boolean exXpressions

1s got from the special principle of rule induction for properties P(b,0,t) on the subset
Bexp x & x T. |
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Vb € Bexp,oc € £,t € T. (b,0) —t= P(b,0, t)

iff - ' |

Vo € L. P(false,&, false) & Vo € X. P(true, o, true)

& .

Vag,a; € Aexp,0 € £,m,n € N.

(ag,0) > m & (a1,0) = n& m=n= P(ao = a1, 0, true)

&

Vab,al € Aexp,oc € ¥,m,n € N.

I (ag,0) > m & {a;1,0) v n& m+#n= P(ag = a;, 0, false)

&

Vag,a; € Aexp,oc € £, m,n € N.

(ag,0) » m & (a1,0) = n & m<n= Plag < a;, o0, true)

&

Vag,a; € Aexp,c € ¥,m,n € N.

(ag,0) = m & (a1,0) »n& m<Ln= P(ag < a,,0, false)

&

Vb € Bexp,c € ¥, t e T.

(b,0) =t & P(b,0,t) = P(~b,o,~t)

& |

Vbo, b1 € Bexp,o € T, t9,¢; € T. -
(bo,0) — to & P(bg,o,ty) & (by,0) — 4 & P(by,0,t1) = P(by A by, 0.1, Aty)
&

Vbo,b; € Bexp,o € X, tg,t; € T. |

(bo,0) — to & P(bg,0,ty) & (b1,0) = t; & P(by,0,t) = P(bo V by,0,t9 V t1)].

4.3.3 Rule induction for commmands

The principle of rule induction we use for reasoning about the operational semantics of
commands is an instance of the special principle of rule induction. The rules for the
execution of commands involve the evaluation of arithmetic and boolean expressions.
The rules for the operational semantics of the. different syntactic sets taken together
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define a subset of |
(Aexp x E X N)U (Bexp x £ x T) U (Com x T x X).

We use the special principle for 'pr0per1.'.ies P(c., o,0') on the subset Com x ¥ x X.
(Try to write it down and compare your result with the following.)

Ve € Com,o,0’' € £. (c,0) = o' = P(c,0,0')
iff ._
Vo € X. P(skip, 0,0)
& |
VX € Loc,a € Aexp,c € ¥,m € N. (a,0) = m = P(X :=a,0,0[m/X])
&
Veg,c; € Com,o,0',0" € X.
(co,0) — 0" & P(cg,0,0") & (c1,0") — o' & P(c1,0",0") = P(cy;c1,0,0")
9 | .
Veo, €1 e Com, b € Bexp,o,0’ € . |
(b,0) — true & (cp,0) — o' & P(cp,0,0') = P(if b then ¢, else ¢;, 0, 0")
&
Vg, c; € Com,b € Bexp,o,0’ € X.
(b,0) — false & (c1,0) — ¢’ & P(c1,0,0") = P(if b then ¢ else c¢;,0,0")
. | |
Ve € Com,b € Bexp,o € 2..
(b,0) — false = P(while b do ¢, 0, 0)
&
Vc € Com,b € Bexp,o,0',0” € L.
(b,0) — true & {(c,0) — " & P(c,0,6") &
(while b do ¢,¢") — ¢’ & P(while b do ¢,¢",0")
= P(while b do ¢, a,0")]. ' '
As an example, we apply rule induction to show the intuitively obvious fact that if a
location ¥ does not occur in the left hand side of an assignment in a command ¢ then

execution of ¢ cannot affect its value. Recall the definition of the locations loc 1(c) of a
command ¢ given in Section 3.5. |
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P'roposition 4.7 Let Y € Loc. For all commands ¢ and states g, o',

Y glocp(c) & (c,0) = o' = o(Y) = o'(Y).

Proof: Let P be the property given by:

Plc,0,0") <= (Y ¢ loci(c) = o(Y) = o'(Y)).

We use rule induction on commands to show that

Vc€ Com,o,0' € . (c,0) = ' = P(c,0, o).

Clearly P(skip,o,0) for any o € X..
Let X € Loc,a € Aexp,oc € Z,m € N. Assume (a,0) - m. IfY ¢ locL(X := a)

then Y # X, s0 6(Y) = o[m/X](Y). Hence P(X := q,0, oglm/X])).
Let ¢g,c)y € Com, 0,0’ € £. Assume -

(co,0) — 0" & P(cg,0,0") & (c1,0"Y - o' & P(cy,0", "),

2.e., that |
(co,0) — 0" & (Y ¢ locr(cp) = o(Y)=0"(Y)) &

Suppose Y ¢ locp(co;cy). Then, as locr(co;e1) = loer(cy) U locz{c1), we obtain YV ¢

locr(co) and Y ¢ locy(c;). Thus, from the assumption, o(Y) = ¢”(Y) = ¢'(Y). Hence
P(co;c1,0,0"). | '

We shall only consider one other case of rule instances.
Let ¢ € Com, b € Bexp,0,0’,6" € . Let w = while b do ¢ Assume

(b,0) — true & {c,0) — " & P(C, og,0") &

(w,0") — o' & P(@, ", o)
o (b,0) — true & (c,0) - 0" & (Y ¢ locL(c) = o(Y) = o"(Y)) &
(w,d") =o' & (Y ¢ locp(w) = o"(Y) = o'(Y)).

Suppose Y ¢ locr(w). By the assumption o” (Y) = o'(Y). Also, as locg,(w) = locy (c),

we see Y & locg(c), so by the assumption o(Y) =o"(Y). Thus o(Y) = o'(Y). Hence
P(w,o,d'). B - | |

T'he other cases are very similar and left as an exercise.
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We shall see many more proofs by rule inducticn in subsequent chapters. In general
they will be smooth and direct arguments. Here are some more difficult exercises on
using rule induction. As the first two exercises indicate applications of rule induction
can sometimes be tricky. '

Exercise 4.8 Let w = while true do skip. Prove by special rule induction that

Vo,d'. (w,0) 4 o'

(Hint: Apply the special principle of rule induction restricting to the set
{(w,0,0") | 0,0’ € T}

and take the property P(w,o,c’) to be constantly false.
It is interesting to compare the proof for this exercise with that of Proposition 3.12 in
Section 3.4—proofs by rule induction can sometimes be less intuitive than proofs in which
the form of derivations is considered.) . | O

Although rule induction can be used in place of induction on derivations it is no
panacea; exclusive use of rule induction can sometimes make proofs longer and more
confusing, as will probably become clear on trying the following exercise:

Exercise 4.9 Take a simplilied syntax of arithmetic expressions:
a:=n|X|ag+a.
The evaluation rules of the simplified expressions are as before:

(n,o) = n
(X,0) — o(X)

(ag,0) — ng {a1,0) = ny

(CL{)"I— (11,0') — 7l
where n is the number which is the sum of ng and n;.
By considering the unique form of derivations it is easy to see that (n,c) — m implies

m = n. Can you see how this follows by special rule induction? Use rule induction on
the operational semantics (and not induction on derivations) to show that the evaluation
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of expressioils 1s deterministic.
(Hint: For the latter, take

P(a, o, m) — dgfvm’ € N. (a, o) =m' = m=m

as induction hypothesis, and be prepared for a further use of (special) rule induction.)

An alternative proof, of Proposition 3.3 in Section 3.2, uses structural induction and
considers the forms that derivations coulld'take. How does the proof compare with that
of Proposition 3.37 0O

The next, fairly long, exercise proves the equivalence of two -operational semantics.

Exercise 4.10 (Long) One operational semantics is that of Chapter 2, based on the
relation {c,0) — o’. The other is the one-step execution relation (c,0) —, (¢, o)
mentioned previously in Section 2.6, but where, for simplicity, evaluation of expressions
1S treated in exactly the same way as in Chapter 2. For instance, for the sequencing of
two commands there are the rules: | | |

(C0n0) =1 () (o) oy
(C{]; Ciig> —*) (CE];CI'JGJ) (CQ;C]_,O') 1 (CI:JI>

Start by proving the lemma.
(co; c1,0) —7 o iff 30”. (co,0) =T 0" & (c1,0") -7 o',

for all commands ¢, ¢; and all states o, ¢’. Prove this in two stages. Firstly prove

Va,0". [{co; c1,0) =7 o' = Fo". (co, 0) —10" & (c1,0") -1 o]

by mathematical induction on n, the length of computation. Secondly prove |

Vo,0'. [(c,0) -7 o’ iff (c,0) — o'}

The “only if” direction of the proof can be done by structural induction on ¢, with an
induction on the length of the computation in the case where c is a, while-loop. The “if”

direction of the proof can be done by rule induction (or by induction on derivations).
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4.4 < Operators and their least fixed poiﬁts

There is a.nother way to view a set defined by rules. A set of rule instances R determmes
an operator R on sets, which gwen a set B results in a set

R(B) = {y | 3X C B. (X/y) € R}.
Use of the operator R gives another way of éaying a set 1s R-closed.
Proposition 4.11 A set B is closed under R -i.ﬁ R(B) C B.
Proof: The fact follows directly frdm the definitions. : | u

The -operé,tor R provides a way of building up the set Ir. The operator R is monotonic
in the sense that

AC B = R(A) C R(B).

If we repeatedly apply R to the empty set @ we obtain the sequence of sets:

Ao =. EO(Q) — @
A = R(0) = R(),
Az = R(R(9)) = R*(0),

The set A; consists of all the conclusions of instances of axioms, and in general the
set An41 is all things which immediately follow by rule instances with premises in An
Clearly 0 C R(0), i.e. Ag € A;. By the monotonicity of R we obtain R(Ag) C R(Al),
1.e. Ay C A,. Slmlla,rly we obtain A9 C A3 etc.. Thus the sequence forms a chain

AgC A1 C--CAC--

Taking A = . 6 A,, we have:

neew

Proposition 4.12
(i) A is R- closed
(ii) R(4) =
(111} A s the least R-closed set.
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Proof: | |

(i) Suppose (X/y) € R with X C A. Recall A = U, 4r is the union of an increasing
chain of sets. As X is a finite set there is some n such that X C An. (The set X is
either empty, whence X C A, or of the form {z;,...,z;}. In the latter case, we have
T1 € An,, ", Tk € Ay, for some n,,..., n. Taking n bigger than all of Nly-.n, N W
must have X C A, as the sequence Ao, Ay,... yAn,... is Increasing.) As X C A, we
obtain y € R(4,) = Any1. Hence y € |J, An = A. Thus A is closed under R.

(ii) By Proposition 4.11 the set A is R-closed, so we already know that R(A) C A. We
require the converse inclusion. ‘Suppose y € A. Then y € A, for some n > 0. Thus
Yy € E(Aﬂ_l). This means there is some (X/y) € R with X C Ajp_1. But A,_; C A so
X € A with (X/y) € R, giving y € R(A). We have established the required converse
inclusion, A C E(A) Hence E(A) = A. | - '
(iii) We need to show that if B is another R-closed set then A C B. Suppose B is closed
under K. Then E(B) C B. We show by mathematical induction that for all natural

numbers n € w
A, CB.

The basis of the induction Ag C B is obviously true as Ay = 0. To show the induction
step, assume A, C B. Then |

Ant1 = E(An) C E(B) C B,
using the facts that R is monotonic and that B is R-closed. O

Notice the essential part played in the proof of (i) by the fact that rule instances are
finitary, i.e. in a rule instance (X/y), the set of premises X is finite. |

It follows from (i) and (iii) that A = If, the set of elements for which there are R-
derivations. Now (ii) says precisely that I is a fixed point of R. Moreover, (iii) implies
that Ir is the least fized point of ﬁ, 1. €. ' |

R(By=B=IzrCB

because if any other set B is a fixed point it is closed uhder R,' so Ip C B by Propo-
sition 4.1. The set Ir, defined by the rule instances R, is the least fixed point, fiz{ R),
obtained by the construction

fie(R) =aes ] R(0).

ncw

Least fixed points will play a central role In the next chapter.
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Exercise 4.13 Given a set of rules R define a different operator R by
R(A) = AU{y | 3X C A. (X/y) € R).
Clearly R is monotonic and in addition satisfies the property
- A C R(A).

An operator satisfying such a property is called increasing. Exhibit a monotonic operator
which is not increasing. Show that given any set A there is a least fixed point of R which
includes A, and that this property can fail for monotonic operations.. 0

Exercise 4.14 Let R be a set of rule instances. Show that R is continuous in the sense
that | ~ ~ | |
U B(Ba) = R(|J Ba)
ncw ncw
for any increasing chain of sets Bo C --- C B,, C ---.
(The solution to this exercise is contained in the next chapter.) | 0

4.5 Further reading

This chapter has provided an elementary introduction to the mathematical theory of
inductive definitions. A detailed, though much harder, account can be found in Peter
Aczel’s handbook chapter [4]—our treatment, with just finitary rules, avoids the use
of ordinals. The term “rule induction” originates with the author’s Cambridge lecture
notes of 1984, and seems be catching on (the principle is well-known and; for instance,
is called simply R-induction, for rules R, in [4]). This chapter has:refrained from any
recommendations about which style of argument to use in reasoning about operational
semantics; whether to use rule induction or the often clumsier, but conceptually more
straightforward, induction on derivations. In many cases it is a matter of taste.



5 The denotational semantics of IMP

This chapter provides a denotational semantics for IMP, and a proof of its equivalence
with the previously given operational semantics. The chapter concludes with an intro-
duction to the foundations of denotational semantics (complete partial orders, contmuous
functions and least fixed pemts) and the Knaster-Tarski Theorem |

5.1 Motivati'on

We have described the behaviour of programs in IMP in an operatlonal manner by
inductively defining transition relations to express evaluation and execution. There was
some arbitrariness in the choice of rules, for example, in the size of transition ‘steps we
chose. Also note that in the description of the behaviour the syntax was mixed-up in the
description. This style of semantics, in which the transitions are built out of the syntax,
makes it hard to compare two programs written in different programming languages.
Still, the style of semantics was fairly close to an implemention of the language, the
description can be turned into an interpreter for IMP written for example in Prolog,
and it led to firm definitions of equivalence between arithmetic expressmns boolean
expressions and commands. For example we defined

co ~ ¢y iff (Vo,0". (cp,0) = 0’ <= (c1,0) — a’).

Perhaps it has already occurred to the reader that there is a more direct way to capture
the semantics of IMP if we are only interested in commands to within the equivalence
~. Notice ¢cg ~ ¢y iff

{(0,0") | (0,0) = 0} = {(0,0) | (er, 0) — o).

In other words, ¢g ~ ¢ iff ¢y and ¢; determine the same partial function on states. This
suggests we should define the meaning, or semantics, of IMP at a more abstract level in
which we take the denotation of a command to be a partla.l function on sta,tes The style
we adopt in giving this new description of the semantics of IMP is that from denota-
tzonal semantics. Denotational semantics is much more widely applicable than to simple
programming languages like IMP —it can handle virtually all programming languages,
though the standard framework appears madequate for parallehsm and “fairness” (see
Chapter 14 on parallelism). The approach was pioneered by Chrlst0pher Strachey, and
Dana Scott who supplied the mathematical foundations. Qur denotational semantics of
IMP is really just an introductory example. We shall see more on the a.pphcatmns and
foundations of denotational semantics in later chapters.

An arithmetic expression @ € Aexp will denote a function Afa] : £ — N.

A boolean expression b € Bexp will denote a functlon B [[b]] > — T, from the set of
states to the set of truth values. |
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A command c will denote a partial function Cfc} : & — ¥.

The brackets | | are traditional in denotational semantics. You see A is really a function
from arithmetic expressions of the type Aexp — (¥ — N), and our first thought in
ordinary mathematics, when we see an expression, is to evaluate it. The square brackets
ia] put the arithmetic expression a in quotes so we don’t evaluate a. We could have
written e.g. A(“3 +5”)o = 8 instead of A[3 + 5Jc = 8. The quotes tell that it is the
plece of syntax “34+5” which is being mapped. The full truth is a little more subtle as
we shall sometimes write denotations like Afaq + ], where ao and a; are metavariables
which stand for arithmetic expressions. It is the syntactic object got by placing the sign
“+” between the syntactic objects ag and a; that is put in quotes. So the brackets [ |
do not represent true and complete quotation. We shall use the brackets l | round an
argument of a semantic function to show that the argument is a piece of syntax.

5.2 Denotational semantics

We define the semantic functions

A:Aexp — (£ —» N)
B : Bexp — (¥ — T)
C:Com — (¥ — X)

by structural induction. For eﬁ-cample, for commands, for each command ¢ we define the
partial function C{c] assuming the previous definition of ¢’ for subcommands ¢’ of ¢. The
command ¢ 1s said to denote C{c}, and C[c] is said to be a denotation of c.

Denotations of Aexp:

Firstly, we define the denotation of a_ﬁ arithmetic expression, by structural induction, as

a relation between states and numbers:

Aln} = {(o,n) | ¢ € &}
A[X] = {(o,0(X)) | 0 € T} -

Alao + 1] = {(0,10 + 1) | (0,m0) € Afao] & (0,71) € Afas]}
Alag — a1] = {(o,n0 — n1) | (0,7n9) € Alao] & (0,n1) € Afa;]}
Alag x a1] = {(o,n0 x n1) | (,n0) € Afao] & (0,7,) € Ala1]}-

An obvious structural induction on arithmetic expressions a shows that each denotation
Ala] is in fact a function. Notice that the signs ST, 4=, “X” on. the left-hand sides

represent syntactic signs in IMP whereas the signs on the right represent operations on
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numbers, so e.g., for any state o,
A[3 + 5]o = A[3]o + A[5]0 =3+ 5 =8,

as 1s to be expected. Note that using A-notation we can present the definition of the
semantics in the following equivalent way:

Aln] = ,\0" € .n

A[X] = Ao € E.0(X) |
Alao + a1] = Ao € Z.(Afao]o + Afa1]0)
Afao — a1] = Ao € E.(Afag]o — Alaijo)
Alao x a1] = Ao € Z.(Afao]o x Afa ]o).

Denotations of Bexp:

The semantic function for booleans is given in terms of logical operations conjunction
AT, disjunction Vr and negation -7, on the set of truth values T. The denotation of a
boolean expression is defined by structural induction to be a relation between states and

truth values.

Bltrue] = {(o,true) | ¢ € T}
Bffalse] = {(o, false) | ¢ € T}

Blag = a1]-= {(o, true) | o0 € ¥ & Afag]o = Afa;]o}U
{(o,false) |c€e X & _A[ag]]_q #* Ala,]o},

Blag < a1] = {(o,true) | c € T & A[[ag]]d S_FLA[[alﬂa}U
{{o,false) |c € X & .AI[qg]]a £ Alaijo},

B[-b] = {(0,~1t) | 0 € T & (0,t) € BJb]},
Bﬂbo N\ bl]] = {(J, Lo AT tl) I o€ L& (0‘, to)l S B[[b[)]] & (O’,tl) € Bﬂblﬂ},

Bllba Vbi] = {(0,to V1 t1) [0 € Z & (0,t0) € Blbo] & (J:.tl)he Blbi]}.
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A simple structural induction shows that each denotation is a function. For example,

o _ [ true if Afao]o < Alai]o,
Blao < a1]o = { false if Afag)o £ Afa,]o

for all o € 2.
Denotations of Com:

The definition of C{c} for commands c is more complicated. We will first give denotations
as relations between states; afterwards a straightforward structural induction will show
that they are, in fact, partial functions. It is fairly obvious that we should take

Clskip] = {(0,0) | 0 € ¥}
CIX :=a] = {(0,0[n/X]) | 0 € L & n = Ala]o}

Clco; €1] = Cle1] o Cfcol, a composition of relations,

the definition of which explains the order-reversal in cg and c;,

Clif b then ¢y else ¢;] =
{(0,0") | B[b]o = true & (o,0") € Clco]} U {(0,0") | B[b]o = false & (o,0") € C|c1]}.

But there are difficulties when we consider the denotation of a while-loop. Write

w = while b do c.

We have noted the equivalence
w.~ if b then c; w else skip

so the partial function C[w] should equal the partial function Cfif b then c; w else skip].
Thus we should have :

' Clw] ={(o,0") | B[b]o = true & (0,0") € C[c; w]} U
{(o,0) | B[b]o = false} |
—{(0,0") | B[bt]o = true & (¢,0¢") € C[w] o C[c]} U
{(0,0) | B]b]o = false}.
Writing ¢ for C{w], 8 for B[b] and ~ for C tc] we require a partial function @ such that
o ={(0,0") | f(o) =true & (0.0') € poylU .
{(o,0) | B(c) = false}.
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But this involves ¢ on both sides of the equation. How can we solve it to find ¢? We
clearly requlre some technique for solving a recursive equat:on of this form (it is called

“recursive” because the value we wish to know on the left recurs on the right). Looked
at 1n another way we can regard I', where

[(¢) ={(0,0") | A(o) = true & (4,0") € pory} L
{(o,0) | B(o) = false)}
={(0,0") | 30". B(c) = true & (o, cr”) €v& (6",0') € p} U

{(g,0) | ,B(ar)_ false},

" as a function which giveh i returns I'(p). We want a fixed point o of I" in the sense that

¢ = T(p).

The last chapter provides the clue to ﬁndmg such a solutlon in Section 4.4. It i$ not hard
to check that the function I is equal to R where R is the operator on sets determined
by the rule instances

R={({(+",0)}/(0.0")) | B(0) = true & (6,6") € ) U
{0/(0,0)) | B(o) = talse).

As Section 4.4 shows R has a least ﬁxed pomt

o = fir(R)

with the property that

where ¢ is a set—in this case a set of pairs
R(6) =0=pCa8.

We shall take this least 'ﬁﬁed point as the denotation of the while program w. Certainly
its denotation should be a fixed point. The full Justification for taking it to be the least
fixed point will be given in the next section where we establish that this chome for the
semantics agrees with the operational semantics. | |

Now we can go ahead and define the: denotational semantics of commands in the
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following way, by structural induction:

Clskip] = {(c,0) |0 € &}

CIX :=a] = {(0,0[n/X]) [0 € 5 & n Ala]o)
Cl[c:o; c1] = Cler] o Cleo]

C[if b then co else ¢;] =

{(o,0") | B[b]o = true & (o,0") € C[co]}U
{(0,0") | Blb]o = false & (0,0") € Clei]}

C{while b do ] = fir(T")

where

I'(p) ={(0,0') | B[b]o = true & (0,0") € oClc]} u
{(0,0) | Blb]o = false}.

In this way we define a denotation of each command as a relation between states. No-
tice how the semantic definition is compositional in the sense that the denotation of a
command is constructed from the denotations of its immedijate subcommands, reflected
in the fact that the definition is by structural induction. This property is a hallmark
of denotational semantics. Notice it is not true of the operational semantics of IMP.
because of the rule for while-loops in which the while-loop reappears in the premise of
the rule. |

We have based the definition of the semantic function on while programs by the op-
erational equivalence between while programs and one “‘unfolding” of them into a con-
ditional. Not surprisingly it is straightforward to check this equivalence holds according
to the denotational semantics.

Proposition 5.1 Write |
w = while b do ¢

for a command ¢ and boolean expression b. Then

Clw] = C[if b then c; w else skip].
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Proof: The denotation of w is a fixed point of I, defined above. Hence |

- Clw} =Ir'(Cfw])
={(0, ') | B[b]o = true & (0,0') € C[[w] o Clc]} U
{(c,0) | B[[b]]cr = false}
={(0,0') | Blbjo = true & (0,0’) € Cfc;w]} U
{(0,0') | B[bjo = false & (o, ") € C[skip}}
=C[if b then c; w else skip].C

Exercise 5.2 Show by structural mductlon on commands that the denotation Cfc] is a
partial function for all commands c. .

(The case for while-loops involves proofs by mathematical induction showing that I" *(()
s a partial function between states for all natural numbers n, and that these form an
increasing chain, followed by the observation that the union of such a chain of partial
functions is itself a partial function.) O

In Section 5.4 we shall introduce a general theory of fixed points, which makes sense
when the objects defined recursively are not sets ordered by inclusion.

0.3 KEquivalence of the semantics

Although inspired by our understanding of the operational behaviour of IMP the denota-
tional semantics has not yet been demonstrated to agree with the operational semantics.

We first check the operational and denotational semantics agree on the evaluatmn of
3Xpressions:

Lemma 5.3 For all a € Aexp,
Ala] = {(o,n) [ (a,0) — n}.
Proof: We prove the lemma by structural induction. As induction hypothesis we take
Pla) <= gesAla] = {(o,n) | (a,0) — n}.

“ollowing the scheme of structural induction the proof splits into cases act:ording to the
structure of an arithmetic expression a.

1 = m: From the definition of the semantic function, in the case where q is a number m,
ve have |

(J,‘n)EA[[m]]' < cEeEX&n=m.
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Clearly, if (o,n) € A[m] then n = m and (m,o) — n. Conversely, if (m, o)
the only possible derivation is one in which n = m and hence (o,n) € A[m].
a = X: Similarly, if a is a location X,

— n then

(o,n) e A[X] <= (c e & n = o(X))
> (X,0) — n.

a = ag + ay: Assume P(ag) and P(a;) for two arithmetic expressions ap,a;. We have

(0,n) € Alag + a1] < 3ng,ny. n=ng+n; & (0,n0) € Afag] & (0,n;) € Alai].

Supposing (o, n) € Afag+a;], there are ng, n; such that 1 — no+n; and (o,n9) € Afag]
and (o,n;) € Afa;]. From the assumptions P(aq) and P(a;), we obtain

(20,0) = ng and (a;,0) — n;.

Lhus we can derive (ag+ay,0) — n. Conversely,

any derivation of {(ag+a;, o) — n must
have the form

A A R _— - e

for some ng,n; such that n = ng + n;. This time, from the assumptions P(ag) and
P(a;), we obtain (o,ng) € Afag] and (9,m1) € Afa;]. Hence (o,n) € Alaj.
The proofs of the other cases, for arithmetic expressions of the fo

follow exactly the same pattern. By structural induction on arit
conclude that

rmag—a; and ag X a;,
hmetic expressions we

Ala] = {(o,n) | (a,0) — n},

for all arithmetic expressions a.

Lemma 5.4 Forb ¢ Bexp,

B[b] = {(o,t) | (b,0) — t}.

Proof: The proof for
It

boolean expressions is similar to that for arithmetic expressions.
proceeds by structural induction on boolean expressions with induction hypothesis

P(b) <= aesB[b] = {(0,t) | (b,0) — ¢t}

for boolean expression b.
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We only do two cases of the induction. They are typical, and the remaining cases are
left to the reader. - :
= (ap = ay): Let ag,a; be arithmetic expressions. By definition, we have

Blag = a1] ={(o;, trué) |lceT & Al[ao]I¢ = Ala,Jo}U
{(0,false) | 0 € £ & Alac]o # Afai]o).

Thus , - |
(0,true) € Blag = a1] <= 0 € £ & Afao]o = Afas]o.

If (o, true) € Blao = a1] then Afao]o = Afa;]o, so, by the previous lemma.
(@0,0) = n and (a1,0) = n,

for some number n. Hence from the operational semantics for boclean expressions we

obtain
(ag = a;,0) — true.

Conversely, supposing {(ag = a3, o) — true, it must have a derivation of the form

(ag,0) =1 -(al,a.') o n

(ap = a,l,—(;) — true

But then, by the previous lemma, Afag]o = n = A[[al]]d. Hence (o, true) € Blag = a,].
Therefore
(0,true) € Blag = a1] <= (ag = a;,0) — true.

Similarly, .
(0’, false) S B[[ao — G,I]] — (ao = a, g') — false.

It follows that |
I B[[aoza]]:{(O',t) ' <a0:(11,0>—+t}.

= bo A b1: Let by, b; be boolean expressions. Assume P(bo) and P(bl)i By definition,
we have ' | .-

(G',t) & B[[bg AN blﬂ < O GE & tg, £1. L = to ATty & (o, to) - B[[bg]] & (O‘, tl) = B[[blﬂ.

Thus, supposing (o, t) € Blbo A by ], there are tg,t; such that (0,t0) € B[bg] and (o,t;) €
Bb;]. From the assumptions P(bg) and P(b;) we obtain

(bo,o) = to and (by,0) — ¢;.
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Thus we can derive (bg A b1,0) — t where t = tg Ar t;. Conversely, any derivation of
(bo A b1,0) — t must have the form '

"(bo;'ﬂ') — to- (bl,O') — t]_
(bo A bl,O') — 1

for some to, t; such that ¢ = o Art;. From the P(bo) and P(b;), we obtain (o, ¢y) € B(bo]
and (o,t,) € B[b;:]. Hence (o, t) € B[b].
As remarked the other cases of the induction are similar. 0O -

Exercise 5.5 The proofs above involve considering the form of derivations. Alternative
proofs can be obtained by a combination of structural induction and rule induction. For

example, show

L {(o,n) | {a,0) — n} C Ald],
2. Ala] € {(e,n) | {a,0) — n},

for all arithmetic expressions a by using rule induction on the operational semantics of
arithmetic expressions for 1 and structural induction on arithmetic expressions for 2. O

Now we can check that the denotational semantics of commands agrees with their
operational semantics: -

Lemma 5.6 For all commands ¢ and states o, o',
(c,d) — o' = (g,0") € C]c].

Proof: We use rule-induction on the operational semantics of commands, as stated in
Section 4.3.3. For ¢ € Com and 0,0’ € ¥, define

P(c,0,0") <= 4e5(0,0") € C[c].

It we can show P is closed under the rules for the execution of commands, in the sense

of Section 4.3.3. then
(¢,0) — ¢’ = P(c,0,0")

for any command c and states o,0’. We check only one clause in Section 4.3.3, that
assoclated with while-loops in the case in which the condition evaluates to true. Recall
1t 1s:

(b.0) — true (c,0) = o" (w,o") — o’

(w,0) — o
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where we abbreviate w = while b do o, | FbllOwingth'e scheme of Section 4.3.3, assume
(b,0) — true & (c,0) — 0" & P(c, 0,0") & (w,0") — o' & P(w, ", a’).

I By Lemma 5.4 |
B[bjo = true.

From the meaning of P we obtain directly that
Clelo = 0" and Cluw}e” = o
Now, from the definition of the denotational semantics, we see
Clwlo = Clc; w]o = C[[w]]I(Cl[cﬂcr) = Clw]e" = ¢".

But Clwjo = ¢’ means P(w,0,0') i.e. P holds for the consequence of the rule. Hence
P is closed under this rule. By similar arguments, P is closed under the other rules
for the execution of commands (Exercise!). Hence by rule induction we have proved the
lemma. | O

The next theorem, showing the equiValencelhof operational and 'denot_ational semantics
for commands, is proved by structural induction with a use of mathematical induction
inside one case, that for while-loops.

Theorem 5.7 For all commands ¢
Cle = {(0,") | {c,0) — o'}.

Proof: The theorem can clearly be restated IaS: for a.H commands ¢
(6,0") €€Cc] <= (c,0) — o'

for all states o,0’. Notice Lemma 5.6 gives the “<” direction of the equivalence.
We proceed by structural induction on commands c, taking

Vo,0’ € £.(0,0") € Clc] <= (¢,0) — o',

as induction hypothesis.

¢ = skip: By definition, C[skip] = {(¢,0) | 0 € £}, Thus if (0,0) € Cfc] then ¢’ = o
so (skip,a) — ¢’ by the rule for skip. The induction hyp_othesi_s holds in this case.

¢ = X := a: Suppese (0,0') € C[X := a]. Then ¢’ = ofn/X] where n = Alajo. By
Lemma 5.3, (a,0) — n. Hence (c,0) — ¢'. The induction hypothesis holds in this case.
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¢ = co;¢; : Assume the induction hypothesis holds for ¢o and ¢;. Suppose (o,0°) € C|¢].
Then there is some state ¢’ for which (o,c”) € Clco] and (¢”,0') € Clei]. By the
induction hypothesis for commands ¢¢ and ¢; we know

(cg,0) — ¢” and {(c;,0") — o'

Hence (cg; ¢1,0) — o' for the rules for the opefational semantics of commands. Thus the
induction hypothesis holds for c.

c = if b then ¢y else ¢; : Assume the induction hypothesis holds for ¢g and ¢;. Recall

that
Clc] ={(o,0’) | Blbjo = true & (o,0") € C[co] }U

{(c,0 ) | Bfb]o = false & (0,0") € Clea}}-
So, if (0,0') €C [[cﬂ then either
(i) B[bjo = true and (o,0’) € C{co], or
(ii) Bb]o = false and (0,0') € Clc1].
Suppose (i). Then (b,c) — true by Lemma 5.4, and (cg,0) — o because the induction
hypothesis holds for cg. From the rules for conditionals in the operational semantics of

commands we obtain {c,d) — o’. Supposing (ii), we can arrive at the conclusion in
essentially the same way. Thus the induction hypothesis holds for c.

¢ = while b do ¢y : Assume the induction hyﬁothesis holds for ¢g. Recall that
C[while b do cg] = fiz(T")

where

I'(¢) ={(0,0") | B[b]o = true & (0,0") € poClco]} U
{(0,0) | B[b]o = false}.
So, writing 8,, for I'"(@), we have
Clc] = U 6,
ncw

where

90 :0:

0,11 ={(0,0) | Bjb]o = true & (J,q') € 6, o Cllco]}U
{(c,0) | B[b]o = false.}

We shall show by mathematical induction that

Vo,0' € . (0,0") € 0, = (c,0) = o' (1)
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for all n € w. It then follows, of course, that (0,0') € Clc] <= (c,0) — o' for states
7, a.f._ . .

We start the mathematical induction on the induction hypothesis (1).
Base case 7 = 0: When n = 0, 8o = @ so that induction hypothesis is vacuously true.
Induction Step: We assume (1) holds for an arbitrary n € w and attempt to prove

(0,0") € Ony1 = (c,0) — o

for any states o, o’.

Assume (0,0') € 0,41. Then either

(i) B[b]o = true and (6,0') € ,,0C fco], or

(ii) B[bjo = false and ¢’ = o, | |
Assume (i). Then (b,0) — true by Lemma 5.4. Also (0,0"”) € Clco] and (o, o ) € 6,
for some state 0”. From the induction hypothesis (1) we obtain (c,6"”) — o’. By
assumption of the structural induction hypothesis for cg, we have {co,0) — ¢”. By the
rule for while-loops we obtain (¢, o) — o. | -
Assume (ii). As Bfb] = false, by Lemma 5.4, we obtain (b,0) — false. Also ¢’ = o so
(¢,0) — o. In this case the induction hypothesis holds.

This establishes the induction hypothesis (1) for n + 1.

By mathematical induction we conclude (1) holds for all n. Consequently:

(0,0') € Cfc] = (e, 0)1 — o'

for all states 0,0’ in the case where ¢ = while b do Co- |
Finally, by structural induction, we have proved the theorem. O]

Exercise 5.8 Let w = while b do ¢. Prove that
 Clulo = o' iff B[b]o = false & ¢ = o’

OF

I

:O’g,'“,G'nez. |
c=0g& o' =0, & Blb]o,, = false &
V‘L(O <1< n) Bﬂb]](f; = true & CHCHO’;' — OU{41.

(The proof from left to right uses induction on the I'"*(0) used in building up the denota-

tion of w; the proof from right to left uses induction on the length of the chain of states.)
[]
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Exercise 5.9 The syntax of commands of a simple imperative language with a repeat
construct is given by

c:= X :=e]cg;c1 |if bthen ¢ else c; | repeat ¢ until b

where X is a location, e is an arithmetic expression, b is a boolean expression and ¢, ¢, ¢;
range over commands. From your understanding of how such commands behave explain
how to change the semantics of while programs to that of repeat programs to give:

(i) an operational semantics in the form of rules to generate transitions of the form
(c,0) — o' meaning the execution of ¢ from state o terminates in state o’;

(ii) a denotational semantics for commands in which each command c is denoted by a
partial function C|c] from states to states;

(iii) sketch the proof of the equivalence between the operational and denotational seman-

tics, that (c,0) — o' iff C[c]o = o', concentrating on the case where ¢ is a repeat loop.
L

5.4 Complete partial orders and continuous functions

In the last chapter we gave an elementary account of the theory of inductive definitions.
We have shown how it can be used to give a denotational semantics for IMP. In practice
very few recursive definitions can be viewed straightforwardly as least fixed points of
operators on sets, and they are best tackled using the more abstract ideas of complete
partial orders and continuous functions, the standard tools of denotational semantics. We
can approach this framework from that of inductive definitions. In this way it is hoped
to make the more abstract ideas of complete partial orders more accessible and show the
close tie-up between them and the more concrete notions in operational semantics.

Suppose we have a set of rule instances R of the form (X/vy). We saw how R determines
an operator R on sets, which given a set B results in a set

R(B) ={y | 3(X/y) € R. X C B},
and how the operator R has a least fixed point

fir(R) =acs |J B*(0)

néw

formed by taking the union of the chain of sets

P CRW@)C---CR'B)C---
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It 1s a fixed point in the sense that .
R(fi(R)) = fie( R),
and it is the least fixed point because fiz{ R) is ihclucfed in any fixed point B, i.e.
R(B)=B= fi{R)C B. '

In fact Proposition 4.12 of Section 4.4 shows that fir( R) was the least R-closed set, where
we can characterise an R-closed set as one B for which

The very idea of “least” only made sense because of the inclusion, or subset, relation.
In its place we take the more general idea of partial order.

Definition: A partial order (p.o.) is a set P on which there is a binary relation C which
1S: |

(i) relexive: Vpe P. pC p |

(ii) transitive: Vp,q,r € P. prEq&qCr=pCr
(iii) antisymmetric: Vp,q € P. p C & gl p=>p=q.

But not all partial orders support the constructions we did on sets. In constructing
the least fixed point we formed the union UWEm A, of a w-chain Ag C A4, C v A, C .-
which started at 0—the least set. Union on sets, ordered by inclusion, generalises to the
notion of least upper bound on partial orders—we only require them to exist for such
increasing chains indexed by w. Translating these properties to partial orders, we arrive
at.the definition of a complete partial order.

Definition: For a partial order (P,C) and subset X C P say p is an upper bound of X

iff
Vge X. qC p.
Say p is a least upper bound (lub) of X iff
(i) p is an upper bound of X, and
(ii) for all upper bounds ¢q of X, p C q.
When a subset X of a partial order has a least upper bound we shall write it as L] X
We wi'ite U{dlz"':dm} aS dl U'*--Udm.
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Definition: Let (D,Cp) be a partial order.

An w-chain of the partial order is an increasing chain do Cp dy Cp ---Cpd, Cp - --
of elements of the partial order.

The partial order (D, C p) is a complete partial order (abbreviated to cpo) if it has lubs
of all w-chains dg Cp dy Ep --- Ep dn Cp -, i.e. any increasing chain {d,, | n € w} of
elements in D has a least upper bound | |{d. | n € w} in D, often written as L, co @n-

We say (D, Ep) is a cpo with bottom if it is a cpo which has a least element L p (called

“bottom” ).}

Notation: In future we shall often write the ordering of a cpo (D,C p) as simply C,
and its bottom element, when it has one, as just L. The context generally makes clear

to which cpo we refer.

Notice that any set ordered by the identity relation forms a cpo, certainly without a
bottom element. Such cpo’s are called discrete, or flat.

Exercise 5.10 Show (Pow(X),C) is a cpo with bottom, for any set X. Show the set
of partial functions 2 — ¥ ordered by C forms a cpo with bottom. O

The counterpart of an operation on sets is a function f : D — D from a cpo D back
to . We require such a function to respect the ordering on D in a certain way. To
motivate these properties we consider the operator defined from the rule instances R.

Suppose
BiCBiC---B,C---

Then |
R(By) CR(B;) C---R(Bp) C ---

is an increasing chain of sets too. This is because R is monotonic in the sense thatl
B C C = R(B) C R(C).

By monotonicity, as each B,, C | J

ﬂ.Ew >
U R(B.) C R( |J Ba)
necw ncw

In fact, the converse inclusion, and so equality, holds too because of the finitary nature
of rule instances. Suppose y € R(Unew B,). Then (X/y) € R for some finite set

!The ¢po’s here are commonly called (bottomless) w-cpo’s, or predomains. -
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X C Upe, Bn- Because X is finite, X C B., for some n. Hence y € E(Bn)_ Thus
Yy € Unéw E(Bn). We have proved that R is continuous in the sense that

U &(Br) = R(| | B.)

n€w " new

for any increasing chain By C -+ C B, C ---. This followed because the rules are finitary
t.e.each rule (X/y) involves only a finite set of premises X . |

We can adopt these properties to define the continuous functions between a. pair of
CPpOSs. | |

Definition: A function f: D — E between cpos DD and E is monotonic iff

| Vd,d' € D. d C d' = f(d) C f(d").

Such a function is continuous iff it is monotonic and for ali chainsdg Ed; C - - C d,, ...
in D we have | |

L fdn) = £(] | du).

n€w new

An important consequence of this definition is that any continuous function from a Cpo
with bottom to itself has a least fixed point, in a way which generalises that of opefa,tors
on sets in Section 4.4. In fact we can catch the notion of a set closed under rules with the
order-theoretic notion of a prefixed point (Recall a set B was closed under rule instances

R iff R(B) C B).

Definition: Let f: D — D be a continuous function on a cpo D. A fized point of f is.
an element d of D such that f(d) = d. A prefized point of f is an element d of D such

that f(d) C d. ' _

The following simple, but important, theorem gives an explicit construction fiz(f) of
the least fixed point of a continuous function f on a cpo D.

Theorem 5.11 (Fized-Point Theorem)
Let f: D — D be a continuous function on a cpo with bottom D. Define

fie(f) = || ().
new | |
Then fir{ f) is a fized point of f and the least prefized point of f i.e.

(1) JUA([)) = fixf) and (%) if f(d) E d then fir(f) T d. Consequently fiz(f) is the
least pxed point of f.
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Proof:
(i) By continuity
F(R£)) =f(| ] (L))
ncw
=] )
ncw
=(L] M )yu{L}
ncw

=1 | ()

ncw

—fix{ f).

Thus fiz( f) is a fixed point.
(ii) Suppose d is a prefixed point. Certainly 1 C d. By monotonicity f(.L) E f(d). But
d is prefixed point, i.e. f(d) C d, so f(1) C d, and by induction f*(1) C d. Thus,

fi(f) = UnEw fM(L) Ed.
As fixed points are certainly prefixed points, fiz{ f) is the least fixed point of f. 0

We say a little about the intuition behind complete partial orders and continuous
functions, an intuition which will be discussed further and pinned down more precisely
In later chapters. Complete partial orders correspond to types of data, data that can
be used as input or output to a computation. Computable functions are modelled as
continuous functions between them. The elements of a cpo are thought of as points of
information and the ordering r £ y as meaning = approximates y (or, z is less or the
same information as y)—so L is the point of least information. |

We can recast, into this general framework, the method by which we gave a denota-
tional semantics to IMP. We denoted a command by a partial function from states to
states . On the face of it this does not square with the idea that the function computed
by a command should be continuous. However partial functions on states can be viewed
-as continuous total functions. We extend the states by a new element L to a cpo of

results 2., ordered by
L Lo

for all states 0. The cpo % includes the extra element I representing the undefined
state, or more correctly null information about the state, which, as a computation pro-
gresses, can grow into the information that a particular final state is determined. It is
not hard to see that the partial functions £ — 3 are in 1-1 correspondence with the
(total) functions ¥ — %, and that in this case any total function is continuous: the
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inclusion order between partial functions corresponds to the “pointwise order”

fEgiff VoeZX. f(o) T g(o)
between functions ¥ — & . Because. partial functions form a cpo so does the set of
functions [ — X ;] ordered pointwise. Consequently, our denotational semantics can
equivalently be viewed as denoting commands by elements of the cpo of continuous
functions [ — ¥ ]. Recall that to give the denotation of a while program we solved a
recursive equation by taking the least fixed point of a continuous function on the cpo of
partial functions, which now recasts to one on the cpo [& — & 1]-

For the cpo [¥ — X}, isomorphic to that of partial tunctions, more information
corresponds to more input/output behaviour of a function and no information at all, 1
in this cpo, corresponds to the empty partial function which contains no input /output
pairs. We can think of the functions themselves as data which can be used or produced
by a computation. Notice that the information about such functions comes in discrete
units, the input/output pairs. Such a discreteness property 1s shared by a great many of
the complete partial orders that arise in modelling computations. As we shall see, that
computable functions should be continuous follows from the idea. that the appearance of
“a unit of information in the output of a computable function should only depend on the
presence of finitely many units of information in the Input. Otherwise a computation
of the function would have to make use of infinitely many units of information before
yielding that unit of output. We have met this idea before; a set of rule .instances
determines a continuous operator when the rule instances are finitary, in that they have
only finite sets of premises. |

Exercise 5.12

(1) Show that the monotonic maps from X to ¥, are continuous and in 1-1 correspondence
with the partial functions ¥ — ¥. Confirm the statement above, that a partial function
1s included in another iff the corresponding functions ¥ — ¥ | are ordered pointwise.
(ii) Let D and F be cpo’s. Suppose D has the property that every w-chain dg C dy C

-+ L dy, C --- is stationary, in the sense that there is an n such that d,, = d,, for all
m 2> n. Show that all monotonic functions from D to E are contlnuous. 0O

Exercise 5.13 Show that if we relax the condition that rules be finitary, and so allow
rule instances with an infinite number of premises, then the operator induced by a set of
rule instances need not be continuous. O




74 Chapter 5

5.5 The Knaster-Tarski Theorem

In this section another abstract characterisation of least fixed points is studied. It results
are only used much later, so it can be skipped at a first reading. Looking back to the
last chapter, there was another charaeterisation of the least fixed point of an operator
on sets. Recall from Exercise 4.3 of Section 4.1 that, for a set of rule instances R,

Ip = ﬂ {Q | Q is R-closed}.

~ In view of Section 4.4, this can be fecast as saying
=({Q | R(Q) € @},

expressing that the least fixed point of the operator R can be characterised as the in-
tersection of its prefixed points. This is a special case of the Knaster- Tarski Theorem, a
general result about the existence of least fixed points. As might be expected its state-
ment 1involves a generalisation of the operation of intersection on sets to a notion dual to

that least upper bound on a partial order.

Definition: For a partial order (P, C) and subset X C P say p is an lower bound of X
1ff
Vge X. pC q.

Say p is a greatest lower bound (glb) of X iff
(i) p is a lower bound of X, and
(ii) for all lower bounds ¢ of X, we have g C p.
When a subset X of a partial order has a greatest lower bound we shall write it as

|| x. We write [ ]{do, 1} 25 doMdy.

Just as sometimes lubs are called suprema (or sups), glbs are sometimes called infima
(or infs).

Definition: A complete lattice is a partial order which has greatest lower bounds of
arbitrary subsets.

Although we have chosen to define complete lattices as partial orders which have all
greatest lower bounds we could alternatively have defined them as those partial orders
with all least upper bounds, a consequence of the following exercise. |

Exercise 5.14 Prove a complete lattice must also have least upper bounds of arbitrary
subsets. Deduce that if (L,C) is a complete lattice then so is (L, 1), ordered by the
converse relation.
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Theorem 5.15 (Knaster-Tarski Theorem for minimum Jwed points) |
Let (L,E) be a complete lattice. Let f : L — L be a monotonic function, i.e. such that if
z Ly then f(z) C f(y) (but not necessarily continuous). Define -

Cm=[]{zeL] f(z) € z}.
Then m is a fized point of f and the least prefived point of f.

Proof: Write X = {z € L | f(z) C z}. As above, define m — I_IX. Let z € X.
Certainly m C z. Hence f(m) C f (z) by the monotonicity of f- But f(z) C z because
£ € X. So f(m) C z for any z € X. It follows that f(m) C l_IX = m. This makes
m a prefixed point and, from its definition, it is clearly the least one. As f(m) C m
we obtain f(f(m)) C f(m) from the monotonicity of f. This ensures f(m) € X which
entalls m C f(m). Thus f(m) = m. We conclude that m is Indeed a fixed point and is
the least prefixed point of f. o

As a corollary we can show that a monotonic function on a complete lattice has a
mazimum fixed point. |

Theorem 5.16 (Knaster- Tarski Theorem for mazimum fized points)
Let (L,C) be a complete lattice. Let f: L — L be a monotonic function. Define

M:U{:BGL[:EEf(fC)}-

Then M 1is a fized point of f and the greatest postfized point of f. (A postfized point is
an element T such that z C f(z).) |

Proof: This follows from the theorem for the minimum-fixed-point case by noticing
that a monotonic function on (£, ) is.also a monotonic function on the complete lattice

(L, ). 0]

The Knaster-Tarski Theorem is important because it applies to any monotonic function
on a complete lattice. However most of the time we will be concerned with least fixed
points of continuous functions which we shall construct by the techniques of the previous
section, as least upper bounds of w-chains in a Cpo.

0.6 Further reading

This chapter has given an example of a denotational semantics. - Later chapters will
expand on the range and power of the denotational method. Further elementary material



76 " | - Chapter 5

can be found in the books by Bird [21], Loeckx and Sieber [58], Schmidt 188], and Stoy
[95] (though the latter bases its treatment on complete lattices instead of complete partial
orders). A harder but very thorough book is that by de Bakker [13]. The denotational
semantics of IMP has come at a price, the more abstract use of least fixed points in place
of rules. However there is also a gain. By casting its meaning within the framework of
cpo’s and continuous functions IMP becomes amenable to the techniques there. The
book [69] has several examples of applications to the language of while programs.



