
Lecture 9

Parametric Static Analysis (2)

Hakjoo Oh
2016 Fall

Parametric Static Analysis
Parametric Static Analysis

P 2 P: a program to analyze

QP : a set of queries in P

JP : a set of program components

The parameter space (AP ,v):

a 2 AP = {0, 1}JP

with a v a0 () 8j 2 JP . aj a0
j .

The parametric static analysis:

FP : AP ! }(QP).

Assume the monotonicity:

a v a0 =) FP (a) ✓ FP (a).

Hakjoo Oh AAA616 2016 Fall, Lecture 8 November 15, 2016 2 / 3

Parametric Analysis Problems
Parametric Static Analysis Problems

Find a 2 AP such that
I FP (a) = FP (1) and
I {a0 v a | F̂P (a) = F̂P (a0)} = {a}.
I “Learning minimal abstractions”. POPL’11.

Find an abstraction a 2 AP such that
I the precision of FP (a) is close to that of FP (1), and
I the cost of FP (a) is close to that of FP (0).
I “Selective context-sensitivity guided by impact pre-analysis”. PLDI’14.
I “Learning a strategy to adapt a program analysis via bayesian

optimization”. OOPSLA’15.
I “Abstractions from Tests”. POPL’12

Find the set R of all provable queries: i.e., R = FP (1).
I “On abstraction refinement for program analyses in Datalog”. PLDI’14.

Hakjoo Oh AAA616 2016 Fall, Lecture 8 November 15, 2016 3 / 3

4

Parametric Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [1,1]
y [0,0]
z [1,1]

x [1,1]
y [0,0]
z [2,2]

x [1,1]
y [1,1]
z [2,2]

precise but costly

x [0,0]
y [0,0]
z [1,1]

5

Parametric Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [0,+∞]

y [0,+∞]

z [1,+∞]

cheap but imprecise

6

Parametric Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {x,y} FI : {z}

x [0,0]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [1,+∞]

z [1,+∞]

7

Parametric Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {y,z} FI : {x}
y [0,0]
z [1,1]

y [0,0]
z [1,1]

y [0,0]
z [2,2]

y [0,+∞]
z [2,2]

x [0,+∞]

fail to prove

8

Finding a good abstraction
is challenging

• Intractably large space, if not infinite

• 2Var different abstractions for FS

• Most of them are too imprecise or costly

• P({x,y,z}) = {∅,{x},{y},{z},{x,y},{y,z},{x,z},{x,y,z}}

Our Approaches

• Two approaches:

• Using a meta pre-analysis [PLDI’14, TOPLAS’16]

• Using machine learning [OOPSLA’15, SAS’16, APLAS,16]

9

Selective Context-Sensitivity
(PLDI’14)

10

Example Program

11

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

always holds

does not always hold

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

Context-Insensitivity

12

Context-insensitive interval analysis
cannot prove Q1

c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

[-∞,+∞]int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

Context-Insensitivity

12

Context-insensitive interval analysis
cannot prove Q1

c1:

c2:

c4:
c5:
c6:

c3:

13

g

h

h

h

h

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

Context-Sensitivity: 3-CFA
Separate analysis for each call-string

[4,4]

[-∞,+∞]

[8,8]

[8,8]

[-∞,+∞]

[-∞,+∞]

value of n

14

g

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c1

c1
fg

[4,4]

[8,8]

[8,8]

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

Context-Sensitivity: 3-CFA
Separate analysis for each call-string

h

h

h

c2

c2

c2

[-∞,+∞]

[-∞,+∞]

[-∞,+∞]

15

g

h

h

h

h

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

[4,4]

[-∞,+∞]

[8,8]

[8,8]

[-∞,+∞]

[-∞,+∞]

Problems of k-CFA

16

g

h

h

h

h

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

[4,4]

[-∞,+∞]

[8,8]

[8,8]

[-∞,+∞]

[-∞,+∞]

Problems of k-CFA

f

17

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

m

c4

{c5,c6}
c3

c1

c1
fg

[4,4]

[8,8]

Our Selective Context-Sensitivity

h [-∞,+∞]

f

c2

c2

17

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

m

c4

{c5,c6}
c3

c1

c1
fg

[4,4]

[8,8]

Our Selective Context-Sensitivity

h [-∞,+∞]

f

Challenge: How to infer this
selective context-sensitivity?

c2

c2

17

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

m

c4

{c5,c6}
c3

c1

c1
fg

[4,4]

[8,8]

Our Selective Context-Sensitivity

h [-∞,+∞]

f

Our solution: Impact pre-analysis

Challenge: How to infer this
selective context-sensitivity?

c2

c2

Impact Pre-Analysis

• Approximate the interval domain

18

⊤

★

all intervals

non-negative intervals, e.g., [5,7], [0,∞]

• Full context-sensitivity

Impact Pre-Analysis

19

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

★

★

★

⊤

⊤

⊤

value of n

Impact Pre-Analysis

20

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

g

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c1

c1
fg

[4,4]

[8,8]

[8,8]

h

h

h

c2

c2

c2

★

★

★

⊤

⊤

⊤

Impact Pre-Analysis

21

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

[-∞,+∞]

[-∞,+∞]

[-∞,+∞]

22

1. Collect queries whose expressions
are assigned with ★

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

★

★

★

⊤

⊤

⊤

22

1. Collect queries whose expressions
are assigned with ★

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

★

★

★

⊤

⊤

⊤

★

22

1. Collect queries whose expressions
are assigned with ★

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

★

★

★

⊤

⊤

⊤

★

⊤

22

1. Collect queries whose expressions
are assigned with ★

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

★

★

★

⊤

⊤

⊤

★

⊤

23

2. Find the program slice that contributes
to the selected query

c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

24

c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

3. Collect contexts in the slice

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

=> Contexts for h: {c3·c1, c4·c1}

Partial Octagon Analysis

25

1 int a = b;
2 int c = input();
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Q1
5 assert (i < c); // Q2
6 }

a b c i
a 0 0 ∞ -1
b 0 0 ∞ -1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

non-selective analysis

Partial Octagon Analysis

25

1 int a = b;
2 int c = input();
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Q1
5 assert (i < c); // Q2
6 }

a b c i
a 0 0 ∞ -1
b 0 0 ∞ -1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

non-selective analysis

Partial Octagon Analysis

25

1 int a = b;
2 int c = input();
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Q1
5 assert (i < c); // Q2
6 }

i < b

a b c i
a 0 0 ∞ -1
b 0 0 ∞ -1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

non-selective analysis

Partial Octagon Analysis

25

1 int a = b;
2 int c = input();
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Q1
5 assert (i < c); // Q2
6 }

a = b

i < b

a b c i
a 0 0 ∞ -1
b 0 0 ∞ -1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

non-selective analysis

Partial Octagon Analysis

25

1 int a = b;
2 int c = input();
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Q1
5 assert (i < c); // Q2
6 }

a = b

i < b

i-a ≤ -1

a b c i
a 0 0 ∞ -1
b 0 0 ∞ -1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

non-selective analysis

Partial Octagon Analysis

25

1 int a = b;
2 int c = input();
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Q1
5 assert (i < c); // Q2
6 }

a = b

i < b

i-a ≤ -1

i-c ≤ ∞

a b c i
a 0 0 ∞ -1
b 0 0 ∞ -1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

non-selective analysis

Partial Octagon Analysis

25

1 int a = b;
2 int c = input();
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Q1
5 assert (i < c); // Q2
6 }

a = b

i < b

i-a ≤ -1

i-c ≤ ∞

a b i
a 0 0 -1
b 0 0 -1
i ∞ ∞ 0

vs.

our selective analysis

Impact Pre-Analysis

• Fully relational

• Approximated in other precision aspects

26

a b c i
a 0 0 ∞ -1
b 0 0 ∞ -1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

vs.

a b c i
a ★ ★ ⊤ ★
b ★ ★ ⊤ ★
c ⊤ ⊤ ★ ⊤
i ⊤ ⊤ ⊤ ★

impact pre-analysisoctagon analysis

27
24.4%

Context-Insensitve Ours

Pgm LOC #alarms time(s) #alarms time(s)
spell 2K 58 0.6 30 0.9
bc 13K 606 14.0 483 16.2
tar 20K 940 42.1 799 47.2
less 23K 654 123.0 562 166.4
sed 27K 1,325 107.5 1,238 117.6
make 27K 1,500 88.4 1,028 106.2
grep 32K 735 12.1 653 15.9
wget 35K 1,307 69.0 942 82.1
a2ps 65K 3,682 118.1 2,121 177.7
bison 102K 1,894 136.3 1,742 173.4
TOTAL 346K 12,701 707.1 9,598 903.6

Selective Context-Sensitivity

28

Selective Context-Sensitivity

Context-Insensitve Ours

Pgm LOC #alarms time(s) #alarms time(s)
spell 2K 58 0.6 30 0.9
bc 13K 606 14.0 483 16.2
tar 20K 940 42.1 799 47.2
less 23K 654 123.0 562 166.4
sed 27K 1,325 107.5 1,238 117.6
make 27K 1,500 88.4 1,028 106.2
grep 32K 735 12.1 653 15.9
wget 35K 1,307 69.0 942 82.1
a2ps 65K 3,682 118.1 2,121 177.7
bison 102K 1,894 136.3 1,742 173.4
TOTAL 346K 12,701 707.1 9,598 903.6

27.8%

28

Selective Context-Sensitivity

Context-Insensitve Ours

Pgm LOC #alarms time(s) #alarms time(s)
spell 2K 58 0.6 30 0.9
bc 13K 606 14.0 483 16.2
tar 20K 940 42.1 799 47.2
less 23K 654 123.0 562 166.4
sed 27K 1,325 107.5 1,238 117.6
make 27K 1,500 88.4 1,028 106.2
grep 32K 735 12.1 653 15.9
wget 35K 1,307 69.0 942 82.1
a2ps 65K 3,682 118.1 2,121 177.7
bison 102K 1,894 136.3 1,742 173.4
TOTAL 346K 12,701 707.1 9,598 903.6

27.8%
pre-analysis : 14.7%
main analysis: 13.1%

k-CFA did not scale

• 2 or 3-CFA did not scale over 10KLoC
• e.g., for spell (2KLoC):

• 3-CFA reported 30 alarms in 11.9s

• cf) ours: 30 alarms in 0.9s

• 1-CFA did not scale over 40KLoC

29

30

#buffer-overrun queries

Existing Approach
[Miné06] Ours

Pgm LOC #queries proven time(s) proven time(s)
calc 298 10 2 0.3 10 0.2
spell 2,213 16 1 4.8 16 2.4
barcode 4,460 37 16 11.8 37 30.5
httptunnel 6,174 28 16 26.0 26 15.3
bc 13,093 10 2 247.1 9 117.3
tar 20,258 17 7 1043.2 17 661.8
less 23,822 13 0 3031.5 13 2849.4
a2ps 64,590 11 0 29473.3 11 2741.7
TOTAL 135,008 142 44 33840.3 139 6418.6

Selective Octagon Analysis

+95

31

#buffer-overrun queries

Existing Approach
[Miné06] Ours

Pgm LOC #queries proven time(s) proven time(s)
calc 298 10 2 0.3 10 0.2
spell 2,213 16 1 4.8 16 2.4
barcode 4,460 37 16 11.8 37 30.5
httptunnel 6,174 28 16 26.0 26 15.3
bc 13,093 10 2 247.1 9 117.3
tar 20,258 17 7 1043.2 17 661.8
less 23,822 13 0 3031.5 13 2849.4
a2ps 64,590 11 0 29473.3 11 2741.7
TOTAL 135,008 142 44 33840.3 139 6418.6

Selective Octagon Analysis

reduce time by -81%

Framework

32

• For a range of static analyses,

• how to design the impact pre-analysis

• an efficient graph reachability-based
algorithm

• how to design selective context-sensitivity
guide

• soundness guarantee of the pre-analysis

Program Representation

33

• Control flow graph

abstract states, the pre-analysis conservatively estimates the results
of the main analysis at each program point.

For instance, we approximate the interval analysis in this exam-
ple using a pre-analysis with the following abstract domain:

{?} [(Var ! {>,F}).
Here > means all intervals, and F intervals of the form [l, u] with
0 l u. A typical abstract state in this domain is

[x : >, y : F],

which means the following set of abstract states in the interval
domain:

{[x : [l
x

, u
x

], y : [l
y

, u
y

]] | l
x

 u
x

^ 0 l
y

 u
y

}.
This simple abstract domain of the pre-analysis is chosen because
we are interested in showing the absence of buffer overruns and
the analysis proves such properties usually by using non-negative
intervals.

If we analyze our example program using the fully context-
sensitive version of this pre-analysis, we obtain a summary of the
procedure xmalloc with eight entries, each corresponding to a
different context in (1). The third column of the table below shows
this summary:

Size of the allocated buffer in xmalloc

Contexts Main analysis Pre-analysis
4 · 10 · 14 [8, 8] F
4 · 10 · 15 [16, 16] F
4 · 11 · 16 [4, 4] F
4 · 11 · 17 [4, 4] F
6 · 10 · 14 [�1,+1] >
6 · 10 · 15 [�1,+1] >
6 · 11 · 16 [�1,+1] >
6 · 11 · 17 [�1,+1] >

The second column of the table shows the results of the interval
analysis with full context-sensitivity. Note that the pre-analysis in
this case precisely identifies calling contexts (i.e., the first four
contexts in the table) where the interval analysis tracks the size of
the allocated buffer in xmalloc accurately under the full context-
sensitivity. In general, our pre-analysis might lose precision and
use > more often than in the ideal case. However, even when such
approximation occurs, it does so only in a sound manner—if the
pre-analysis says that the size of a buffer is F, the interval analysis
is guaranteed to compute a non-negative interval for the size of the
buffer.

The prediction stage runs this pre-analysis under full context-
sensitivity, and filters out queries if they use expressions with the >
value in this analysis run. In our example, the pre-analysis assigns
F to the expression sizeof(p) in the first query (line 8), and > to
sizeof(q) in the second query (line 10). We regard this as a good
indication that the interval analysis under full context-sensitivity is
likely to estimate the value of sizeof(p) accurately, but that of
sizeof(q) poorly or as an interval involving �1 or 1. Based on
this heuristic reasoning, we no longer consider the second query,
and focus on only the first.

The queries that survive this filtering are then passed to the
next context-collection stage of our analysis. For each query that
is judged worthy by our prediction stage, we do the dependency
analysis on the results of the pre-analysis, and compute a sliced
version of a given program that includes all the dependencies in the
analysis’s results. Then, we conclude that all the calls made in this
slicing should be tracked precisely. For example, if a slice from the
dependency source to a query looks as follows:

source query
f

g

h

• • •

then, we derive calling contexts f, g ·f, and h ·g ·f for procedure f,
g, and h, respectively. However, if a slice involves a recursive call
as follows:

source query
f

g

h

• • •

then, we exclude the query since otherwise, we need infinitely dif-
ferent calling contexts. In case of the example program in Figure 1,
the slicing for the first query at line 5 removes calls at line 6, 16
and 17. All the calling contexts of xmalloc in this slice are

4 · 10 · 14, 4 · 10 · 15, 4 · 11

Our analysis decides to distinguish these contexts and their suf-
fixes.

The selective context-sensitivity must work against the preci-
sion degradation caused by the widening operation. For instance,
in our example program, it is not sufficient to simply distinguish
the call sites to xmalloc (line 4 and 6). Suppose we adopt this
simple strategy for selective context-sensitivity, and do not sep-
arate the calling contexts of multi glob and f. Because of the
spurious interprocedural cycles [14] caused by the joined calling
contexts, the analysis should apply the widening operation when
analyzing multi glob and f. At the first call site (line 14), f is
analyzed with the parameter value [8, 8], and at the second call
site (line 15), f is analyzed with [16, 16]. At this point, the anal-
ysis combines these parameter values with the widening operator,
and sets the estimation of the parameter x to the interval [8,+1].
As f calls multi glob, the parameter size of multi glob has
the interval [8,+1]. This estimation is weakened again at the
call of multi glob at line 11, and it becomes [8,+1]r[4, 4] =
[�1,+1]. Hence, the analysis fails to prove that the call at line
4 returns a buffer of size > 1. This is why our selectively context-
sensitive analysis analyzes xmalloc for the three calling contexts
in (2) separately.

3. Program Representation
Control Flow Graph We assume that a program P is represented
by a control flow graph

(C,!,F, ◆)

where C is the finite set of nodes, (!) ✓ C⇥C denotes the control
flow relation between nodes, F is the set of procedure ids, and ◆ 2 C
is the entry node of the main procedure. The entry node ◆ does not
have predecessors, i.e., ¬(9c 2 C. c ! ◆). A node c 2 C in the
program is one of the five types:

C = C
e

(Entry Nodes)] C
x

(Exit Nodes)
] C

c

(Call Nodes)] C
r

(Return Nodes)
] C

i

(Internal Nodes)

Each procedure f 2 F has one entry node and one exit node. Given
a node c 2 C, fid(c) denotes the procedure enclosing the node.
Each call-site in the program is represented by a pair of call and
return nodes. Given a return node c 2 C

r

, we write callof(c) for
the corresponding call node.

We denote the set of call edges by ⇢:

(⇢) = {(c1, c2) | c1 ! c2 ^ c1 2 C
c

^ c2 2 C
e

}

and the set of return edges by 99K:

(99K) = {(c1, c2) | c1 ! c2 ^ c1 2 C
x

^ c2 2 C
r

}.

We assume for simplicity that there are no indirect function calls
such as calls via function pointers, i.e., the call and return edges

3 2013/7/15

abstract states, the pre-analysis conservatively estimates the results
of the main analysis at each program point.

For instance, we approximate the interval analysis in this exam-
ple using a pre-analysis with the following abstract domain:

{?} [(Var ! {>,F}).
Here > means all intervals, and F intervals of the form [l, u] with
0 l u. A typical abstract state in this domain is

[x : >, y : F],

which means the following set of abstract states in the interval
domain:

{[x : [l
x

, u
x

], y : [l
y

, u
y

]] | l
x

 u
x

^ 0 l
y

 u
y

}.
This simple abstract domain of the pre-analysis is chosen because
we are interested in showing the absence of buffer overruns and
the analysis proves such properties usually by using non-negative
intervals.

If we analyze our example program using the fully context-
sensitive version of this pre-analysis, we obtain a summary of the
procedure xmalloc with eight entries, each corresponding to a
different context in (1). The third column of the table below shows
this summary:

Size of the allocated buffer in xmalloc

Contexts Main analysis Pre-analysis
4 · 10 · 14 [8, 8] F
4 · 10 · 15 [16, 16] F
4 · 11 · 16 [4, 4] F
4 · 11 · 17 [4, 4] F
6 · 10 · 14 [�1,+1] >
6 · 10 · 15 [�1,+1] >
6 · 11 · 16 [�1,+1] >
6 · 11 · 17 [�1,+1] >

The second column of the table shows the results of the interval
analysis with full context-sensitivity. Note that the pre-analysis in
this case precisely identifies calling contexts (i.e., the first four
contexts in the table) where the interval analysis tracks the size of
the allocated buffer in xmalloc accurately under the full context-
sensitivity. In general, our pre-analysis might lose precision and
use > more often than in the ideal case. However, even when such
approximation occurs, it does so only in a sound manner—if the
pre-analysis says that the size of a buffer is F, the interval analysis
is guaranteed to compute a non-negative interval for the size of the
buffer.

The prediction stage runs this pre-analysis under full context-
sensitivity, and filters out queries if they use expressions with the >
value in this analysis run. In our example, the pre-analysis assigns
F to the expression sizeof(p) in the first query (line 8), and > to
sizeof(q) in the second query (line 10). We regard this as a good
indication that the interval analysis under full context-sensitivity is
likely to estimate the value of sizeof(p) accurately, but that of
sizeof(q) poorly or as an interval involving �1 or 1. Based on
this heuristic reasoning, we no longer consider the second query,
and focus on only the first.

The queries that survive this filtering are then passed to the
next context-collection stage of our analysis. For each query that
is judged worthy by our prediction stage, we do the dependency
analysis on the results of the pre-analysis, and compute a sliced
version of a given program that includes all the dependencies in the
analysis’s results. Then, we conclude that all the calls made in this
slicing should be tracked precisely. For example, if a slice from the
dependency source to a query looks as follows:

source query
f

g

h

• • •

then, we derive calling contexts f, g ·f, and h ·g ·f for procedure f,
g, and h, respectively. However, if a slice involves a recursive call
as follows:

source query
f

g

h

• • •

then, we exclude the query since otherwise, we need infinitely dif-
ferent calling contexts. In case of the example program in Figure 1,
the slicing for the first query at line 5 removes calls at line 6, 16
and 17. All the calling contexts of xmalloc in this slice are

4 · 10 · 14, 4 · 10 · 15, 4 · 11

Our analysis decides to distinguish these contexts and their suf-
fixes.

The selective context-sensitivity must work against the preci-
sion degradation caused by the widening operation. For instance,
in our example program, it is not sufficient to simply distinguish
the call sites to xmalloc (line 4 and 6). Suppose we adopt this
simple strategy for selective context-sensitivity, and do not sep-
arate the calling contexts of multi glob and f. Because of the
spurious interprocedural cycles [14] caused by the joined calling
contexts, the analysis should apply the widening operation when
analyzing multi glob and f. At the first call site (line 14), f is
analyzed with the parameter value [8, 8], and at the second call
site (line 15), f is analyzed with [16, 16]. At this point, the anal-
ysis combines these parameter values with the widening operator,
and sets the estimation of the parameter x to the interval [8,+1].
As f calls multi glob, the parameter size of multi glob has
the interval [8,+1]. This estimation is weakened again at the
call of multi glob at line 11, and it becomes [8,+1]r[4, 4] =
[�1,+1]. Hence, the analysis fails to prove that the call at line
4 returns a buffer of size > 1. This is why our selectively context-
sensitive analysis analyzes xmalloc for the three calling contexts
in (2) separately.

3. Program Representation
Control Flow Graph We assume that a program P is represented
by a control flow graph

(C,!,F, ◆)

where C is the finite set of nodes, (!) ✓ C⇥C denotes the control
flow relation between nodes, F is the set of procedure ids, and ◆ 2 C
is the entry node of the main procedure. The entry node ◆ does not
have predecessors, i.e., ¬(9c 2 C. c ! ◆). A node c 2 C in the
program is one of the five types:

C = C
e

(Entry Nodes)] C
x

(Exit Nodes)
] C

c

(Call Nodes)] C
r

(Return Nodes)
] C

i

(Internal Nodes)

Each procedure f 2 F has one entry node and one exit node. Given
a node c 2 C, fid(c) denotes the procedure enclosing the node.
Each call-site in the program is represented by a pair of call and
return nodes. Given a return node c 2 C

r

, we write callof(c) for
the corresponding call node.

We denote the set of call edges by ⇢:

(⇢) = {(c1, c2) | c1 ! c2 ^ c1 2 C
c

^ c2 2 C
e

}

and the set of return edges by 99K:

(99K) = {(c1, c2) | c1 ! c2 ^ c1 2 C
x

^ c2 2 C
r

}.

We assume for simplicity that there are no indirect function calls
such as calls via function pointers, i.e., the call and return edges

3 2013/7/15

occurs, it does so only in a sound manner—if the pre-analysis
computes F for the size of a buffer, the interval analysis under
full context-sensitivity is guaranteed to compute a non-negative
interval.
Use of pre-analysis results Next, from the pre-analysis results,
we select calling contexts that help improve the precision regard-
ing given queries. We first identify queries whose expressions are
assigned with F in the pre-analysis run. In our example, the pre-
analysis assigns F to the expression sizeof(p) in the first query.
We regard this as a good indication that the interval analysis under
full context-sensitivity is likely to estimate the value of sizeof(p)
accurately. Then, for each query that is judged promising, we con-
sider the slice of the program that contributes to the query. We con-
clude that all the calls made in the slice should be tracked precisely.
For example, if a slice for a query looks as follows:

query
f h i

g

• • •
•

•

Then, we derive calling contexts f, g, {h · f, h · g}, and {i · h ·
f, i · h · g} for procedure f, g, h, and i, respectively. However,
if the slice involves a recursive call, we exclude the query since
otherwise, we need infinitely many different calling contexts. In
our example program, the slice for the first query includes all the
execution paths from lines 11, 14, and 15 to line 5. Note that call-
sites 16 and 17 are not included in the slice, and that all the calling
contexts of xmalloc in this slice are: 4 · 10 · 14, 4 · 10 · 15, and
4 · 11. Our analysis decides to distinguish these contexts and their
suffixes.
Impact realization Our method guarantees that the impact esti-
mation under full context-sensitivity pays off at the subsequent se-
lective context-sensitive analysis. That is, in our example program,
the selective main analysis, which distinguishes only the contexts in
(2), is guaranteed to assign a nonnegative interval to the expression
sizeof(p) at the first query. This guarantee holds because our se-
lective context-sensitive analysis distinguishes all the calling con-
texts that matter for the selected queries (Section 5.2) and ensures
that undistinguished contexts are isolated from the distinguished
contexts (Section 4). For instance, although the call to xmalloc at
line 6 is analyzed in a context-insensitive way, our analysis ensures
that xmalloc in this case returns only to line 6, not to line 4.
Application to relational analysis Behind our approach lies a
general principle for developing a static analysis that selectively
uses precision-improving techniques, such as context-sensitivity
and relational abstract domains. The principle is to develop an
impact pre-analysis that finds out when and where the main static
analysis under the full precision setting is likely to have an accurate
result, and to choose an appropriate precision setting of the main
analysis based on the results of this pre-analysis.

For instance, suppose that we want to develop a selective ver-
sion of the octagon analysis, which tracks only some relationships
between program variables that are likely to be tracked well by
the octagon analysis and also to help the proofs of given queries.
To achieve this goal, we design an impact pre-analysis that aims
at finding when and where the original octagon analysis is likely to
infer precise relationships between program variables. In Section 6,
we describe this selective octagon analysis in detail.

3. Program Representation
We assume that a program P is represented by a control flow graph
(C,!,F, ◆) where C is the finite set of nodes, (!) ✓ C ⇥ C
denotes the control flow relation between nodes, F is the set of
procedure ids, and ◆ 2 C is the entry node of the main procedure.
The entry node ◆ does not have predecessors. A node c 2 C in the

program is one of the five types:

C = C
e

(Entry Nodes)] C
x

(Exit Nodes)
] C

c

(Call Nodes)] C
r

(Return Nodes)
] C

i

(Internal Nodes)

Each procedure f 2 F has one entry node and one exit node. Given
a node c 2 C, fid(c) denotes the procedure enclosing the node.
Each call-site in the program is represented by a pair of call and
return nodes. Given a return node c 2 C

r

, we write callof(c) for
the corresponding call node. We assume for simplicity that there
are no indirect function calls such as calls via function pointers.

We associate a primitive command with each node c of our con-
trol flow graph, and denote it by cmd(c). For brevity, we consider
simple primitive commands specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression: e ! n | x | e+ e | e� e. We
denote the set of all program variables by Var.

For simplicity, we handle parameter passing and return values of
procedures via simple syntactic encoding. Recall that we represent
a call statement x := f

p

(e) (where p is a formal parameter of
procedure f) with call and return nodes. In our program, the call
node has command p := e, so that the actual parameter e is
assigned to the formal parameter p. For return values, we assume
that each procedure f has a variable r

f

and the return value is
assigned to r

f

: that is, we represent return statement return e of
procedure f by r

f

:= e. The return node has command x := r

f

,
so that the return value is assigned to the original return variable.
We assume that there are no global variables in the program, all
parameters and local variables of procedures are distinct, and there
are no recursive procedures.

4. Selective Context-Sensitive Analysis with
Context-Sensitivity Parameter K

We consider selective context-sensitive analyses specified by the
following data: (1) a domain S of abstract states, which forms a
complete lattice structure (S,v,?,>,t,u); (2) an initial abstract
state s

I

2 S at the entry of the main procedure; (3) a monotone
abstract semantics of primitive commands JcmdK : S ! S; (4) a
context selector K that maps procedures to sets of calling contexts
(sequences of call nodes):

K 2 F ! }(C⇤
c

).

For each procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure. We
sometimes abuse the notation and denote by K the entire set of
calling contexts in K: we write 2 K for 2

S
f2F K(f).

With the above data, we design a selective context-sensitive
analysis as follows. First, we differentiate nodes with contexts in
K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

:

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0) iff
8
<

:

c ! c

0 ^

0 = (c0 62 C
e

] C
r

)
c ! c

0 ^

0 = c ::
K

 (c 2 C
c

^ c

0 2 C
e

)
c ! c

0 ^ = callof(c0) ::
K

0 (c 2 C
x

^ c

0 2 C
r

)

where (::
K

) 2 C
c

⇥ C⇤
c

! C⇤
c

updates contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)
✏ otherwise

Program Representation

34

occurs, it does so only in a sound manner—if the pre-analysis
computes F for the size of a buffer, the interval analysis under
full context-sensitivity is guaranteed to compute a non-negative
interval.
Use of pre-analysis results Next, from the pre-analysis results,
we select calling contexts that help improve the precision regard-
ing given queries. We first identify queries whose expressions are
assigned with F in the pre-analysis run. In our example, the pre-
analysis assigns F to the expression sizeof(p) in the first query.
We regard this as a good indication that the interval analysis under
full context-sensitivity is likely to estimate the value of sizeof(p)
accurately. Then, for each query that is judged promising, we con-
sider the slice of the program that contributes to the query. We con-
clude that all the calls made in the slice should be tracked precisely.
For example, if a slice for a query looks as follows:

query
f h i

g

• • •
•

•

Then, we derive calling contexts f, g, {h · f, h · g}, and {i · h ·
f, i · h · g} for procedure f, g, h, and i, respectively. However,
if the slice involves a recursive call, we exclude the query since
otherwise, we need infinitely many different calling contexts. In
our example program, the slice for the first query includes all the
execution paths from lines 11, 14, and 15 to line 5. Note that call-
sites 16 and 17 are not included in the slice, and that all the calling
contexts of xmalloc in this slice are: 4 · 10 · 14, 4 · 10 · 15, and
4 · 11. Our analysis decides to distinguish these contexts and their
suffixes.
Impact realization Our method guarantees that the impact esti-
mation under full context-sensitivity pays off at the subsequent se-
lective context-sensitive analysis. That is, in our example program,
the selective main analysis, which distinguishes only the contexts in
(2), is guaranteed to assign a nonnegative interval to the expression
sizeof(p) at the first query. This guarantee holds because our se-
lective context-sensitive analysis distinguishes all the calling con-
texts that matter for the selected queries (Section 5.2) and ensures
that undistinguished contexts are isolated from the distinguished
contexts (Section 4). For instance, although the call to xmalloc at
line 6 is analyzed in a context-insensitive way, our analysis ensures
that xmalloc in this case returns only to line 6, not to line 4.
Application to relational analysis Behind our approach lies a
general principle for developing a static analysis that selectively
uses precision-improving techniques, such as context-sensitivity
and relational abstract domains. The principle is to develop an
impact pre-analysis that finds out when and where the main static
analysis under the full precision setting is likely to have an accurate
result, and to choose an appropriate precision setting of the main
analysis based on the results of this pre-analysis.

For instance, suppose that we want to develop a selective ver-
sion of the octagon analysis, which tracks only some relationships
between program variables that are likely to be tracked well by
the octagon analysis and also to help the proofs of given queries.
To achieve this goal, we design an impact pre-analysis that aims
at finding when and where the original octagon analysis is likely to
infer precise relationships between program variables. In Section 6,
we describe this selective octagon analysis in detail.

3. Program Representation
We assume that a program P is represented by a control flow graph
(C,!,F, ◆) where C is the finite set of nodes, (!) ✓ C ⇥ C
denotes the control flow relation between nodes, F is the set of
procedure ids, and ◆ 2 C is the entry node of the main procedure.
The entry node ◆ does not have predecessors. A node c 2 C in the

program is one of the five types:

C = C
e

(Entry Nodes)] C
x

(Exit Nodes)
] C

c

(Call Nodes)] C
r

(Return Nodes)
] C

i

(Internal Nodes)

Each procedure f 2 F has one entry node and one exit node. Given
a node c 2 C, fid(c) denotes the procedure enclosing the node.
Each call-site in the program is represented by a pair of call and
return nodes. Given a return node c 2 C

r

, we write callof(c) for
the corresponding call node. We assume for simplicity that there
are no indirect function calls such as calls via function pointers.

We associate a primitive command with each node c of our con-
trol flow graph, and denote it by cmd(c). For brevity, we consider
simple primitive commands specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression: e ! n | x | e+ e | e� e. We
denote the set of all program variables by Var.

For simplicity, we handle parameter passing and return values of
procedures via simple syntactic encoding. Recall that we represent
a call statement x := f

p

(e) (where p is a formal parameter of
procedure f) with call and return nodes. In our program, the call
node has command p := e, so that the actual parameter e is
assigned to the formal parameter p. For return values, we assume
that each procedure f has a variable r

f

and the return value is
assigned to r

f

: that is, we represent return statement return e of
procedure f by r

f

:= e. The return node has command x := r

f

,
so that the return value is assigned to the original return variable.
We assume that there are no global variables in the program, all
parameters and local variables of procedures are distinct, and there
are no recursive procedures.

4. Selective Context-Sensitive Analysis with
Context-Sensitivity Parameter K

We consider selective context-sensitive analyses specified by the
following data: (1) a domain S of abstract states, which forms a
complete lattice structure (S,v,?,>,t,u); (2) an initial abstract
state s

I

2 S at the entry of the main procedure; (3) a monotone
abstract semantics of primitive commands JcmdK : S ! S; (4) a
context selector K that maps procedures to sets of calling contexts
(sequences of call nodes):

K 2 F ! }(C⇤
c

).

For each procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure. We
sometimes abuse the notation and denote by K the entire set of
calling contexts in K: we write 2 K for 2

S
f2F K(f).

With the above data, we design a selective context-sensitive
analysis as follows. First, we differentiate nodes with contexts in
K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

:

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0) iff
8
<

:

c ! c

0 ^

0 = (c0 62 C
e

] C
r

)
c ! c

0 ^

0 = c ::
K

 (c 2 C
c

^ c

0 2 C
e

)
c ! c

0 ^ = callof(c0) ::
K

0 (c 2 C
x

^ c

0 2 C
r

)

where (::
K

) 2 C
c

⇥ C⇤
c

! C⇤
c

updates contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)
✏ otherwise

occurs, it does so only in a sound manner—if the pre-analysis
computes F for the size of a buffer, the interval analysis under
full context-sensitivity is guaranteed to compute a non-negative
interval.
Use of pre-analysis results Next, from the pre-analysis results,
we select calling contexts that help improve the precision regard-
ing given queries. We first identify queries whose expressions are
assigned with F in the pre-analysis run. In our example, the pre-
analysis assigns F to the expression sizeof(p) in the first query.
We regard this as a good indication that the interval analysis under
full context-sensitivity is likely to estimate the value of sizeof(p)
accurately. Then, for each query that is judged promising, we con-
sider the slice of the program that contributes to the query. We con-
clude that all the calls made in the slice should be tracked precisely.
For example, if a slice for a query looks as follows:

query
f h i

g

• • •
•

•

Then, we derive calling contexts f, g, {h · f, h · g}, and {i · h ·
f, i · h · g} for procedure f, g, h, and i, respectively. However,
if the slice involves a recursive call, we exclude the query since
otherwise, we need infinitely many different calling contexts. In
our example program, the slice for the first query includes all the
execution paths from lines 11, 14, and 15 to line 5. Note that call-
sites 16 and 17 are not included in the slice, and that all the calling
contexts of xmalloc in this slice are: 4 · 10 · 14, 4 · 10 · 15, and
4 · 11. Our analysis decides to distinguish these contexts and their
suffixes.
Impact realization Our method guarantees that the impact esti-
mation under full context-sensitivity pays off at the subsequent se-
lective context-sensitive analysis. That is, in our example program,
the selective main analysis, which distinguishes only the contexts in
(2), is guaranteed to assign a nonnegative interval to the expression
sizeof(p) at the first query. This guarantee holds because our se-
lective context-sensitive analysis distinguishes all the calling con-
texts that matter for the selected queries (Section 5.2) and ensures
that undistinguished contexts are isolated from the distinguished
contexts (Section 4). For instance, although the call to xmalloc at
line 6 is analyzed in a context-insensitive way, our analysis ensures
that xmalloc in this case returns only to line 6, not to line 4.
Application to relational analysis Behind our approach lies a
general principle for developing a static analysis that selectively
uses precision-improving techniques, such as context-sensitivity
and relational abstract domains. The principle is to develop an
impact pre-analysis that finds out when and where the main static
analysis under the full precision setting is likely to have an accurate
result, and to choose an appropriate precision setting of the main
analysis based on the results of this pre-analysis.

For instance, suppose that we want to develop a selective ver-
sion of the octagon analysis, which tracks only some relationships
between program variables that are likely to be tracked well by
the octagon analysis and also to help the proofs of given queries.
To achieve this goal, we design an impact pre-analysis that aims
at finding when and where the original octagon analysis is likely to
infer precise relationships between program variables. In Section 6,
we describe this selective octagon analysis in detail.

3. Program Representation
We assume that a program P is represented by a control flow graph
(C,!,F, ◆) where C is the finite set of nodes, (!) ✓ C ⇥ C
denotes the control flow relation between nodes, F is the set of
procedure ids, and ◆ 2 C is the entry node of the main procedure.
The entry node ◆ does not have predecessors. A node c 2 C in the

program is one of the five types:

C = C
e

(Entry Nodes)] C
x

(Exit Nodes)
] C

c

(Call Nodes)] C
r

(Return Nodes)
] C

i

(Internal Nodes)

Each procedure f 2 F has one entry node and one exit node. Given
a node c 2 C, fid(c) denotes the procedure enclosing the node.
Each call-site in the program is represented by a pair of call and
return nodes. Given a return node c 2 C

r

, we write callof(c) for
the corresponding call node. We assume for simplicity that there
are no indirect function calls such as calls via function pointers.

We associate a primitive command with each node c of our con-
trol flow graph, and denote it by cmd(c). For brevity, we consider
simple primitive commands specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression: e ! n | x | e+ e | e� e. We
denote the set of all program variables by Var.

For simplicity, we handle parameter passing and return values of
procedures via simple syntactic encoding. Recall that we represent
a call statement x := f

p

(e) (where p is a formal parameter of
procedure f) with call and return nodes. In our program, the call
node has command p := e, so that the actual parameter e is
assigned to the formal parameter p. For return values, we assume
that each procedure f has a variable r

f

and the return value is
assigned to r

f

: that is, we represent return statement return e of
procedure f by r

f

:= e. The return node has command x := r

f

,
so that the return value is assigned to the original return variable.
We assume that there are no global variables in the program, all
parameters and local variables of procedures are distinct, and there
are no recursive procedures.

4. Selective Context-Sensitive Analysis with
Context-Sensitivity Parameter K

We consider selective context-sensitive analyses specified by the
following data: (1) a domain S of abstract states, which forms a
complete lattice structure (S,v,?,>,t,u); (2) an initial abstract
state s

I

2 S at the entry of the main procedure; (3) a monotone
abstract semantics of primitive commands JcmdK : S ! S; (4) a
context selector K that maps procedures to sets of calling contexts
(sequences of call nodes):

K 2 F ! }(C⇤
c

).

For each procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure. We
sometimes abuse the notation and denote by K the entire set of
calling contexts in K: we write 2 K for 2

S
f2F K(f).

With the above data, we design a selective context-sensitive
analysis as follows. First, we differentiate nodes with contexts in
K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

:

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0) iff
8
<

:

c ! c

0 ^

0 = (c0 62 C
e

] C
r

)
c ! c

0 ^

0 = c ::
K

 (c 2 C
c

^ c

0 2 C
e

)
c ! c

0 ^ = callof(c0) ::
K

0 (c 2 C
x

^ c

0 2 C
r

)

where (::
K

) 2 C
c

⇥ C⇤
c

! C⇤
c

updates contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)
✏ otherwise

A Family of Static Analyses

35

respect the following conditions:

8c1, c2, c3 2 C.
⇢

c1 ⇢ c2 ^ c1 ⇢ c3 =) c2 = c3
c2 99K c1 ^ c3 99K c1 =) c2 = c3

Primitive Command We associate a primitive command with
each node c of our control flow graph, and denote it by cmd(c).
In this paper, for brevity, we consider simple primitive commands
specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression:

e ! n | x | e+ e | e� e

We denote the set of all program variables by Var.
We handle parameter passing and return values of procedures

via simple syntactic encoding.1 Recall that we represent a call
statement x := f

p

(e) (where p is a formal parameter of procedure
f) with call and return nodes. In our program, the call node has
command p := e, so that the actual parameter e is assigned to
the formal parameter p. For return values, we assume that each
procedure f has a variable r

f

and the return value is assigned to
r
f

: that is, we represent return statement return e of procedure f
by r

f

:= e. The return node has command x := r
f

, so that the
return value is assigned to the original return variable. We assume
that there are no global variables in the program, all parameters and
local variables of procedures are distinct, and there are no recursive
procedures.

4. A Class of Context-Sensitive Analysis
In this paper, we consider a class of program analyses specified by
the followings.

1. A domain S of abstract states. We assume that this domain has
a complete lattice structure:

(S,v,?,>,t,u).

2. An initial abstract state at the entry of the main procedure:

s
I

2 S.

3. An abstract semantics of every primitive command cmd:

JcmdK : S ! S.
We require that semantic function JcmdK be monotone.

4. A context guide K that maps procedures to sets of calling
contexts (sequences of call nodes):

K 2 F ! }(C⇤
c

)

For procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure.
We sometimes abuse the notation and denote by K the entire
set of calling contexts in K: we write 2 K to denote that
 2

S
f2F K(f).

The above leads to the definition of a selectively context-
sensitive analysis as follows. First, we differentiate nodes with
contexts in K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched
nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

.

1 For presentation brevity. Alternatively, we can handle parameter passing
and return values directly in the (abstract) semantics, which our implemen-
tation in Section 7 follows.

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0
) iff

8
<

:

c ! c0 ^ 0
= (c0 62 C

e

] C
r

)

c ⇢ c0 ^ 0
= c ::

K

c 99K c0 ^ = callof(c0) ::

K

0

where (::

K

) 2 C
c

⇥ C⇤
c

! C⇤
c

is a context-manipulating operator
that updates calling contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)

✏ otherwise

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K(f) includes ✏ when neces-
sary. For instance, consider a program where f has three different
calling contexts 1,2, and 3. When the analysis differentiates 1

only, other undistinguished contexts 2 and 3 are represented by ✏
in the analysis. In this case, the context gude should include ✏, i.e.,
K(f) = {1, ✏}.

Example 1. The context-insensitive analysis is obtained by letting
K map procedures to singleton set {✏}, i.e., K = �f. {✏}.

Example 2. Consider the example program in Figure 1. The fol-
lowing map defines K for the fully context-sensitive analysis.

main 7! {✏}
f 7! {14, 15}
g 7! {16, 17}

multi glob 7! {10 · 14, 10 · 15, 11 · 16, 11 · 17}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11 · 16, 4 · 11 · 17,

6 · 10 · 14, 6 · 10 · 15, 6 · 11 · 16, 6 · 11 · 17}

Example 3. Our selectively context-sensitive analysis for the ex-
ample program in Figure 1 (explained in Section 2) uses the follow-
ing context guide K:

main 7! {✏}
f 7! {14, 15}
g 7! {✏}

multi glob 7! {10 · 14, 10 · 15, 11}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11, ✏}

K does not include ✏ for procedures f and multi glob, as all of
their calling contexts are prescribed in K.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S).
The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!
K

(c,)

X(c0,0))

Our static analysis computes an abstract element X 2 D that
overapproximates all the concrete states summarized by s

I

and
forms an inductive invariant of the given program P :

s
I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (3)

In general, many X can satisfy the condition in (3). Choosing
one among these solutions is up to each static analysis, and depends
on its fixpoint algorithm. Some analyses compute the least X
satisfying (3), where abstract elements are ordered pointwise:

X v Y iff 8(c,) 2 C
K

. X(c,) v Y (c,).

Other analyses use a widening operator [1, 2], and compute not
necessarily the least, but some solution of (3).

4 2013/7/15

occurs, it does so only in a sound manner—if the pre-analysis
computes F for the size of a buffer, the interval analysis under
full context-sensitivity is guaranteed to compute a non-negative
interval.
Use of pre-analysis results Next, from the pre-analysis results,
we select calling contexts that help improve the precision regard-
ing given queries. We first identify queries whose expressions are
assigned with F in the pre-analysis run. In our example, the pre-
analysis assigns F to the expression sizeof(p) in the first query.
We regard this as a good indication that the interval analysis under
full context-sensitivity is likely to estimate the value of sizeof(p)
accurately. Then, for each query that is judged promising, we con-
sider the slice of the program that contributes to the query. We con-
clude that all the calls made in the slice should be tracked precisely.
For example, if a slice for a query looks as follows:

query
f h i

g

• • •
•

•

Then, we derive calling contexts f, g, {h · f, h · g}, and {i · h ·
f, i · h · g} for procedure f, g, h, and i, respectively. However,
if the slice involves a recursive call, we exclude the query since
otherwise, we need infinitely many different calling contexts. In
our example program, the slice for the first query includes all the
execution paths from lines 11, 14, and 15 to line 5. Note that call-
sites 16 and 17 are not included in the slice, and that all the calling
contexts of xmalloc in this slice are: 4 · 10 · 14, 4 · 10 · 15, and
4 · 11. Our analysis decides to distinguish these contexts and their
suffixes.
Impact realization Our method guarantees that the impact esti-
mation under full context-sensitivity pays off at the subsequent se-
lective context-sensitive analysis. That is, in our example program,
the selective main analysis, which distinguishes only the contexts in
(2), is guaranteed to assign a nonnegative interval to the expression
sizeof(p) at the first query. This guarantee holds because our se-
lective context-sensitive analysis distinguishes all the calling con-
texts that matter for the selected queries (Section 5.2) and ensures
that undistinguished contexts are isolated from the distinguished
contexts (Section 4). For instance, although the call to xmalloc at
line 6 is analyzed in a context-insensitive way, our analysis ensures
that xmalloc in this case returns only to line 6, not to line 4.
Application to relational analysis Behind our approach lies a
general principle for developing a static analysis that selectively
uses precision-improving techniques, such as context-sensitivity
and relational abstract domains. The principle is to develop an
impact pre-analysis that finds out when and where the main static
analysis under the full precision setting is likely to have an accurate
result, and to choose an appropriate precision setting of the main
analysis based on the results of this pre-analysis.

For instance, suppose that we want to develop a selective ver-
sion of the octagon analysis, which tracks only some relationships
between program variables that are likely to be tracked well by
the octagon analysis and also to help the proofs of given queries.
To achieve this goal, we design an impact pre-analysis that aims
at finding when and where the original octagon analysis is likely to
infer precise relationships between program variables. In Section 6,
we describe this selective octagon analysis in detail.

3. Program Representation
We assume that a program P is represented by a control flow graph
(C,!,F, ◆) where C is the finite set of nodes, (!) ✓ C ⇥ C
denotes the control flow relation between nodes, F is the set of
procedure ids, and ◆ 2 C is the entry node of the main procedure.
The entry node ◆ does not have predecessors. A node c 2 C in the

program is one of the five types:

C = C
e

(Entry Nodes)] C
x

(Exit Nodes)
] C

c

(Call Nodes)] C
r

(Return Nodes)
] C

i

(Internal Nodes)

Each procedure f 2 F has one entry node and one exit node. Given
a node c 2 C, fid(c) denotes the procedure enclosing the node.
Each call-site in the program is represented by a pair of call and
return nodes. Given a return node c 2 C

r

, we write callof(c) for
the corresponding call node. We assume for simplicity that there
are no indirect function calls such as calls via function pointers.

We associate a primitive command with each node c of our con-
trol flow graph, and denote it by cmd(c). For brevity, we consider
simple primitive commands specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression: e ! n | x | e+ e | e� e. We
denote the set of all program variables by Var.

For simplicity, we handle parameter passing and return values of
procedures via simple syntactic encoding. Recall that we represent
a call statement x := f

p

(e) (where p is a formal parameter of
procedure f) with call and return nodes. In our program, the call
node has command p := e, so that the actual parameter e is
assigned to the formal parameter p. For return values, we assume
that each procedure f has a variable r

f

and the return value is
assigned to r

f

: that is, we represent return statement return e of
procedure f by r

f

:= e. The return node has command x := r

f

,
so that the return value is assigned to the original return variable.
We assume that there are no global variables in the program, all
parameters and local variables of procedures are distinct, and there
are no recursive procedures.

4. Selective Context-Sensitive Analysis with
Context-Sensitivity Parameter K

We consider selective context-sensitive analyses specified by the
following data: (1) a domain S of abstract states, which forms a
complete lattice structure (S,v,?,>,t,u); (2) an initial abstract
state s

I

2 S at the entry of the main procedure; (3) a monotone
abstract semantics of primitive commands JcmdK : S ! S; (4) a
context selector K that maps procedures to sets of calling contexts
(sequences of call nodes):

K 2 F ! }(C⇤
c

).

For each procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure. We
sometimes abuse the notation and denote by K the entire set of
calling contexts in K: we write 2 K for 2

S
f2F K(f).

With the above data, we design a selective context-sensitive
analysis as follows. First, we differentiate nodes with contexts in
K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

:

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0) iff
8
<

:

c ! c

0 ^

0 = (c0 62 C
e

] C
r

)
c ! c

0 ^

0 = c ::
K

 (c 2 C
c

^ c

0 2 C
e

)
c ! c

0 ^ = callof(c0) ::
K

0 (c 2 C
x

^ c

0 2 C
r

)

where (::
K

) 2 C
c

⇥ C⇤
c

! C⇤
c

updates contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)
✏ otherwise

A Family of Static Analyses

36

respect the following conditions:

8c1, c2, c3 2 C.
⇢

c1 ⇢ c2 ^ c1 ⇢ c3 =) c2 = c3
c2 99K c1 ^ c3 99K c1 =) c2 = c3

Primitive Command We associate a primitive command with
each node c of our control flow graph, and denote it by cmd(c).
In this paper, for brevity, we consider simple primitive commands
specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression:

e ! n | x | e+ e | e� e

We denote the set of all program variables by Var.
We handle parameter passing and return values of procedures

via simple syntactic encoding.1 Recall that we represent a call
statement x := f

p

(e) (where p is a formal parameter of procedure
f) with call and return nodes. In our program, the call node has
command p := e, so that the actual parameter e is assigned to
the formal parameter p. For return values, we assume that each
procedure f has a variable r

f

and the return value is assigned to
r
f

: that is, we represent return statement return e of procedure f
by r

f

:= e. The return node has command x := r
f

, so that the
return value is assigned to the original return variable. We assume
that there are no global variables in the program, all parameters and
local variables of procedures are distinct, and there are no recursive
procedures.

4. A Class of Context-Sensitive Analysis
In this paper, we consider a class of program analyses specified by
the followings.

1. A domain S of abstract states. We assume that this domain has
a complete lattice structure:

(S,v,?,>,t,u).

2. An initial abstract state at the entry of the main procedure:

s
I

2 S.

3. An abstract semantics of every primitive command cmd:

JcmdK : S ! S.
We require that semantic function JcmdK be monotone.

4. A context guide K that maps procedures to sets of calling
contexts (sequences of call nodes):

K 2 F ! }(C⇤
c

)

For procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure.
We sometimes abuse the notation and denote by K the entire
set of calling contexts in K: we write 2 K to denote that
 2

S
f2F K(f).

The above leads to the definition of a selectively context-
sensitive analysis as follows. First, we differentiate nodes with
contexts in K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched
nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

.

1 For presentation brevity. Alternatively, we can handle parameter passing
and return values directly in the (abstract) semantics, which our implemen-
tation in Section 7 follows.

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0
) iff

8
<

:

c ! c0 ^ 0
= (c0 62 C

e

] C
r

)

c ⇢ c0 ^ 0
= c ::

K

c 99K c0 ^ = callof(c0) ::

K

0

where (::

K

) 2 C
c

⇥ C⇤
c

! C⇤
c

is a context-manipulating operator
that updates calling contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)

✏ otherwise

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K(f) includes ✏ when neces-
sary. For instance, consider a program where f has three different
calling contexts 1,2, and 3. When the analysis differentiates 1

only, other undistinguished contexts 2 and 3 are represented by ✏
in the analysis. In this case, the context gude should include ✏, i.e.,
K(f) = {1, ✏}.

Example 1. The context-insensitive analysis is obtained by letting
K map procedures to singleton set {✏}, i.e., K = �f. {✏}.

Example 2. Consider the example program in Figure 1. The fol-
lowing map defines K for the fully context-sensitive analysis.

main 7! {✏}
f 7! {14, 15}
g 7! {16, 17}

multi glob 7! {10 · 14, 10 · 15, 11 · 16, 11 · 17}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11 · 16, 4 · 11 · 17,

6 · 10 · 14, 6 · 10 · 15, 6 · 11 · 16, 6 · 11 · 17}

Example 3. Our selectively context-sensitive analysis for the ex-
ample program in Figure 1 (explained in Section 2) uses the follow-
ing context guide K:

main 7! {✏}
f 7! {14, 15}
g 7! {✏}

multi glob 7! {10 · 14, 10 · 15, 11}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11, ✏}

K does not include ✏ for procedures f and multi glob, as all of
their calling contexts are prescribed in K.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S).
The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!
K

(c,)

X(c0,0))

Our static analysis computes an abstract element X 2 D that
overapproximates all the concrete states summarized by s

I

and
forms an inductive invariant of the given program P :

s
I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (3)

In general, many X can satisfy the condition in (3). Choosing
one among these solutions is up to each static analysis, and depends
on its fixpoint algorithm. Some analyses compute the least X
satisfying (3), where abstract elements are ordered pointwise:

X v Y iff 8(c,) 2 C
K

. X(c,) v Y (c,).

Other analyses use a widening operator [1, 2], and compute not
necessarily the least, but some solution of (3).

4 2013/7/15

Context-enriched nodes & edges

occurs, it does so only in a sound manner—if the pre-analysis
computes F for the size of a buffer, the interval analysis under
full context-sensitivity is guaranteed to compute a non-negative
interval.
Use of pre-analysis results Next, from the pre-analysis results,
we select calling contexts that help improve the precision regard-
ing given queries. We first identify queries whose expressions are
assigned with F in the pre-analysis run. In our example, the pre-
analysis assigns F to the expression sizeof(p) in the first query.
We regard this as a good indication that the interval analysis under
full context-sensitivity is likely to estimate the value of sizeof(p)
accurately. Then, for each query that is judged promising, we con-
sider the slice of the program that contributes to the query. We con-
clude that all the calls made in the slice should be tracked precisely.
For example, if a slice for a query looks as follows:

query
f h i

g

• • •
•

•

Then, we derive calling contexts f, g, {h · f, h · g}, and {i · h ·
f, i · h · g} for procedure f, g, h, and i, respectively. However,
if the slice involves a recursive call, we exclude the query since
otherwise, we need infinitely many different calling contexts. In
our example program, the slice for the first query includes all the
execution paths from lines 11, 14, and 15 to line 5. Note that call-
sites 16 and 17 are not included in the slice, and that all the calling
contexts of xmalloc in this slice are: 4 · 10 · 14, 4 · 10 · 15, and
4 · 11. Our analysis decides to distinguish these contexts and their
suffixes.
Impact realization Our method guarantees that the impact esti-
mation under full context-sensitivity pays off at the subsequent se-
lective context-sensitive analysis. That is, in our example program,
the selective main analysis, which distinguishes only the contexts in
(2), is guaranteed to assign a nonnegative interval to the expression
sizeof(p) at the first query. This guarantee holds because our se-
lective context-sensitive analysis distinguishes all the calling con-
texts that matter for the selected queries (Section 5.2) and ensures
that undistinguished contexts are isolated from the distinguished
contexts (Section 4). For instance, although the call to xmalloc at
line 6 is analyzed in a context-insensitive way, our analysis ensures
that xmalloc in this case returns only to line 6, not to line 4.
Application to relational analysis Behind our approach lies a
general principle for developing a static analysis that selectively
uses precision-improving techniques, such as context-sensitivity
and relational abstract domains. The principle is to develop an
impact pre-analysis that finds out when and where the main static
analysis under the full precision setting is likely to have an accurate
result, and to choose an appropriate precision setting of the main
analysis based on the results of this pre-analysis.

For instance, suppose that we want to develop a selective ver-
sion of the octagon analysis, which tracks only some relationships
between program variables that are likely to be tracked well by
the octagon analysis and also to help the proofs of given queries.
To achieve this goal, we design an impact pre-analysis that aims
at finding when and where the original octagon analysis is likely to
infer precise relationships between program variables. In Section 6,
we describe this selective octagon analysis in detail.

3. Program Representation
We assume that a program P is represented by a control flow graph
(C,!,F, ◆) where C is the finite set of nodes, (!) ✓ C ⇥ C
denotes the control flow relation between nodes, F is the set of
procedure ids, and ◆ 2 C is the entry node of the main procedure.
The entry node ◆ does not have predecessors. A node c 2 C in the

program is one of the five types:

C = C
e

(Entry Nodes)] C
x

(Exit Nodes)
] C

c

(Call Nodes)] C
r

(Return Nodes)
] C

i

(Internal Nodes)

Each procedure f 2 F has one entry node and one exit node. Given
a node c 2 C, fid(c) denotes the procedure enclosing the node.
Each call-site in the program is represented by a pair of call and
return nodes. Given a return node c 2 C

r

, we write callof(c) for
the corresponding call node. We assume for simplicity that there
are no indirect function calls such as calls via function pointers.

We associate a primitive command with each node c of our con-
trol flow graph, and denote it by cmd(c). For brevity, we consider
simple primitive commands specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression: e ! n | x | e+ e | e� e. We
denote the set of all program variables by Var.

For simplicity, we handle parameter passing and return values of
procedures via simple syntactic encoding. Recall that we represent
a call statement x := f

p

(e) (where p is a formal parameter of
procedure f) with call and return nodes. In our program, the call
node has command p := e, so that the actual parameter e is
assigned to the formal parameter p. For return values, we assume
that each procedure f has a variable r

f

and the return value is
assigned to r

f

: that is, we represent return statement return e of
procedure f by r

f

:= e. The return node has command x := r

f

,
so that the return value is assigned to the original return variable.
We assume that there are no global variables in the program, all
parameters and local variables of procedures are distinct, and there
are no recursive procedures.

4. Selective Context-Sensitive Analysis with
Context-Sensitivity Parameter K

We consider selective context-sensitive analyses specified by the
following data: (1) a domain S of abstract states, which forms a
complete lattice structure (S,v,?,>,t,u); (2) an initial abstract
state s

I

2 S at the entry of the main procedure; (3) a monotone
abstract semantics of primitive commands JcmdK : S ! S; (4) a
context selector K that maps procedures to sets of calling contexts
(sequences of call nodes):

K 2 F ! }(C⇤
c

).

For each procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure. We
sometimes abuse the notation and denote by K the entire set of
calling contexts in K: we write 2 K for 2

S
f2F K(f).

With the above data, we design a selective context-sensitive
analysis as follows. First, we differentiate nodes with contexts in
K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

:

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0) iff
8
<

:

c ! c

0 ^

0 = (c0 62 C
e

] C
r

)
c ! c

0 ^

0 = c ::
K

 (c 2 C
c

^ c

0 2 C
e

)
c ! c

0 ^ = callof(c0) ::
K

0 (c 2 C
x

^ c

0 2 C
r

)

where (::
K

) 2 C
c

⇥ C⇤
c

! C⇤
c

updates contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)
✏ otherwise

Example

37

2. Informal Description
We illustrate our approach using the interval domain and the pro-
gram in Figure 1, which is adopted from make-3.76.1. Procedure
xmalloc is a wrapper of the malloc function. It is called twice in
procedure multi glob, once with the argument size (line 4) and
again with an input from the environment (line 6). The main routine
of this program calls procedure f and g. Procedure multi glob is
called in f and g with different argument values.

The program contains two queries. The first query at line 5 asks
whether p points to a buffer of size larger than 1. The other query at
line 7 asks a similar question, but this time for the pointer variable
q. Note that the first query always holds, but the second query is
not necessarily true.
Context-insensitive analysis If we analyze the program using
a context-insensitive interval analysis, we cannot prove the first
query. Since the analysis is insensitive to calling contexts, it esti-
mates the effect of xmalloc under all the possible inputs, and uses
this same estimation as the result of every call. Note that an input
to xmalloc at line 6 can be any integer, and the analysis concludes
that xmalloc allocates a buffer of size in [�1,+1].
Context-sensitive analysis A natural way to fix this precision
issue is to increase the context-sensitivity. One popular approach is
k-CFA analysis [15, 16]. It uses sequences of call sites up to length
k to distinguish calling contexts of a procedure, and analyzes the
procedure separately for such distinguished calling contexts. For
instance, 3-CFA analyzes the procedure xmalloc separately for
each of the following calling contexts:

4 · 10 · 14 4 · 10 · 15 4 · 11 · 16 4 · 11 · 17
6 · 10 · 14 6 · 10 · 15 6 · 11 · 16 6 · 11 · 17 (1)

Here a · b · c denotes a sequence of call sites a, b and c (we use
the line numbers as call sites), with a being the most recent call.
Note that the 3-CFA analysis can prove the first query: the analysis
analyzes the first four contexts separately and infers that a buffer of
size greater than 1 gets allocated under these calling contexts.
Need of selective context-sensitivity However, using such a “uni-
form” context-sensitivity is not ideal. It is often too expensive to run
such an analysis with high enough k, such as k � 3 that our exam-
ple needs. More importantly, for many procedure calls, increasing
context-sensitivity does not help—either it does not improve the
analysis results of these calls, or the increased precision is not use-
ful for answering queries. For instance, at the second query, for ev-
ery k � 0, the k-CFA analysis concludes that p points to a buffer of
size [�1,+1]. Also, it is unnecessary to analyze g separately for
call sites 16 and 17, because those two calls have the same effect
on the query.
Our selective context-sensitivity With our approach, an analysis
can analyze procedures with only needed context-sensitivity. It an-
alyzes a procedure separately for a calling context if doing so is
likely to improve the precision of the analysis and reduce false
alarms in its answers for given queries. For the example program,
our analysis first predicts that increasing context-sensitivity is un-
likely to help answer the second query (line 7) accurately, but is
likely to do so for the first query (line 5). Next, the analysis finds
out that we can bring the full benefit of context-sensitivity for the
first query, by distinguishing only the following four types of call-
ing contexts of xmalloc:

4 · 10 · 14, 4 · 10 · 15, 4 · 11, all the other contexts (2)

Note that contexts 4 · 11 · 16 and 4 · 11 · 17 are merged into a
single context 4 · 11. This merging happens because the analysis
figures out that two callers of g (line 16 and 17) do not provide
any useful information for resolving the first query. Finally, the
analysis analyzes the given program using the interval domain

1 char* xmalloc (int n) { return malloc(n); }

2

3 void multi_glob (int size) {

4 p = xmalloc (size);

5 assert (sizeof(p) > 1); // Query 1

6 q = xmalloc (input());

7 assert (sizeof(q) > 1); // Query 2

8 }

9

10 void f (int x) { multi_glob (x); }

11 void g () { multi_glob (4); }

12

13 int main() {

14 f (8);

15 f (16);

16 g ();

17 g ();

18 }

Figure 1. Example Program

while distinguishing calling contexts above and their suffixes (i.e.,
10 ·14, 10 ·15, 14, 15, 11). This selective context-sensitive analysis
is able to prove the first query.
Impact pre-analysis Our key idea is to approximate the main
analysis under full context-sensitivity using a pre-analysis, and
estimate the impact of context-sensitivity on the results of the main
analysis. This impact pre-analysis uses a simple abstract domain
and transfer functions, and can be run efficiently even with full
context-sensitivity.

For instance, we approximate the interval analysis in this ex-
ample using a pre-analysis with two abstract values: F and >.
Here > means all intervals, and F intervals of the form [l, u] with
0 l u. A typical abstract state in this domain is [x : >, y : F],
which means the following set of states in the interval domain:

{[x : [l
x

, u

x

], y : [l
y

, u

y

]] | l
x

 u

x

^ 0 l

y

 u

y

}.
This simple abstract domain of the pre-analysis is chosen because
we are interested in showing the absence of buffer overruns and
the analysis proves such properties only when it finds non-negative
intervals for buffer sizes and indices.

We run this pre-analysis under full context-sensitivity (i.e., 1-
CFA). For our example program, we obtain a summary of the
procedure xmalloc with eight entries, each corresponding to a
different context in (1). The third column of the table below shows
this summary:

Size of the allocated buffer in xmalloc

Contexts Main analysis Pre-analysis
4 · 10 · 14 [8, 8] F
4 · 10 · 15 [16, 16] F
4 · 11 · 16 [4, 4] F
4 · 11 · 17 [4, 4] F
6 · 10 · 14 [�1,+1] >
6 · 10 · 15 [�1,+1] >
6 · 11 · 16 [�1,+1] >
6 · 11 · 17 [�1,+1] >

The second column of the table shows the results of the interval
analysis with full context-sensitivity. Note that the pre-analysis
in this case precisely estimates the impact of context-sensitivity:
it identifies calling contexts (i.e., the first four contexts in the
table) where the interval analysis accurately tracks the size of the
allocated buffer in xmalloc under the full context-sensitivity. In
general, our pre-analysis might lose precision and use > more often
than in the ideal case. However, even when such approximation

A:10 Oh et al.

where (::

K

) 2 C
c

⇥ C⇤
c

! C⇤
c

updates contexts according to K:

c ::

K

 =

⇢
c · (c · 2 K)

✏ otherwise

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not included in K, and we
assume that K includes ✏ if it is necessary. For instance, consider a program where f

has three different calling contexts 1,2, and 3. When the analysis differentiates 1

only, undistinguished contexts 2 and 3 are represented by ✏. Thus, K(f) = {1, ✏}.
Note that our analysis isolates undistinguished contexts from distinguished ones: ✏
means only 2 or 3, not 1.

Example 4.2. The analysis is context-insensitive when K=�f.{✏} and fully context-
sensitive when K=�f.C⇤

c

. Our selective context-sensitive analysis in Section 2 uses the
following context selector K:

main 7! {✏}
f 7! {14, 15}
g 7! {✏}

multi glob 7! {10 · 14, 10 · 15, 11}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11, ✏}

Procedures f and multi glob do not have ✏, as all of their calling contexts are pre-
scribed in K.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (4)

The analysis keeps multiple abstract states at each program node c, one for each con-
text 2 K(fid(c)). The abstract transfer function F of the analysis works on C

K

, and
it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (5)

The static analysis computes an abstract element X 2 D that over-approximates all
the concrete states summarized by s

I

and forms an inductive invariant of the given
program:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (6)

In general, many X can satisfy the condition in (6). Choosing one among these solu-
tions is up to each static analysis, and depends on its fixpoint algorithm. Some analyses
compute the least X satisfying (6), where abstract elements are ordered pointwise:

X v Y iff 8(c,) 2 C
K

. X(c,) v Y (c,).

Other analyses use a widening operator [Cousot and Cousot 1977; 1992], and com-
pute not necessarily the least, but some solution of (6). We reminder the reader that a
widening operator

`
is a binary function on D:

h
: D⇥ D ! D

such that

(1) X v X

`
Y and Y v X

`
Y for all X,Y 2 D; and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Oh et al.

where (::

K

) 2 C
c

⇥ C⇤
c

! C⇤
c

updates contexts according to K:

c ::

K

 =

⇢
c · (c · 2 K)

✏ otherwise

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not included in K, and we
assume that K includes ✏ if it is necessary. For instance, consider a program where f

has three different calling contexts 1,2, and 3. When the analysis differentiates 1

only, undistinguished contexts 2 and 3 are represented by ✏. Thus, K(f) = {1, ✏}.
Note that our analysis isolates undistinguished contexts from distinguished ones: ✏
means only 2 or 3, not 1.

Example 4.2. The analysis is context-insensitive when K=�f.{✏} and fully context-
sensitive when K=�f.C⇤

c

. Our selective context-sensitive analysis in Section 2 uses the
following context selector K:

main 7! {✏}
f 7! {14, 15}
g 7! {✏}

multi glob 7! {10 · 14, 10 · 15, 11}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11, ✏}

Procedures f and multi glob do not have ✏, as all of their calling contexts are pre-
scribed in K.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (4)

The analysis keeps multiple abstract states at each program node c, one for each con-
text 2 K(fid(c)). The abstract transfer function F of the analysis works on C

K

, and
it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (5)

The static analysis computes an abstract element X 2 D that over-approximates all
the concrete states summarized by s

I

and forms an inductive invariant of the given
program:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (6)

In general, many X can satisfy the condition in (6). Choosing one among these solu-
tions is up to each static analysis, and depends on its fixpoint algorithm. Some analyses
compute the least X satisfying (6), where abstract elements are ordered pointwise:

X v Y iff 8(c,) 2 C
K

. X(c,) v Y (c,).

Other analyses use a widening operator [Cousot and Cousot 1977; 1992], and com-
pute not necessarily the least, but some solution of (6). We reminder the reader that a
widening operator

`
is a binary function on D:

h
: D⇥ D ! D

such that

(1) X v X

`
Y and Y v X

`
Y for all X,Y 2 D; and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Oh et al.

where (::

K

) 2 C
c

⇥ C⇤
c

! C⇤
c

updates contexts according to K:

c ::

K

 =

⇢
c · (c · 2 K)

✏ otherwise

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not included in K, and we
assume that K includes ✏ if it is necessary. For instance, consider a program where f

has three different calling contexts 1,2, and 3. When the analysis differentiates 1

only, undistinguished contexts 2 and 3 are represented by ✏. Thus, K(f) = {1, ✏}.
Note that our analysis isolates undistinguished contexts from distinguished ones: ✏
means only 2 or 3, not 1.

Example 4.2. The analysis is context-insensitive when K=�f.{✏} and fully context-
sensitive when K=�f.C⇤

c

. Our selective context-sensitive analysis in Section 2 uses the
following context selector K:

main 7! {✏}
f 7! {14, 15}
g 7! {✏}

multi glob 7! {10 · 14, 10 · 15, 11}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11, ✏}

Procedures f and multi glob do not have ✏, as all of their calling contexts are pre-
scribed in K.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (4)

The analysis keeps multiple abstract states at each program node c, one for each con-
text 2 K(fid(c)). The abstract transfer function F of the analysis works on C

K

, and
it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (5)

The static analysis computes an abstract element X 2 D that over-approximates all
the concrete states summarized by s

I

and forms an inductive invariant of the given
program:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (6)

In general, many X can satisfy the condition in (6). Choosing one among these solu-
tions is up to each static analysis, and depends on its fixpoint algorithm. Some analyses
compute the least X satisfying (6), where abstract elements are ordered pointwise:

X v Y iff 8(c,) 2 C
K

. X(c,) v Y (c,).

Other analyses use a widening operator [Cousot and Cousot 1977; 1992], and com-
pute not necessarily the least, but some solution of (6). We reminder the reader that a
widening operator

`
is a binary function on D:

h
: D⇥ D ! D

such that

(1) X v X

`
Y and Y v X

`
Y for all X,Y 2 D; and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

context-insensitivity

full context-sensitivity

our selective context-sensitivity

A Family of Static Analyses

38

Abstract domain & semantic function

respect the following conditions:

8c1, c2, c3 2 C.
⇢

c1 ⇢ c2 ^ c1 ⇢ c3 =) c2 = c3
c2 99K c1 ^ c3 99K c1 =) c2 = c3

Primitive Command We associate a primitive command with
each node c of our control flow graph, and denote it by cmd(c).
In this paper, for brevity, we consider simple primitive commands
specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression:

e ! n | x | e+ e | e� e

We denote the set of all program variables by Var.
We handle parameter passing and return values of procedures

via simple syntactic encoding.1 Recall that we represent a call
statement x := f

p

(e) (where p is a formal parameter of procedure
f) with call and return nodes. In our program, the call node has
command p := e, so that the actual parameter e is assigned to
the formal parameter p. For return values, we assume that each
procedure f has a variable r

f

and the return value is assigned to
r
f

: that is, we represent return statement return e of procedure f
by r

f

:= e. The return node has command x := r
f

, so that the
return value is assigned to the original return variable. We assume
that there are no global variables in the program, all parameters and
local variables of procedures are distinct, and there are no recursive
procedures.

4. A Class of Context-Sensitive Analysis
In this paper, we consider a class of program analyses specified by
the followings.

1. A domain S of abstract states. We assume that this domain has
a complete lattice structure:

(S,v,?,>,t,u).

2. An initial abstract state at the entry of the main procedure:

s
I

2 S.

3. An abstract semantics of every primitive command cmd:

JcmdK : S ! S.
We require that semantic function JcmdK be monotone.

4. A context guide K that maps procedures to sets of calling
contexts (sequences of call nodes):

K 2 F ! }(C⇤
c

)

For procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure.
We sometimes abuse the notation and denote by K the entire
set of calling contexts in K: we write 2 K to denote that
 2

S
f2F K(f).

The above leads to the definition of a selectively context-
sensitive analysis as follows. First, we differentiate nodes with
contexts in K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched
nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

.

1 For presentation brevity. Alternatively, we can handle parameter passing
and return values directly in the (abstract) semantics, which our implemen-
tation in Section 7 follows.

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0
) iff

8
<

:

c ! c0 ^ 0
= (c0 62 C

e

] C
r

)

c ⇢ c0 ^ 0
= c ::

K

c 99K c0 ^ = callof(c0) ::

K

0

where (::

K

) 2 C
c

⇥ C⇤
c

! C⇤
c

is a context-manipulating operator
that updates calling contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)

✏ otherwise

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K(f) includes ✏ when neces-
sary. For instance, consider a program where f has three different
calling contexts 1,2, and 3. When the analysis differentiates 1

only, other undistinguished contexts 2 and 3 are represented by ✏
in the analysis. In this case, the context gude should include ✏, i.e.,
K(f) = {1, ✏}.

Example 1. The context-insensitive analysis is obtained by letting
K map procedures to singleton set {✏}, i.e., K = �f. {✏}.

Example 2. Consider the example program in Figure 1. The fol-
lowing map defines K for the fully context-sensitive analysis.

main 7! {✏}
f 7! {14, 15}
g 7! {16, 17}

multi glob 7! {10 · 14, 10 · 15, 11 · 16, 11 · 17}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11 · 16, 4 · 11 · 17,

6 · 10 · 14, 6 · 10 · 15, 6 · 11 · 16, 6 · 11 · 17}

Example 3. Our selectively context-sensitive analysis for the ex-
ample program in Figure 1 (explained in Section 2) uses the follow-
ing context guide K:

main 7! {✏}
f 7! {14, 15}
g 7! {✏}

multi glob 7! {10 · 14, 10 · 15, 11}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11, ✏}

K does not include ✏ for procedures f and multi glob, as all of
their calling contexts are prescribed in K.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S).
The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!
K

(c,)

X(c0,0))

Our static analysis computes an abstract element X 2 D that
overapproximates all the concrete states summarized by s

I

and
forms an inductive invariant of the given program P :

s
I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (3)

In general, many X can satisfy the condition in (3). Choosing
one among these solutions is up to each static analysis, and depends
on its fixpoint algorithm. Some analyses compute the least X
satisfying (3), where abstract elements are ordered pointwise:

X v Y iff 8(c,) 2 C
K

. X(c,) v Y (c,).

Other analyses use a widening operator [1, 2], and compute not
necessarily the least, but some solution of (3).

4 2013/7/15

respect the following conditions:

8c1, c2, c3 2 C.
⇢

c1 ⇢ c2 ^ c1 ⇢ c3 =) c2 = c3
c2 99K c1 ^ c3 99K c1 =) c2 = c3

Primitive Command We associate a primitive command with
each node c of our control flow graph, and denote it by cmd(c).
In this paper, for brevity, we consider simple primitive commands
specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression:

e ! n | x | e+ e | e� e

We denote the set of all program variables by Var.
We handle parameter passing and return values of procedures

via simple syntactic encoding.1 Recall that we represent a call
statement x := f

p

(e) (where p is a formal parameter of procedure
f) with call and return nodes. In our program, the call node has
command p := e, so that the actual parameter e is assigned to
the formal parameter p. For return values, we assume that each
procedure f has a variable r

f

and the return value is assigned to
r
f

: that is, we represent return statement return e of procedure f
by r

f

:= e. The return node has command x := r
f

, so that the
return value is assigned to the original return variable. We assume
that there are no global variables in the program, all parameters and
local variables of procedures are distinct, and there are no recursive
procedures.

4. A Class of Context-Sensitive Analysis
In this paper, we consider a class of program analyses specified by
the followings.

1. A domain S of abstract states. We assume that this domain has
a complete lattice structure:

(S,v,?,>,t,u).

2. An initial abstract state at the entry of the main procedure:

s
I

2 S.

3. An abstract semantics of every primitive command cmd:

JcmdK : S ! S.
We require that semantic function JcmdK be monotone.

4. A context guide K that maps procedures to sets of calling
contexts (sequences of call nodes):

K 2 F ! }(C⇤
c

)

For procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure.
We sometimes abuse the notation and denote by K the entire
set of calling contexts in K: we write 2 K to denote that
 2

S
f2F K(f).

The above leads to the definition of a selectively context-
sensitive analysis as follows. First, we differentiate nodes with
contexts in K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched
nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

.

1 For presentation brevity. Alternatively, we can handle parameter passing
and return values directly in the (abstract) semantics, which our implemen-
tation in Section 7 follows.

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0
) iff

8
<

:

c ! c0 ^ 0
= (c0 62 C

e

] C
r

)

c ⇢ c0 ^ 0
= c ::

K

c 99K c0 ^ = callof(c0) ::

K

0

where (::

K

) 2 C
c

⇥ C⇤
c

! C⇤
c

is a context-manipulating operator
that updates calling contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)

✏ otherwise

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K(f) includes ✏ when neces-
sary. For instance, consider a program where f has three different
calling contexts 1,2, and 3. When the analysis differentiates 1

only, other undistinguished contexts 2 and 3 are represented by ✏
in the analysis. In this case, the context gude should include ✏, i.e.,
K(f) = {1, ✏}.

Example 1. The context-insensitive analysis is obtained by letting
K map procedures to singleton set {✏}, i.e., K = �f. {✏}.

Example 2. Consider the example program in Figure 1. The fol-
lowing map defines K for the fully context-sensitive analysis.

main 7! {✏}
f 7! {14, 15}
g 7! {16, 17}

multi glob 7! {10 · 14, 10 · 15, 11 · 16, 11 · 17}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11 · 16, 4 · 11 · 17,

6 · 10 · 14, 6 · 10 · 15, 6 · 11 · 16, 6 · 11 · 17}

Example 3. Our selectively context-sensitive analysis for the ex-
ample program in Figure 1 (explained in Section 2) uses the follow-
ing context guide K:

main 7! {✏}
f 7! {14, 15}
g 7! {✏}

multi glob 7! {10 · 14, 10 · 15, 11}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11, ✏}

K does not include ✏ for procedures f and multi glob, as all of
their calling contexts are prescribed in K.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S).
The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!
K

(c,)

X(c0,0))

Our static analysis computes an abstract element X 2 D that
overapproximates all the concrete states summarized by s

I

and
forms an inductive invariant of the given program P :

s
I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (3)

In general, many X can satisfy the condition in (3). Choosing
one among these solutions is up to each static analysis, and depends
on its fixpoint algorithm. Some analyses compute the least X
satisfying (3), where abstract elements are ordered pointwise:

X v Y iff 8(c,) 2 C
K

. X(c,) v Y (c,).

Other analyses use a widening operator [1, 2], and compute not
necessarily the least, but some solution of (3).

4 2013/7/15

respect the following conditions:

8c1, c2, c3 2 C.
⇢

c1 ⇢ c2 ^ c1 ⇢ c3 =) c2 = c3
c2 99K c1 ^ c3 99K c1 =) c2 = c3

Primitive Command We associate a primitive command with
each node c of our control flow graph, and denote it by cmd(c).
In this paper, for brevity, we consider simple primitive commands
specified by the following grammar:

cmd ! skip | x := e

where e is an arithmetic expression:

e ! n | x | e+ e | e� e

We denote the set of all program variables by Var.
We handle parameter passing and return values of procedures

via simple syntactic encoding.1 Recall that we represent a call
statement x := f

p

(e) (where p is a formal parameter of procedure
f) with call and return nodes. In our program, the call node has
command p := e, so that the actual parameter e is assigned to
the formal parameter p. For return values, we assume that each
procedure f has a variable r

f

and the return value is assigned to
r
f

: that is, we represent return statement return e of procedure f
by r

f

:= e. The return node has command x := r
f

, so that the
return value is assigned to the original return variable. We assume
that there are no global variables in the program, all parameters and
local variables of procedures are distinct, and there are no recursive
procedures.

4. A Class of Context-Sensitive Analysis
In this paper, we consider a class of program analyses specified by
the followings.

1. A domain S of abstract states. We assume that this domain has
a complete lattice structure:

(S,v,?,>,t,u).

2. An initial abstract state at the entry of the main procedure:

s
I

2 S.

3. An abstract semantics of every primitive command cmd:

JcmdK : S ! S.
We require that semantic function JcmdK be monotone.

4. A context guide K that maps procedures to sets of calling
contexts (sequences of call nodes):

K 2 F ! }(C⇤
c

)

For procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure.
We sometimes abuse the notation and denote by K the entire
set of calling contexts in K: we write 2 K to denote that
 2

S
f2F K(f).

The above leads to the definition of a selectively context-
sensitive analysis as follows. First, we differentiate nodes with
contexts in K, and define a set C

K

✓ C⇥ C⇤
c

of context-enriched
nodes:

C
K

= {(c,) | c 2 C ^ 2 K(fid(c))}.
The control flow relation (!) ✓ C⇥C is extended to !

K

on C
K

.

1 For presentation brevity. Alternatively, we can handle parameter passing
and return values directly in the (abstract) semantics, which our implemen-
tation in Section 7 follows.

Definition 1 (!
K

). (!
K

) ✓ C
K

⇥ C
K

is the context-enriched
control flow relation:

(c,) !
K

(c0,0
) iff

8
<

:

c ! c0 ^ 0
= (c0 62 C

e

] C
r

)

c ⇢ c0 ^ 0
= c ::

K

c 99K c0 ^ = callof(c0) ::

K

0

where (::

K

) 2 C
c

⇥ C⇤
c

! C⇤
c

is a context-manipulating operator
that updates calling contexts according to K:

c ::
K

 =

⇢
c · (c · 2 K)

✏ otherwise

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K(f) includes ✏ when neces-
sary. For instance, consider a program where f has three different
calling contexts 1,2, and 3. When the analysis differentiates 1

only, other undistinguished contexts 2 and 3 are represented by ✏
in the analysis. In this case, the context gude should include ✏, i.e.,
K(f) = {1, ✏}.

Example 1. The context-insensitive analysis is obtained by letting
K map procedures to singleton set {✏}, i.e., K = �f. {✏}.

Example 2. Consider the example program in Figure 1. The fol-
lowing map defines K for the fully context-sensitive analysis.

main 7! {✏}
f 7! {14, 15}
g 7! {16, 17}

multi glob 7! {10 · 14, 10 · 15, 11 · 16, 11 · 17}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11 · 16, 4 · 11 · 17,

6 · 10 · 14, 6 · 10 · 15, 6 · 11 · 16, 6 · 11 · 17}

Example 3. Our selectively context-sensitive analysis for the ex-
ample program in Figure 1 (explained in Section 2) uses the follow-
ing context guide K:

main 7! {✏}
f 7! {14, 15}
g 7! {✏}

multi glob 7! {10 · 14, 10 · 15, 11}
xmalloc 7! {4 · 10 · 14, 4 · 10 · 15, 4 · 11, ✏}

K does not include ✏ for procedures f and multi glob, as all of
their calling contexts are prescribed in K.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S).
The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!
K

(c,)

X(c0,0))

Our static analysis computes an abstract element X 2 D that
overapproximates all the concrete states summarized by s

I

and
forms an inductive invariant of the given program P :

s
I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (3)

In general, many X can satisfy the condition in (3). Choosing
one among these solutions is up to each static analysis, and depends
on its fixpoint algorithm. Some analyses compute the least X
satisfying (3), where abstract elements are ordered pointwise:

X v Y iff 8(c,) 2 C
K

. X(c,) v Y (c,).

Other analyses use a widening operator [1, 2], and compute not
necessarily the least, but some solution of (3).

4 2013/7/15

The analysis computes the least X such that

reachability analysis is to compute the set of nodes R
v

i

that are
reachable from nodes in �

v

i

for each v
i

:

R
v

i

= {(c, x) 2 � | 9(c0, x0) 2 �

v

i

. (c0, x0) ,!†
K

(c, x)}

Exploiting the fact that V is totally ordered, we can optimize
the computation as follows. We first compute R

v

i

in the order
R

v

n

, R
v

n�1 , . . . , Rv1 . Then, we perform the reachability as fol-
lows:

R
v

i

= {(c, x) 2 � |
9(c0, x0) 2 (�

v

i

\
S

v

i

@v

R
v

). (c0, x0) ,!†
K

(c, x)}

Note that, if (c0, x0) 2 �

v

i

is reachable from a node in �

v

and
v
i

is subsumed by v (v
i

@ v), we do not need to perform the
reachability computation for (c0, x0), because the nodes reachable
from (c0, x0) are also reachable from some nodes in �

v

and hence
it is no use propagating v

i

further.

6. Designing Selectively Context-Sensitive
Analysis

Building and running a selectively context-sensitive analysis has
four steps:

1. Approximate the main analysis using an instance of the impact
pre-analysis (Section 6.1).

2. Run the pre-analysis and select target queries for which we
decide to improve context-sensitivity (Section 6.2).

3. Build a guide for selective context-sensitivity (Section 6.3).
4. With the guide, run the selectively context-sensitive main anal-

ysis.

In this section, we formally describe each of these four steps.

6.1 Designing an Impact Pre-Analysis
The first step is to estimate the behavior of the main analysis under
full context-sensitivity. Assume that we are given a main analysis
as in Section 4:

(S, s
I

2 S, J�K : S ! S, K),

where S is the domain of abstract states, s
I

the initial abstract state,
JcmdK : S ! S the abstract semantics of a primitive command
cmd, and K a specification of selective context-sensitivity. As
explained in Section 4, from the analysis specification, the abstract
domain D and the abstract transfer function F : D ! D for a given
program are induced as:

D = (C
K

! S), and

F (X)(c,) = Jcmd(c)K(
G

{X(c0,0) | (c0,0) !K

(c,)}).

We assume that the analysis employs the fixpoint algorithm based
on widening operation

`
: D⇥ D ! D.

We approximate this main analysis using the following impact
pre-analysis:

(S], s]
I

, J�K] : S] ! S], K).

Here K is the main analysis’s specification on context-sensitivity,
and S] and JcmdK] are respectively the domain of abstract states
and the abstract semantics of cmd that satisfy the conditions in
Section 5:

S]

= {?} [(Var ! V)
for some totally-ordered set V, and the abstract semantics JcmdK]
has a simple form involving only join operation and constant ab-
stract value.

The purpose of this pre-analysis is to over-approximate the main
analysis. To meet this purpose, the pre-analysis is required to satisfy
the following conditions:

1. There is a concretization function � from S] to }(S):

� : S] ! }(S).

This function formalizes the fact that an abstract state of the
pre-analysis means a set of abstract states of the main analysis.

2. The initial abstract state s]
I

of the pre-analysis is an over-
approximation of the initial state s

I

of the main analysis:

s
I

2 �(s]
I

).

3. The abstract semantics of primitive commands in the pre-
analysis is sound with respect to that of the main analysis:

8s 2 S, s] 2 S]. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’ abstract domain over-
approximates the widening operation of the main analysis. Let
D]

= C
K

! S] and define the join operation t on D] as
follows:

(X] t Y]

)(c,) = X]

(c,) t Y]

(c,).

This join operation should approximate the widening operation
of the main analysis:

8X,Y 2 D. 8X], Y] 2 D]. (X 2 �(X]

) ^ Y 2 �(Y]

))

=) X
h

Y 2 �(X] t Y]

).

Once these requirements are met, the pre-analysis correctly esti-
mates the behavior of the main analysis.

Lemma 5. Let MA

K

2 D be the main analysis result, i.e., a
solution of (3). Let PA

K

2 C ! S] be the solution of the pre-
analysis computed by the reachability algorithm in Section 5.1.
Then,

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(PA
K

(c)).

Proof. Let X
K

2 C
K

! S] be the solution of the pre-analysis,
i.e., the least solution of (4). The abstract interpretation frame-
work [1, 2] guarantees that

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(X
K

(c,)).

Then, the desired equality holds by Lemma 4 (Note that Lemma 4
holds regardless of the underlying context guide K as described in
Section 5.2).

Note that this result is given for any specification K on context-
sensitivity. In particular, the result holds when K specifies full
context-sensitivity:

K = K1 = �f. C⇤
c

.

Thus, it implies that the fully context-sensitive pre-analysis overap-
proximates the fully context-sensitive main analysis.

Example 5 (Approximation of the Interval Analysis). Following
the recipe in this subsection, we design a pre-analysis that we use to
estimate our interval analysis in Example 4. Our pre-analysis aims
at predicting which variables get associated with non-negative in-
tervals when the program is analyzed by the fully context-sensitive
interval analysis.

The pre-analysis is specified by the following abstract states and
semantics:

9 2013/7/15

Some analyses compute some solution using widening:

39

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K includes ✏ if it is necessary.
For instance, consider a program where f has three different calling
contexts 1,2, and 3. When the analysis differentiates 1 only,
undistinguished contexts 2 and 3 are represented by ✏. Thus,
K(f) = {1, ✏}. Note that our analysis isolates undistinguished
contexts from distinguished ones: ✏ means only 2 or 3, not 1.

Example 1. The analysis is context-insensitive when K = �f.{✏}
and fully context-sensitive when K=�f.C⇤

c

. Our selective context-
sensitive analysis in Section 2 uses the following context selector
K= {main 7! {✏}, f 7! {14, 15}, g 7! {✏}, multi glob 7!
{10 ·14, 10 ·15, 11}, xmalloc 7!{4 ·10 ·14, 4 ·10 ·15, 4 ·11, ✏}}.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (3)

The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (4)

The static analysis computes an abstract element X 2 D satis-
fying the following condition:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (5)

In general, many X can satisfy the condition in (5). Some
analyses compute the least X satisfying (5). Other analyses use
a widening operator [1],

`
: D ⇥ D ! D, and compute not

necessarily the least, but some solution of (5).

Example 2 (Interval Analysis). The interval analysis is a standard
example that uses a widening operator. Let I be the domain of
intervals: I = {[l, u] | l, u 2 Z [{�1,+1} ^ l u}.
Using this domain, we specify the rest of the analysis:

1. The abstract states are ? or functions from program variables
to their interval values: S = {?} [(Var ! I)

2. The initial abstract state is: s
I

(x) = [�1,+1].
3. The abstract semantics of primitive commands is:

JskipK(s) = s, Jx := eK(s) =
⇢

s[x 7! JeK(s)] (s 6= ?)
? (s = ?)

where JeK is the abstract evaluation of the expression e:

JnK(s) = [n, n], Je1 + e2K(s) = Je1K(s)+ Je2K(s)
JxK(s) = s(x), Je1 � e2K(s) = Je1K(s)� Je2K(s)

4. The last component of the analysis is a widening operator,
which is defined as a pointwise lifting of the following widening
operators

`
I

: I⇥ I ! I for intervals:

[l, u]
`

I

[l0, u0] = [ite(l0 < l, ite(l0 < 0,�1, 0), l),
ite(u0

> u,+1, u)]

where ite(p, a, b) evaluates to a if p is true and b otherwise. The
above widening operator uses 0 as a threshold, which is useful
when proving the absence of buffer overruns.

Queries Queries are triples in Q ✓ C ⇥ S ⇥ Var, and they are
given as input to our static analysis. A query (c, s, x) represents
an assertion that every reachable concrete state at node c is over-
approximated by the abstract state s. The last component x de-
scribes that the query is concerned with the value of the variable
x. For instance, in the interval analysis, a typical query is

(c, �y. if (y = x) then [0,1] else >, x)

for some variable x. It asserts that at program node c, the variable
x should always have a non-negative value. Proving the queries or
identifying those that are likely to be violated is the goal of the
analysis.

5. Impact Pre-Analysis for Finding K
Suppose that we would like to develop a selective context-sensitive
analysis in Section 4 for a given program and given queries, using
one of the existing abstract domains specified by the following data:

(S, s

I

2 S, J�K : S ! S),

To achieve our aim, we need to construct K a specification on
context-sensitivity for the given program and queries. Once this
construction is done, the rest is standard. The analysis can analyze
the program under partial context-sensitivity, using the induced
abstract domain D and transfer function F : D ! D for this
program in (3) and (4). We assume that the analysis employs the
fixpoint algorithm based on widening operation

`
: D⇥ D ! D.

How should we automatically choose an effective K that bal-
ances the precision and cost of the induced interprocedural anal-
ysis? In this section, we give an answer to this question. In Sec-
tion 5.1, we present an impact pre-analysis, which estimates the
behavior of the main analysis (S, s

I

, J�K) under full context-
sensitivity. In Section 5.2, we describe how to use the results of
this pre-analysis for constructing an effective context selector K.
Throughout the section, we fix our main analysis to (S, s

I

, J�K).

5.1 Designing an Impact Pre-Analysis
An impact pre-analysis for context sensitivity aims at estimating
the main analysis (S, s

I

, J�K) under full context-sensitivity. It is
specified by the following data:

(S]

, s

]

I

2 S]

, J�K] : S] ! S]

, K1).

This specification and the way that the data are used in our pre-
analysis are fairly standard. S] and JcmdK] are, respectively, the
domain of abstract states and the abstract semantics of cmd used
by the pre-analysis, and s

]

I

is an initial state. K1 = �f.C⇤
c

is the
context selector for full context-sensitivity. The pre-analysis uses
the abstract domain D] = C

K1 ! S] and the following transfer
function F

] : D] ! D] for the given program:

F

](X)(c,) = Jcmd(c)K](
G

(c0,0)!K1 (c,)

X(c0,0)).

It computes the least X satisfying

s

]

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F

](X)(c,) v X(c,) (6)

What is less standard is the soundness and efficiency conditions
for our pre-analysis, which provides a guideline on the design of
these pre-analyses. Let us discuss these conditions separately.

Soundness condition Intuitively, our soundness condition says
that all the components of the pre-analysis have to over-approximate
the corresponding ones of the main analysis. This is identical to the
standard soundness requirement of a static program analysis, ex-
cept that the condition is stated not over the concrete semantics of
a given program, but over the main analysis. The condition has the
following four requirements:

1. There should be a concretization function � : S] ! }(S). This
function formalizes the fact that an abstract state of the pre-
analysis means a set of abstract states of the main analysis.

2. The initial abstract state of the pre-analysis has to overapproxi-
mate the initial state of the main analysis, i.e., s

I

2 �(s]
I

).

Queries

40

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K includes ✏ if it is necessary.
For instance, consider a program where f has three different calling
contexts 1,2, and 3. When the analysis differentiates 1 only,
undistinguished contexts 2 and 3 are represented by ✏. Thus,
K(f) = {1, ✏}. Note that our analysis isolates undistinguished
contexts from distinguished ones: ✏ means only 2 or 3, not 1.

Example 1. The analysis is context-insensitive when K = �f.{✏}
and fully context-sensitive when K=�f.C⇤

c

. Our selective context-
sensitive analysis in Section 2 uses the following context selector
K= {main 7! {✏}, f 7! {14, 15}, g 7! {✏}, multi glob 7!
{10 ·14, 10 ·15, 11}, xmalloc 7!{4 ·10 ·14, 4 ·10 ·15, 4 ·11, ✏}}.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (3)

The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (4)

The static analysis computes an abstract element X 2 D satis-
fying the following condition:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (5)

In general, many X can satisfy the condition in (5). Some
analyses compute the least X satisfying (5). Other analyses use
a widening operator [1],

`
: D ⇥ D ! D, and compute not

necessarily the least, but some solution of (5).

Example 2 (Interval Analysis). The interval analysis is a standard
example that uses a widening operator. Let I be the domain of
intervals: I = {[l, u] | l, u 2 Z [{�1,+1} ^ l u}.
Using this domain, we specify the rest of the analysis:

1. The abstract states are ? or functions from program variables
to their interval values: S = {?} [(Var ! I)

2. The initial abstract state is: s
I

(x) = [�1,+1].
3. The abstract semantics of primitive commands is:

JskipK(s) = s, Jx := eK(s) =
⇢

s[x 7! JeK(s)] (s 6= ?)
? (s = ?)

where JeK is the abstract evaluation of the expression e:

JnK(s) = [n, n], Je1 + e2K(s) = Je1K(s)+ Je2K(s)
JxK(s) = s(x), Je1 � e2K(s) = Je1K(s)� Je2K(s)

4. The last component of the analysis is a widening operator,
which is defined as a pointwise lifting of the following widening
operators

`
I

: I⇥ I ! I for intervals:

[l, u]
`

I

[l0, u0] = [ite(l0 < l, ite(l0 < 0,�1, 0), l),
ite(u0

> u,+1, u)]

where ite(p, a, b) evaluates to a if p is true and b otherwise. The
above widening operator uses 0 as a threshold, which is useful
when proving the absence of buffer overruns.

Queries Queries are triples in Q ✓ C ⇥ S ⇥ Var, and they are
given as input to our static analysis. A query (c, s, x) represents
an assertion that every reachable concrete state at node c is over-
approximated by the abstract state s. The last component x de-
scribes that the query is concerned with the value of the variable
x. For instance, in the interval analysis, a typical query is

(c, �y. if (y = x) then [0,1] else >, x)

for some variable x. It asserts that at program node c, the variable
x should always have a non-negative value. Proving the queries or
identifying those that are likely to be violated is the goal of the
analysis.

5. Impact Pre-Analysis for Finding K
Suppose that we would like to develop a selective context-sensitive
analysis in Section 4 for a given program and given queries, using
one of the existing abstract domains specified by the following data:

(S, s

I

2 S, J�K : S ! S),

To achieve our aim, we need to construct K a specification on
context-sensitivity for the given program and queries. Once this
construction is done, the rest is standard. The analysis can analyze
the program under partial context-sensitivity, using the induced
abstract domain D and transfer function F : D ! D for this
program in (3) and (4). We assume that the analysis employs the
fixpoint algorithm based on widening operation

`
: D⇥ D ! D.

How should we automatically choose an effective K that bal-
ances the precision and cost of the induced interprocedural anal-
ysis? In this section, we give an answer to this question. In Sec-
tion 5.1, we present an impact pre-analysis, which estimates the
behavior of the main analysis (S, s

I

, J�K) under full context-
sensitivity. In Section 5.2, we describe how to use the results of
this pre-analysis for constructing an effective context selector K.
Throughout the section, we fix our main analysis to (S, s

I

, J�K).

5.1 Designing an Impact Pre-Analysis
An impact pre-analysis for context sensitivity aims at estimating
the main analysis (S, s

I

, J�K) under full context-sensitivity. It is
specified by the following data:

(S]

, s

]

I

2 S]

, J�K] : S] ! S]

, K1).

This specification and the way that the data are used in our pre-
analysis are fairly standard. S] and JcmdK] are, respectively, the
domain of abstract states and the abstract semantics of cmd used
by the pre-analysis, and s

]

I

is an initial state. K1 = �f.C⇤
c

is the
context selector for full context-sensitivity. The pre-analysis uses
the abstract domain D] = C

K1 ! S] and the following transfer
function F

] : D] ! D] for the given program:

F

](X)(c,) = Jcmd(c)K](
G

(c0,0)!K1 (c,)

X(c0,0)).

It computes the least X satisfying

s

]

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F

](X)(c,) v X(c,) (6)

What is less standard is the soundness and efficiency conditions
for our pre-analysis, which provides a guideline on the design of
these pre-analyses. Let us discuss these conditions separately.

Soundness condition Intuitively, our soundness condition says
that all the components of the pre-analysis have to over-approximate
the corresponding ones of the main analysis. This is identical to the
standard soundness requirement of a static program analysis, ex-
cept that the condition is stated not over the concrete semantics of
a given program, but over the main analysis. The condition has the
following four requirements:

1. There should be a concretization function � : S] ! }(S). This
function formalizes the fact that an abstract state of the pre-
analysis means a set of abstract states of the main analysis.

2. The initial abstract state of the pre-analysis has to overapproxi-
mate the initial state of the main analysis, i.e., s

I

2 �(s]
I

).

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K includes ✏ if it is necessary.
For instance, consider a program where f has three different calling
contexts 1,2, and 3. When the analysis differentiates 1 only,
undistinguished contexts 2 and 3 are represented by ✏. Thus,
K(f) = {1, ✏}. Note that our analysis isolates undistinguished
contexts from distinguished ones: ✏ means only 2 or 3, not 1.

Example 1. The analysis is context-insensitive when K = �f.{✏}
and fully context-sensitive when K=�f.C⇤

c

. Our selective context-
sensitive analysis in Section 2 uses the following context selector
K= {main 7! {✏}, f 7! {14, 15}, g 7! {✏}, multi glob 7!
{10 ·14, 10 ·15, 11}, xmalloc 7!{4 ·10 ·14, 4 ·10 ·15, 4 ·11, ✏}}.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (3)

The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (4)

The static analysis computes an abstract element X 2 D satis-
fying the following condition:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (5)

In general, many X can satisfy the condition in (5). Some
analyses compute the least X satisfying (5). Other analyses use
a widening operator [1],

`
: D ⇥ D ! D, and compute not

necessarily the least, but some solution of (5).

Example 2 (Interval Analysis). The interval analysis is a standard
example that uses a widening operator. Let I be the domain of
intervals: I = {[l, u] | l, u 2 Z [{�1,+1} ^ l u}.
Using this domain, we specify the rest of the analysis:

1. The abstract states are ? or functions from program variables
to their interval values: S = {?} [(Var ! I)

2. The initial abstract state is: s
I

(x) = [�1,+1].
3. The abstract semantics of primitive commands is:

JskipK(s) = s, Jx := eK(s) =
⇢

s[x 7! JeK(s)] (s 6= ?)
? (s = ?)

where JeK is the abstract evaluation of the expression e:

JnK(s) = [n, n], Je1 + e2K(s) = Je1K(s)+ Je2K(s)
JxK(s) = s(x), Je1 � e2K(s) = Je1K(s)� Je2K(s)

4. The last component of the analysis is a widening operator,
which is defined as a pointwise lifting of the following widening
operators

`
I

: I⇥ I ! I for intervals:

[l, u]
`

I

[l0, u0] = [ite(l0 < l, ite(l0 < 0,�1, 0), l),
ite(u0

> u,+1, u)]

where ite(p, a, b) evaluates to a if p is true and b otherwise. The
above widening operator uses 0 as a threshold, which is useful
when proving the absence of buffer overruns.

Queries Queries are triples in Q ✓ C ⇥ S ⇥ Var, and they are
given as input to our static analysis. A query (c, s, x) represents
an assertion that every reachable concrete state at node c is over-
approximated by the abstract state s. The last component x de-
scribes that the query is concerned with the value of the variable
x. For instance, in the interval analysis, a typical query is

(c, �y. if (y = x) then [0,1] else >, x)

for some variable x. It asserts that at program node c, the variable
x should always have a non-negative value. Proving the queries or
identifying those that are likely to be violated is the goal of the
analysis.

5. Impact Pre-Analysis for Finding K
Suppose that we would like to develop a selective context-sensitive
analysis in Section 4 for a given program and given queries, using
one of the existing abstract domains specified by the following data:

(S, s

I

2 S, J�K : S ! S),

To achieve our aim, we need to construct K a specification on
context-sensitivity for the given program and queries. Once this
construction is done, the rest is standard. The analysis can analyze
the program under partial context-sensitivity, using the induced
abstract domain D and transfer function F : D ! D for this
program in (3) and (4). We assume that the analysis employs the
fixpoint algorithm based on widening operation

`
: D⇥ D ! D.

How should we automatically choose an effective K that bal-
ances the precision and cost of the induced interprocedural anal-
ysis? In this section, we give an answer to this question. In Sec-
tion 5.1, we present an impact pre-analysis, which estimates the
behavior of the main analysis (S, s

I

, J�K) under full context-
sensitivity. In Section 5.2, we describe how to use the results of
this pre-analysis for constructing an effective context selector K.
Throughout the section, we fix our main analysis to (S, s

I

, J�K).

5.1 Designing an Impact Pre-Analysis
An impact pre-analysis for context sensitivity aims at estimating
the main analysis (S, s

I

, J�K) under full context-sensitivity. It is
specified by the following data:

(S]

, s

]

I

2 S]

, J�K] : S] ! S]

, K1).

This specification and the way that the data are used in our pre-
analysis are fairly standard. S] and JcmdK] are, respectively, the
domain of abstract states and the abstract semantics of cmd used
by the pre-analysis, and s

]

I

is an initial state. K1 = �f.C⇤
c

is the
context selector for full context-sensitivity. The pre-analysis uses
the abstract domain D] = C

K1 ! S] and the following transfer
function F

] : D] ! D] for the given program:

F

](X)(c,) = Jcmd(c)K](
G

(c0,0)!K1 (c,)

X(c0,0)).

It computes the least X satisfying

s

]

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F

](X)(c,) v X(c,) (6)

What is less standard is the soundness and efficiency conditions
for our pre-analysis, which provides a guideline on the design of
these pre-analyses. Let us discuss these conditions separately.

Soundness condition Intuitively, our soundness condition says
that all the components of the pre-analysis have to over-approximate
the corresponding ones of the main analysis. This is identical to the
standard soundness requirement of a static program analysis, ex-
cept that the condition is stated not over the concrete semantics of
a given program, but over the main analysis. The condition has the
following four requirements:

1. There should be a concretization function � : S] ! }(S). This
function formalizes the fact that an abstract state of the pre-
analysis means a set of abstract states of the main analysis.

2. The initial abstract state of the pre-analysis has to overapproxi-
mate the initial state of the main analysis, i.e., s

I

2 �(s]
I

).

Impact Pre-Analysis

41

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K includes ✏ if it is necessary.
For instance, consider a program where f has three different calling
contexts 1,2, and 3. When the analysis differentiates 1 only,
undistinguished contexts 2 and 3 are represented by ✏. Thus,
K(f) = {1, ✏}. Note that our analysis isolates undistinguished
contexts from distinguished ones: ✏ means only 2 or 3, not 1.

Example 1. The analysis is context-insensitive when K = �f.{✏}
and fully context-sensitive when K=�f.C⇤

c

. Our selective context-
sensitive analysis in Section 2 uses the following context selector
K= {main 7! {✏}, f 7! {14, 15}, g 7! {✏}, multi glob 7!
{10 ·14, 10 ·15, 11}, xmalloc 7!{4 ·10 ·14, 4 ·10 ·15, 4 ·11, ✏}}.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (3)

The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (4)

The static analysis computes an abstract element X 2 D satis-
fying the following condition:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (5)

In general, many X can satisfy the condition in (5). Some
analyses compute the least X satisfying (5). Other analyses use
a widening operator [1],

`
: D ⇥ D ! D, and compute not

necessarily the least, but some solution of (5).

Example 2 (Interval Analysis). The interval analysis is a standard
example that uses a widening operator. Let I be the domain of
intervals: I = {[l, u] | l, u 2 Z [{�1,+1} ^ l u}.
Using this domain, we specify the rest of the analysis:

1. The abstract states are ? or functions from program variables
to their interval values: S = {?} [(Var ! I)

2. The initial abstract state is: s
I

(x) = [�1,+1].
3. The abstract semantics of primitive commands is:

JskipK(s) = s, Jx := eK(s) =
⇢

s[x 7! JeK(s)] (s 6= ?)
? (s = ?)

where JeK is the abstract evaluation of the expression e:

JnK(s) = [n, n], Je1 + e2K(s) = Je1K(s)+ Je2K(s)
JxK(s) = s(x), Je1 � e2K(s) = Je1K(s)� Je2K(s)

4. The last component of the analysis is a widening operator,
which is defined as a pointwise lifting of the following widening
operators

`
I

: I⇥ I ! I for intervals:

[l, u]
`

I

[l0, u0] = [ite(l0 < l, ite(l0 < 0,�1, 0), l),
ite(u0

> u,+1, u)]

where ite(p, a, b) evaluates to a if p is true and b otherwise. The
above widening operator uses 0 as a threshold, which is useful
when proving the absence of buffer overruns.

Queries Queries are triples in Q ✓ C ⇥ S ⇥ Var, and they are
given as input to our static analysis. A query (c, s, x) represents
an assertion that every reachable concrete state at node c is over-
approximated by the abstract state s. The last component x de-
scribes that the query is concerned with the value of the variable
x. For instance, in the interval analysis, a typical query is

(c, �y. if (y = x) then [0,1] else >, x)

for some variable x. It asserts that at program node c, the variable
x should always have a non-negative value. Proving the queries or
identifying those that are likely to be violated is the goal of the
analysis.

5. Impact Pre-Analysis for Finding K
Suppose that we would like to develop a selective context-sensitive
analysis in Section 4 for a given program and given queries, using
one of the existing abstract domains specified by the following data:

(S, s

I

2 S, J�K : S ! S),

To achieve our aim, we need to construct K a specification on
context-sensitivity for the given program and queries. Once this
construction is done, the rest is standard. The analysis can analyze
the program under partial context-sensitivity, using the induced
abstract domain D and transfer function F : D ! D for this
program in (3) and (4). We assume that the analysis employs the
fixpoint algorithm based on widening operation

`
: D⇥ D ! D.

How should we automatically choose an effective K that bal-
ances the precision and cost of the induced interprocedural anal-
ysis? In this section, we give an answer to this question. In Sec-
tion 5.1, we present an impact pre-analysis, which estimates the
behavior of the main analysis (S, s

I

, J�K) under full context-
sensitivity. In Section 5.2, we describe how to use the results of
this pre-analysis for constructing an effective context selector K.
Throughout the section, we fix our main analysis to (S, s

I

, J�K).

5.1 Designing an Impact Pre-Analysis
An impact pre-analysis for context sensitivity aims at estimating
the main analysis (S, s

I

, J�K) under full context-sensitivity. It is
specified by the following data:

(S]

, s

]

I

2 S]

, J�K] : S] ! S]

, K1).

This specification and the way that the data are used in our pre-
analysis are fairly standard. S] and JcmdK] are, respectively, the
domain of abstract states and the abstract semantics of cmd used
by the pre-analysis, and s

]

I

is an initial state. K1 = �f.C⇤
c

is the
context selector for full context-sensitivity. The pre-analysis uses
the abstract domain D] = C

K1 ! S] and the following transfer
function F

] : D] ! D] for the given program:

F

](X)(c,) = Jcmd(c)K](
G

(c0,0)!K1 (c,)

X(c0,0)).

It computes the least X satisfying

s

]

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F

](X)(c,) v X(c,) (6)

What is less standard is the soundness and efficiency conditions
for our pre-analysis, which provides a guideline on the design of
these pre-analyses. Let us discuss these conditions separately.

Soundness condition Intuitively, our soundness condition says
that all the components of the pre-analysis have to over-approximate
the corresponding ones of the main analysis. This is identical to the
standard soundness requirement of a static program analysis, ex-
cept that the condition is stated not over the concrete semantics of
a given program, but over the main analysis. The condition has the
following four requirements:

1. There should be a concretization function � : S] ! }(S). This
function formalizes the fact that an abstract state of the pre-
analysis means a set of abstract states of the main analysis.

2. The initial abstract state of the pre-analysis has to overapproxi-
mate the initial state of the main analysis, i.e., s

I

2 �(s]
I

).

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K includes ✏ if it is necessary.
For instance, consider a program where f has three different calling
contexts 1,2, and 3. When the analysis differentiates 1 only,
undistinguished contexts 2 and 3 are represented by ✏. Thus,
K(f) = {1, ✏}. Note that our analysis isolates undistinguished
contexts from distinguished ones: ✏ means only 2 or 3, not 1.

Example 1. The analysis is context-insensitive when K = �f.{✏}
and fully context-sensitive when K=�f.C⇤

c

. Our selective context-
sensitive analysis in Section 2 uses the following context selector
K= {main 7! {✏}, f 7! {14, 15}, g 7! {✏}, multi glob 7!
{10 ·14, 10 ·15, 11}, xmalloc 7!{4 ·10 ·14, 4 ·10 ·15, 4 ·11, ✏}}.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (3)

The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (4)

The static analysis computes an abstract element X 2 D satis-
fying the following condition:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (5)

In general, many X can satisfy the condition in (5). Some
analyses compute the least X satisfying (5). Other analyses use
a widening operator [1],

`
: D ⇥ D ! D, and compute not

necessarily the least, but some solution of (5).

Example 2 (Interval Analysis). The interval analysis is a standard
example that uses a widening operator. Let I be the domain of
intervals: I = {[l, u] | l, u 2 Z [{�1,+1} ^ l u}.
Using this domain, we specify the rest of the analysis:

1. The abstract states are ? or functions from program variables
to their interval values: S = {?} [(Var ! I)

2. The initial abstract state is: s
I

(x) = [�1,+1].
3. The abstract semantics of primitive commands is:

JskipK(s) = s, Jx := eK(s) =
⇢

s[x 7! JeK(s)] (s 6= ?)
? (s = ?)

where JeK is the abstract evaluation of the expression e:

JnK(s) = [n, n], Je1 + e2K(s) = Je1K(s)+ Je2K(s)
JxK(s) = s(x), Je1 � e2K(s) = Je1K(s)� Je2K(s)

4. The last component of the analysis is a widening operator,
which is defined as a pointwise lifting of the following widening
operators

`
I

: I⇥ I ! I for intervals:

[l, u]
`

I

[l0, u0] = [ite(l0 < l, ite(l0 < 0,�1, 0), l),
ite(u0

> u,+1, u)]

where ite(p, a, b) evaluates to a if p is true and b otherwise. The
above widening operator uses 0 as a threshold, which is useful
when proving the absence of buffer overruns.

Queries Queries are triples in Q ✓ C ⇥ S ⇥ Var, and they are
given as input to our static analysis. A query (c, s, x) represents
an assertion that every reachable concrete state at node c is over-
approximated by the abstract state s. The last component x de-
scribes that the query is concerned with the value of the variable
x. For instance, in the interval analysis, a typical query is

(c, �y. if (y = x) then [0,1] else >, x)

for some variable x. It asserts that at program node c, the variable
x should always have a non-negative value. Proving the queries or
identifying those that are likely to be violated is the goal of the
analysis.

5. Impact Pre-Analysis for Finding K
Suppose that we would like to develop a selective context-sensitive
analysis in Section 4 for a given program and given queries, using
one of the existing abstract domains specified by the following data:

(S, s

I

2 S, J�K : S ! S),

To achieve our aim, we need to construct K a specification on
context-sensitivity for the given program and queries. Once this
construction is done, the rest is standard. The analysis can analyze
the program under partial context-sensitivity, using the induced
abstract domain D and transfer function F : D ! D for this
program in (3) and (4). We assume that the analysis employs the
fixpoint algorithm based on widening operation

`
: D⇥ D ! D.

How should we automatically choose an effective K that bal-
ances the precision and cost of the induced interprocedural anal-
ysis? In this section, we give an answer to this question. In Sec-
tion 5.1, we present an impact pre-analysis, which estimates the
behavior of the main analysis (S, s

I

, J�K) under full context-
sensitivity. In Section 5.2, we describe how to use the results of
this pre-analysis for constructing an effective context selector K.
Throughout the section, we fix our main analysis to (S, s

I

, J�K).

5.1 Designing an Impact Pre-Analysis
An impact pre-analysis for context sensitivity aims at estimating
the main analysis (S, s

I

, J�K) under full context-sensitivity. It is
specified by the following data:

(S]

, s

]

I

2 S]

, J�K] : S] ! S]

, K1).

This specification and the way that the data are used in our pre-
analysis are fairly standard. S] and JcmdK] are, respectively, the
domain of abstract states and the abstract semantics of cmd used
by the pre-analysis, and s

]

I

is an initial state. K1 = �f.C⇤
c

is the
context selector for full context-sensitivity. The pre-analysis uses
the abstract domain D] = C

K1 ! S] and the following transfer
function F

] : D] ! D] for the given program:

F

](X)(c,) = Jcmd(c)K](
G

(c0,0)!K1 (c,)

X(c0,0)).

It computes the least X satisfying

s

]

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F

](X)(c,) v X(c,) (6)

What is less standard is the soundness and efficiency conditions
for our pre-analysis, which provides a guideline on the design of
these pre-analyses. Let us discuss these conditions separately.

Soundness condition Intuitively, our soundness condition says
that all the components of the pre-analysis have to over-approximate
the corresponding ones of the main analysis. This is identical to the
standard soundness requirement of a static program analysis, ex-
cept that the condition is stated not over the concrete semantics of
a given program, but over the main analysis. The condition has the
following four requirements:

1. There should be a concretization function � : S] ! }(S). This
function formalizes the fact that an abstract state of the pre-
analysis means a set of abstract states of the main analysis.

2. The initial abstract state of the pre-analysis has to overapproxi-
mate the initial state of the main analysis, i.e., s

I

2 �(s]
I

).

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K includes ✏ if it is necessary.
For instance, consider a program where f has three different calling
contexts 1,2, and 3. When the analysis differentiates 1 only,
undistinguished contexts 2 and 3 are represented by ✏. Thus,
K(f) = {1, ✏}. Note that our analysis isolates undistinguished
contexts from distinguished ones: ✏ means only 2 or 3, not 1.

Example 1. The analysis is context-insensitive when K = �f.{✏}
and fully context-sensitive when K=�f.C⇤

c

. Our selective context-
sensitive analysis in Section 2 uses the following context selector
K= {main 7! {✏}, f 7! {14, 15}, g 7! {✏}, multi glob 7!
{10 ·14, 10 ·15, 11}, xmalloc 7!{4 ·10 ·14, 4 ·10 ·15, 4 ·11, ✏}}.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (3)

The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (4)

The static analysis computes an abstract element X 2 D satis-
fying the following condition:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (5)

In general, many X can satisfy the condition in (5). Some
analyses compute the least X satisfying (5). Other analyses use
a widening operator [1],

`
: D ⇥ D ! D, and compute not

necessarily the least, but some solution of (5).

Example 2 (Interval Analysis). The interval analysis is a standard
example that uses a widening operator. Let I be the domain of
intervals: I = {[l, u] | l, u 2 Z [{�1,+1} ^ l u}.
Using this domain, we specify the rest of the analysis:

1. The abstract states are ? or functions from program variables
to their interval values: S = {?} [(Var ! I)

2. The initial abstract state is: s
I

(x) = [�1,+1].
3. The abstract semantics of primitive commands is:

JskipK(s) = s, Jx := eK(s) =
⇢

s[x 7! JeK(s)] (s 6= ?)
? (s = ?)

where JeK is the abstract evaluation of the expression e:

JnK(s) = [n, n], Je1 + e2K(s) = Je1K(s)+ Je2K(s)
JxK(s) = s(x), Je1 � e2K(s) = Je1K(s)� Je2K(s)

4. The last component of the analysis is a widening operator,
which is defined as a pointwise lifting of the following widening
operators

`
I

: I⇥ I ! I for intervals:

[l, u]
`

I

[l0, u0] = [ite(l0 < l, ite(l0 < 0,�1, 0), l),
ite(u0

> u,+1, u)]

where ite(p, a, b) evaluates to a if p is true and b otherwise. The
above widening operator uses 0 as a threshold, which is useful
when proving the absence of buffer overruns.

Queries Queries are triples in Q ✓ C ⇥ S ⇥ Var, and they are
given as input to our static analysis. A query (c, s, x) represents
an assertion that every reachable concrete state at node c is over-
approximated by the abstract state s. The last component x de-
scribes that the query is concerned with the value of the variable
x. For instance, in the interval analysis, a typical query is

(c, �y. if (y = x) then [0,1] else >, x)

for some variable x. It asserts that at program node c, the variable
x should always have a non-negative value. Proving the queries or
identifying those that are likely to be violated is the goal of the
analysis.

5. Impact Pre-Analysis for Finding K
Suppose that we would like to develop a selective context-sensitive
analysis in Section 4 for a given program and given queries, using
one of the existing abstract domains specified by the following data:

(S, s

I

2 S, J�K : S ! S),

To achieve our aim, we need to construct K a specification on
context-sensitivity for the given program and queries. Once this
construction is done, the rest is standard. The analysis can analyze
the program under partial context-sensitivity, using the induced
abstract domain D and transfer function F : D ! D for this
program in (3) and (4). We assume that the analysis employs the
fixpoint algorithm based on widening operation

`
: D⇥ D ! D.

How should we automatically choose an effective K that bal-
ances the precision and cost of the induced interprocedural anal-
ysis? In this section, we give an answer to this question. In Sec-
tion 5.1, we present an impact pre-analysis, which estimates the
behavior of the main analysis (S, s

I

, J�K) under full context-
sensitivity. In Section 5.2, we describe how to use the results of
this pre-analysis for constructing an effective context selector K.
Throughout the section, we fix our main analysis to (S, s

I

, J�K).

5.1 Designing an Impact Pre-Analysis
An impact pre-analysis for context sensitivity aims at estimating
the main analysis (S, s

I

, J�K) under full context-sensitivity. It is
specified by the following data:

(S]

, s

]

I

2 S]

, J�K] : S] ! S]

, K1).

This specification and the way that the data are used in our pre-
analysis are fairly standard. S] and JcmdK] are, respectively, the
domain of abstract states and the abstract semantics of cmd used
by the pre-analysis, and s

]

I

is an initial state. K1 = �f.C⇤
c

is the
context selector for full context-sensitivity. The pre-analysis uses
the abstract domain D] = C

K1 ! S] and the following transfer
function F

] : D] ! D] for the given program:

F

](X)(c,) = Jcmd(c)K](
G

(c0,0)!K1 (c,)

X(c0,0)).

It computes the least X satisfying

s

]

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F

](X)(c,) v X(c,) (6)

What is less standard is the soundness and efficiency conditions
for our pre-analysis, which provides a guideline on the design of
these pre-analyses. Let us discuss these conditions separately.

Soundness condition Intuitively, our soundness condition says
that all the components of the pre-analysis have to over-approximate
the corresponding ones of the main analysis. This is identical to the
standard soundness requirement of a static program analysis, ex-
cept that the condition is stated not over the concrete semantics of
a given program, but over the main analysis. The condition has the
following four requirements:

1. There should be a concretization function � : S] ! }(S). This
function formalizes the fact that an abstract state of the pre-
analysis means a set of abstract states of the main analysis.

2. The initial abstract state of the pre-analysis has to overapproxi-
mate the initial state of the main analysis, i.e., s

I

2 �(s]
I

).

where ✏ is the empty call sequence.

In our analysis, ✏ is used to represent all the other contexts not
included in K, and we assume that K includes ✏ if it is necessary.
For instance, consider a program where f has three different calling
contexts 1,2, and 3. When the analysis differentiates 1 only,
undistinguished contexts 2 and 3 are represented by ✏. Thus,
K(f) = {1, ✏}. Note that our analysis isolates undistinguished
contexts from distinguished ones: ✏ means only 2 or 3, not 1.

Example 1. The analysis is context-insensitive when K = �f.{✏}
and fully context-sensitive when K=�f.C⇤

c

. Our selective context-
sensitive analysis in Section 2 uses the following context selector
K= {main 7! {✏}, f 7! {14, 15}, g 7! {✏}, multi glob 7!
{10 ·14, 10 ·15, 11}, xmalloc 7!{4 ·10 ·14, 4 ·10 ·15, 4 ·11, ✏}}.

Next, we define the abstract domain D of the analysis:

D = (C
K

! S) (3)

The analysis keeps multiple abstract states at each program node c,
one for each context 2 K(fid(c)). The abstract transfer function
F of the analysis works on C

K

, and it is defined as follows:

F (X)(c,) = Jcmd(c)K(
G

(c0,0)!K(c,)

X(c0,0)). (4)

The static analysis computes an abstract element X 2 D satis-
fying the following condition:

s

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F (X)(c,) v X(c,) (5)

In general, many X can satisfy the condition in (5). Some
analyses compute the least X satisfying (5). Other analyses use
a widening operator [1],

`
: D ⇥ D ! D, and compute not

necessarily the least, but some solution of (5).

Example 2 (Interval Analysis). The interval analysis is a standard
example that uses a widening operator. Let I be the domain of
intervals: I = {[l, u] | l, u 2 Z [{�1,+1} ^ l u}.
Using this domain, we specify the rest of the analysis:

1. The abstract states are ? or functions from program variables
to their interval values: S = {?} [(Var ! I)

2. The initial abstract state is: s
I

(x) = [�1,+1].
3. The abstract semantics of primitive commands is:

JskipK(s) = s, Jx := eK(s) =
⇢

s[x 7! JeK(s)] (s 6= ?)
? (s = ?)

where JeK is the abstract evaluation of the expression e:

JnK(s) = [n, n], Je1 + e2K(s) = Je1K(s)+ Je2K(s)
JxK(s) = s(x), Je1 � e2K(s) = Je1K(s)� Je2K(s)

4. The last component of the analysis is a widening operator,
which is defined as a pointwise lifting of the following widening
operators

`
I

: I⇥ I ! I for intervals:

[l, u]
`

I

[l0, u0] = [ite(l0 < l, ite(l0 < 0,�1, 0), l),
ite(u0

> u,+1, u)]

where ite(p, a, b) evaluates to a if p is true and b otherwise. The
above widening operator uses 0 as a threshold, which is useful
when proving the absence of buffer overruns.

Queries Queries are triples in Q ✓ C ⇥ S ⇥ Var, and they are
given as input to our static analysis. A query (c, s, x) represents
an assertion that every reachable concrete state at node c is over-
approximated by the abstract state s. The last component x de-
scribes that the query is concerned with the value of the variable
x. For instance, in the interval analysis, a typical query is

(c, �y. if (y = x) then [0,1] else >, x)

for some variable x. It asserts that at program node c, the variable
x should always have a non-negative value. Proving the queries or
identifying those that are likely to be violated is the goal of the
analysis.

5. Impact Pre-Analysis for Finding K
Suppose that we would like to develop a selective context-sensitive
analysis in Section 4 for a given program and given queries, using
one of the existing abstract domains specified by the following data:

(S, s

I

2 S, J�K : S ! S),

To achieve our aim, we need to construct K a specification on
context-sensitivity for the given program and queries. Once this
construction is done, the rest is standard. The analysis can analyze
the program under partial context-sensitivity, using the induced
abstract domain D and transfer function F : D ! D for this
program in (3) and (4). We assume that the analysis employs the
fixpoint algorithm based on widening operation

`
: D⇥ D ! D.

How should we automatically choose an effective K that bal-
ances the precision and cost of the induced interprocedural anal-
ysis? In this section, we give an answer to this question. In Sec-
tion 5.1, we present an impact pre-analysis, which estimates the
behavior of the main analysis (S, s

I

, J�K) under full context-
sensitivity. In Section 5.2, we describe how to use the results of
this pre-analysis for constructing an effective context selector K.
Throughout the section, we fix our main analysis to (S, s

I

, J�K).

5.1 Designing an Impact Pre-Analysis
An impact pre-analysis for context sensitivity aims at estimating
the main analysis (S, s

I

, J�K) under full context-sensitivity. It is
specified by the following data:

(S]

, s

]

I

2 S]

, J�K] : S] ! S]

, K1).

This specification and the way that the data are used in our pre-
analysis are fairly standard. S] and JcmdK] are, respectively, the
domain of abstract states and the abstract semantics of cmd used
by the pre-analysis, and s

]

I

is an initial state. K1 = �f.C⇤
c

is the
context selector for full context-sensitivity. The pre-analysis uses
the abstract domain D] = C

K1 ! S] and the following transfer
function F

] : D] ! D] for the given program:

F

](X)(c,) = Jcmd(c)K](
G

(c0,0)!K1 (c,)

X(c0,0)).

It computes the least X satisfying

s

]

I

v X(◆, ✏) ^ 8(c,) 2 C
K

. F

](X)(c,) v X(c,) (6)

What is less standard is the soundness and efficiency conditions
for our pre-analysis, which provides a guideline on the design of
these pre-analyses. Let us discuss these conditions separately.

Soundness condition Intuitively, our soundness condition says
that all the components of the pre-analysis have to over-approximate
the corresponding ones of the main analysis. This is identical to the
standard soundness requirement of a static program analysis, ex-
cept that the condition is stated not over the concrete semantics of
a given program, but over the main analysis. The condition has the
following four requirements:

1. There should be a concretization function � : S] ! }(S). This
function formalizes the fact that an abstract state of the pre-
analysis means a set of abstract states of the main analysis.

2. The initial abstract state of the pre-analysis has to overapproxi-
mate the initial state of the main analysis, i.e., s

I

2 �(s]
I

).

Soundness Conditions

42

reachability analysis is to compute the set of nodes R
v

i

that are
reachable from nodes in �

v

i

for each v
i

:

R
v

i

= {(c, x) 2 � | 9(c0, x0) 2 �

v

i

. (c0, x0) ,!†
K

(c, x)}

Exploiting the fact that V is totally ordered, we can optimize
the computation as follows. We first compute R

v

i

in the order
R

v

n

, R
v

n�1 , . . . , Rv1 . Then, we perform the reachability as fol-
lows:

R
v

i

= {(c, x) 2 � |
9(c0, x0) 2 (�

v

i

\
S

v

i

@v

R
v

). (c0, x0) ,!†
K

(c, x)}

Note that, if (c0, x0) 2 �

v

i

is reachable from a node in �

v

and
v
i

is subsumed by v (v
i

@ v), we do not need to perform the
reachability computation for (c0, x0), because the nodes reachable
from (c0, x0) are also reachable from some nodes in �

v

and hence
it is no use propagating v

i

further.

6. Designing Selectively Context-Sensitive
Analysis

Building and running a selectively context-sensitive analysis has
four steps:

1. Approximate the main analysis using an instance of the impact
pre-analysis (Section 6.1).

2. Run the pre-analysis and select target queries for which we
decide to improve context-sensitivity (Section 6.2).

3. Build a guide for selective context-sensitivity (Section 6.3).
4. With the guide, run the selectively context-sensitive main anal-

ysis.

In this section, we formally describe each of these four steps.

6.1 Designing an Impact Pre-Analysis
The first step is to estimate the behavior of the main analysis under
full context-sensitivity. Assume that we are given a main analysis
as in Section 4:

(S, s
I

2 S, J�K : S ! S, K),

where S is the domain of abstract states, s
I

the initial abstract state,
JcmdK : S ! S the abstract semantics of a primitive command
cmd, and K a specification of selective context-sensitivity. As
explained in Section 4, from the analysis specification, the abstract
domain D and the abstract transfer function F : D ! D for a given
program are induced as:

D = (C
K

! S), and

F (X)(c,) = Jcmd(c)K(
G

{X(c0,0) | (c0,0) !K

(c,)}).

We assume that the analysis employs the fixpoint algorithm based
on widening operation

`
: D⇥ D ! D.

We approximate this main analysis using the following impact
pre-analysis:

(S], s]
I

, J�K] : S] ! S], K).

Here K is the main analysis’s specification on context-sensitivity,
and S] and JcmdK] are respectively the domain of abstract states
and the abstract semantics of cmd that satisfy the conditions in
Section 5:

S]

= {?} [(Var ! V)
for some totally-ordered set V, and the abstract semantics JcmdK]
has a simple form involving only join operation and constant ab-
stract value.

The purpose of this pre-analysis is to over-approximate the main
analysis. To meet this purpose, the pre-analysis is required to satisfy
the following conditions:

1. There is a concretization function � from S] to }(S):

� : S] ! }(S).

This function formalizes the fact that an abstract state of the
pre-analysis means a set of abstract states of the main analysis.

2. The initial abstract state s]
I

of the pre-analysis is an over-
approximation of the initial state s

I

of the main analysis:

s
I

2 �(s]
I

).

3. The abstract semantics of primitive commands in the pre-
analysis is sound with respect to that of the main analysis:

8s 2 S, s] 2 S]. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’ abstract domain over-
approximates the widening operation of the main analysis. Let
D]

= C
K

! S] and define the join operation t on D] as
follows:

(X] t Y]

)(c,) = X]

(c,) t Y]

(c,).

This join operation should approximate the widening operation
of the main analysis:

8X,Y 2 D. 8X], Y] 2 D]. (X 2 �(X]

) ^ Y 2 �(Y]

))

=) X
h

Y 2 �(X] t Y]

).

Once these requirements are met, the pre-analysis correctly esti-
mates the behavior of the main analysis.

Lemma 5. Let MA

K

2 D be the main analysis result, i.e., a
solution of (3). Let PA

K

2 C ! S] be the solution of the pre-
analysis computed by the reachability algorithm in Section 5.1.
Then,

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(PA
K

(c)).

Proof. Let X
K

2 C
K

! S] be the solution of the pre-analysis,
i.e., the least solution of (4). The abstract interpretation frame-
work [1, 2] guarantees that

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(X
K

(c,)).

Then, the desired equality holds by Lemma 4 (Note that Lemma 4
holds regardless of the underlying context guide K as described in
Section 5.2).

Note that this result is given for any specification K on context-
sensitivity. In particular, the result holds when K specifies full
context-sensitivity:

K = K1 = �f. C⇤
c

.

Thus, it implies that the fully context-sensitive pre-analysis overap-
proximates the fully context-sensitive main analysis.

Example 5 (Approximation of the Interval Analysis). Following
the recipe in this subsection, we design a pre-analysis that we use to
estimate our interval analysis in Example 4. Our pre-analysis aims
at predicting which variables get associated with non-negative in-
tervals when the program is analyzed by the fully context-sensitive
interval analysis.

The pre-analysis is specified by the following abstract states and
semantics:

9 2013/7/15

1.

2.

3.

4.

reachability analysis is to compute the set of nodes R
v

i

that are
reachable from nodes in �

v

i

for each v
i

:

R
v

i

= {(c, x) 2 � | 9(c0, x0) 2 �

v

i

. (c0, x0) ,!†
K

(c, x)}

Exploiting the fact that V is totally ordered, we can optimize
the computation as follows. We first compute R

v

i

in the order
R

v

n

, R
v

n�1 , . . . , Rv1 . Then, we perform the reachability as fol-
lows:

R
v

i

= {(c, x) 2 � |
9(c0, x0) 2 (�

v

i

\
S

v

i

@v

R
v

). (c0, x0) ,!†
K

(c, x)}

Note that, if (c0, x0) 2 �

v

i

is reachable from a node in �

v

and
v
i

is subsumed by v (v
i

@ v), we do not need to perform the
reachability computation for (c0, x0), because the nodes reachable
from (c0, x0) are also reachable from some nodes in �

v

and hence
it is no use propagating v

i

further.

6. Designing Selectively Context-Sensitive
Analysis

Building and running a selectively context-sensitive analysis has
four steps:

1. Approximate the main analysis using an instance of the impact
pre-analysis (Section 6.1).

2. Run the pre-analysis and select target queries for which we
decide to improve context-sensitivity (Section 6.2).

3. Build a guide for selective context-sensitivity (Section 6.3).
4. With the guide, run the selectively context-sensitive main anal-

ysis.

In this section, we formally describe each of these four steps.

6.1 Designing an Impact Pre-Analysis
The first step is to estimate the behavior of the main analysis under
full context-sensitivity. Assume that we are given a main analysis
as in Section 4:

(S, s
I

2 S, J�K : S ! S, K),

where S is the domain of abstract states, s
I

the initial abstract state,
JcmdK : S ! S the abstract semantics of a primitive command
cmd, and K a specification of selective context-sensitivity. As
explained in Section 4, from the analysis specification, the abstract
domain D and the abstract transfer function F : D ! D for a given
program are induced as:

D = (C
K

! S), and

F (X)(c,) = Jcmd(c)K(
G

{X(c0,0) | (c0,0) !K

(c,)}).

We assume that the analysis employs the fixpoint algorithm based
on widening operation

`
: D⇥ D ! D.

We approximate this main analysis using the following impact
pre-analysis:

(S], s]
I

, J�K] : S] ! S], K).

Here K is the main analysis’s specification on context-sensitivity,
and S] and JcmdK] are respectively the domain of abstract states
and the abstract semantics of cmd that satisfy the conditions in
Section 5:

S]

= {?} [(Var ! V)
for some totally-ordered set V, and the abstract semantics JcmdK]
has a simple form involving only join operation and constant ab-
stract value.

The purpose of this pre-analysis is to over-approximate the main
analysis. To meet this purpose, the pre-analysis is required to satisfy
the following conditions:

1. There is a concretization function � from S] to }(S):

� : S] ! }(S).

This function formalizes the fact that an abstract state of the
pre-analysis means a set of abstract states of the main analysis.

2. The initial abstract state s]
I

of the pre-analysis is an over-
approximation of the initial state s

I

of the main analysis:

s
I

2 �(s]
I

).

3. The abstract semantics of primitive commands in the pre-
analysis is sound with respect to that of the main analysis:

8s 2 S, s] 2 S]. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’ abstract domain over-
approximates the widening operation of the main analysis. Let
D]

= C
K

! S] and define the join operation t on D] as
follows:

(X] t Y]

)(c,) = X]

(c,) t Y]

(c,).

This join operation should approximate the widening operation
of the main analysis:

8X,Y 2 D. 8X], Y] 2 D]. (X 2 �(X]

) ^ Y 2 �(Y]

))

=) X
h

Y 2 �(X] t Y]

).

Once these requirements are met, the pre-analysis correctly esti-
mates the behavior of the main analysis.

Lemma 5. Let MA

K

2 D be the main analysis result, i.e., a
solution of (3). Let PA

K

2 C ! S] be the solution of the pre-
analysis computed by the reachability algorithm in Section 5.1.
Then,

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(PA
K

(c)).

Proof. Let X
K

2 C
K

! S] be the solution of the pre-analysis,
i.e., the least solution of (4). The abstract interpretation frame-
work [1, 2] guarantees that

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(X
K

(c,)).

Then, the desired equality holds by Lemma 4 (Note that Lemma 4
holds regardless of the underlying context guide K as described in
Section 5.2).

Note that this result is given for any specification K on context-
sensitivity. In particular, the result holds when K specifies full
context-sensitivity:

K = K1 = �f. C⇤
c

.

Thus, it implies that the fully context-sensitive pre-analysis overap-
proximates the fully context-sensitive main analysis.

Example 5 (Approximation of the Interval Analysis). Following
the recipe in this subsection, we design a pre-analysis that we use to
estimate our interval analysis in Example 4. Our pre-analysis aims
at predicting which variables get associated with non-negative in-
tervals when the program is analyzed by the fully context-sensitive
interval analysis.

The pre-analysis is specified by the following abstract states and
semantics:

9 2013/7/15

reachability analysis is to compute the set of nodes R
v

i

that are
reachable from nodes in �

v

i

for each v
i

:

R
v

i

= {(c, x) 2 � | 9(c0, x0) 2 �

v

i

. (c0, x0) ,!†
K

(c, x)}

Exploiting the fact that V is totally ordered, we can optimize
the computation as follows. We first compute R

v

i

in the order
R

v

n

, R
v

n�1 , . . . , Rv1 . Then, we perform the reachability as fol-
lows:

R
v

i

= {(c, x) 2 � |
9(c0, x0) 2 (�

v

i

\
S

v

i

@v

R
v

). (c0, x0) ,!†
K

(c, x)}

Note that, if (c0, x0) 2 �

v

i

is reachable from a node in �

v

and
v
i

is subsumed by v (v
i

@ v), we do not need to perform the
reachability computation for (c0, x0), because the nodes reachable
from (c0, x0) are also reachable from some nodes in �

v

and hence
it is no use propagating v

i

further.

6. Designing Selectively Context-Sensitive
Analysis

Building and running a selectively context-sensitive analysis has
four steps:

1. Approximate the main analysis using an instance of the impact
pre-analysis (Section 6.1).

2. Run the pre-analysis and select target queries for which we
decide to improve context-sensitivity (Section 6.2).

3. Build a guide for selective context-sensitivity (Section 6.3).
4. With the guide, run the selectively context-sensitive main anal-

ysis.

In this section, we formally describe each of these four steps.

6.1 Designing an Impact Pre-Analysis
The first step is to estimate the behavior of the main analysis under
full context-sensitivity. Assume that we are given a main analysis
as in Section 4:

(S, s
I

2 S, J�K : S ! S, K),

where S is the domain of abstract states, s
I

the initial abstract state,
JcmdK : S ! S the abstract semantics of a primitive command
cmd, and K a specification of selective context-sensitivity. As
explained in Section 4, from the analysis specification, the abstract
domain D and the abstract transfer function F : D ! D for a given
program are induced as:

D = (C
K

! S), and

F (X)(c,) = Jcmd(c)K(
G

{X(c0,0) | (c0,0) !K

(c,)}).

We assume that the analysis employs the fixpoint algorithm based
on widening operation

`
: D⇥ D ! D.

We approximate this main analysis using the following impact
pre-analysis:

(S], s]
I

, J�K] : S] ! S], K).

Here K is the main analysis’s specification on context-sensitivity,
and S] and JcmdK] are respectively the domain of abstract states
and the abstract semantics of cmd that satisfy the conditions in
Section 5:

S]

= {?} [(Var ! V)
for some totally-ordered set V, and the abstract semantics JcmdK]
has a simple form involving only join operation and constant ab-
stract value.

The purpose of this pre-analysis is to over-approximate the main
analysis. To meet this purpose, the pre-analysis is required to satisfy
the following conditions:

1. There is a concretization function � from S] to }(S):

� : S] ! }(S).

This function formalizes the fact that an abstract state of the
pre-analysis means a set of abstract states of the main analysis.

2. The initial abstract state s]
I

of the pre-analysis is an over-
approximation of the initial state s

I

of the main analysis:

s
I

2 �(s]
I

).

3. The abstract semantics of primitive commands in the pre-
analysis is sound with respect to that of the main analysis:

8s 2 S, s] 2 S]. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’ abstract domain over-
approximates the widening operation of the main analysis. Let
D]

= C
K

! S] and define the join operation t on D] as
follows:

(X] t Y]

)(c,) = X]

(c,) t Y]

(c,).

This join operation should approximate the widening operation
of the main analysis:

8X,Y 2 D. 8X], Y] 2 D]. (X 2 �(X]

) ^ Y 2 �(Y]

))

=) X
h

Y 2 �(X] t Y]

).

Once these requirements are met, the pre-analysis correctly esti-
mates the behavior of the main analysis.

Lemma 5. Let MA

K

2 D be the main analysis result, i.e., a
solution of (3). Let PA

K

2 C ! S] be the solution of the pre-
analysis computed by the reachability algorithm in Section 5.1.
Then,

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(PA
K

(c)).

Proof. Let X
K

2 C
K

! S] be the solution of the pre-analysis,
i.e., the least solution of (4). The abstract interpretation frame-
work [1, 2] guarantees that

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(X
K

(c,)).

Then, the desired equality holds by Lemma 4 (Note that Lemma 4
holds regardless of the underlying context guide K as described in
Section 5.2).

Note that this result is given for any specification K on context-
sensitivity. In particular, the result holds when K specifies full
context-sensitivity:

K = K1 = �f. C⇤
c

.

Thus, it implies that the fully context-sensitive pre-analysis overap-
proximates the fully context-sensitive main analysis.

Example 5 (Approximation of the Interval Analysis). Following
the recipe in this subsection, we design a pre-analysis that we use to
estimate our interval analysis in Example 4. Our pre-analysis aims
at predicting which variables get associated with non-negative in-
tervals when the program is analyzed by the fully context-sensitive
interval analysis.

The pre-analysis is specified by the following abstract states and
semantics:

9 2013/7/15

reachability analysis is to compute the set of nodes R
v

i

that are
reachable from nodes in �

v

i

for each v
i

:

R
v

i

= {(c, x) 2 � | 9(c0, x0) 2 �

v

i

. (c0, x0) ,!†
K

(c, x)}

Exploiting the fact that V is totally ordered, we can optimize
the computation as follows. We first compute R

v

i

in the order
R

v

n

, R
v

n�1 , . . . , Rv1 . Then, we perform the reachability as fol-
lows:

R
v

i

= {(c, x) 2 � |
9(c0, x0) 2 (�

v

i

\
S

v

i

@v

R
v

). (c0, x0) ,!†
K

(c, x)}

Note that, if (c0, x0) 2 �

v

i

is reachable from a node in �

v

and
v
i

is subsumed by v (v
i

@ v), we do not need to perform the
reachability computation for (c0, x0), because the nodes reachable
from (c0, x0) are also reachable from some nodes in �

v

and hence
it is no use propagating v

i

further.

6. Designing Selectively Context-Sensitive
Analysis

Building and running a selectively context-sensitive analysis has
four steps:

1. Approximate the main analysis using an instance of the impact
pre-analysis (Section 6.1).

2. Run the pre-analysis and select target queries for which we
decide to improve context-sensitivity (Section 6.2).

3. Build a guide for selective context-sensitivity (Section 6.3).
4. With the guide, run the selectively context-sensitive main anal-

ysis.

In this section, we formally describe each of these four steps.

6.1 Designing an Impact Pre-Analysis
The first step is to estimate the behavior of the main analysis under
full context-sensitivity. Assume that we are given a main analysis
as in Section 4:

(S, s
I

2 S, J�K : S ! S, K),

where S is the domain of abstract states, s
I

the initial abstract state,
JcmdK : S ! S the abstract semantics of a primitive command
cmd, and K a specification of selective context-sensitivity. As
explained in Section 4, from the analysis specification, the abstract
domain D and the abstract transfer function F : D ! D for a given
program are induced as:

D = (C
K

! S), and

F (X)(c,) = Jcmd(c)K(
G

{X(c0,0) | (c0,0) !K

(c,)}).

We assume that the analysis employs the fixpoint algorithm based
on widening operation

`
: D⇥ D ! D.

We approximate this main analysis using the following impact
pre-analysis:

(S], s]
I

, J�K] : S] ! S], K).

Here K is the main analysis’s specification on context-sensitivity,
and S] and JcmdK] are respectively the domain of abstract states
and the abstract semantics of cmd that satisfy the conditions in
Section 5:

S]

= {?} [(Var ! V)
for some totally-ordered set V, and the abstract semantics JcmdK]
has a simple form involving only join operation and constant ab-
stract value.

The purpose of this pre-analysis is to over-approximate the main
analysis. To meet this purpose, the pre-analysis is required to satisfy
the following conditions:

1. There is a concretization function � from S] to }(S):

� : S] ! }(S).

This function formalizes the fact that an abstract state of the
pre-analysis means a set of abstract states of the main analysis.

2. The initial abstract state s]
I

of the pre-analysis is an over-
approximation of the initial state s

I

of the main analysis:

s
I

2 �(s]
I

).

3. The abstract semantics of primitive commands in the pre-
analysis is sound with respect to that of the main analysis:

8s 2 S, s] 2 S]. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’ abstract domain over-
approximates the widening operation of the main analysis. Let
D]

= C
K

! S] and define the join operation t on D] as
follows:

(X] t Y]

)(c,) = X]

(c,) t Y]

(c,).

This join operation should approximate the widening operation
of the main analysis:

8X,Y 2 D. 8X], Y] 2 D]. (X 2 �(X]

) ^ Y 2 �(Y]

))

=) X
h

Y 2 �(X] t Y]

).

Once these requirements are met, the pre-analysis correctly esti-
mates the behavior of the main analysis.

Lemma 5. Let MA

K

2 D be the main analysis result, i.e., a
solution of (3). Let PA

K

2 C ! S] be the solution of the pre-
analysis computed by the reachability algorithm in Section 5.1.
Then,

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(PA
K

(c)).

Proof. Let X
K

2 C
K

! S] be the solution of the pre-analysis,
i.e., the least solution of (4). The abstract interpretation frame-
work [1, 2] guarantees that

8c 2 C, 2 C⇤
c

. MA

K

(c,) 2 �(X
K

(c,)).

Then, the desired equality holds by Lemma 4 (Note that Lemma 4
holds regardless of the underlying context guide K as described in
Section 5.2).

Note that this result is given for any specification K on context-
sensitivity. In particular, the result holds when K specifies full
context-sensitivity:

K = K1 = �f. C⇤
c

.

Thus, it implies that the fully context-sensitive pre-analysis overap-
proximates the fully context-sensitive main analysis.

Example 5 (Approximation of the Interval Analysis). Following
the recipe in this subsection, we design a pre-analysis that we use to
estimate our interval analysis in Example 4. Our pre-analysis aims
at predicting which variables get associated with non-negative in-
tervals when the program is analyzed by the fully context-sensitive
interval analysis.

The pre-analysis is specified by the following abstract states and
semantics:

9 2013/7/15

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

8s 2 S, s] 2 S]

. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y 2 D and X

]

, Y

] 2 D],

(X 2 �(X]) ^ Y 2 �(Y])) =) X

`
Y 2 �(X] t Y

]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M 2 D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K1). Let P 2 D]

be the pre-analysis result, i.e., the least solution of (6). Then,
8c 2 C, 2 C⇤

c

. M(c,) 2 �(P (c,)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ? or functions from program variables
to abstract values: S] = {?} [(Var ! V), where V is a finite
complete lattice (V,v

v

,?
v

,>
v

,t
v

,u
v

). An initial abstract
state is s]

I

= �x.>
v

.
2. The abstract semantics of primitive commands has a simple

form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =
⇢

s[x 7! JeK](s)] (s 6= ?)
? (s = ?)

where JeK] has the following form: for every s 6= ?,

JeK](s) = s(x1) t . . . t s(x
n

) t v

for some variables x1, . . . , xn

and an abstract value v 2 V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn

}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K1.

1. Let V = {?
v

,F,>
v

} be a lattice such that ?
v

v
v

F v
v

>
v

.

Define the function �

v

: {?
v

,F,>
v

} ! }(I) as follows:

�

v

(>
v

) = I, �

v

(F) = {[a, b] 2 I | 0 a}, �

v

(?
v

) = ;
This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {?}[(Var !
V). The meaning of abstract states in S] is given by � such that
�(?) = {?} and, for s] 6= ?,

�(s]) = {s 2 S | s = ? _ 8x 2 Var. s(x) 2 �

v

(s](x))}.

3. Initial abstract state: s]
I

= > = �x.>
v

.

4. Abstract evaluation JeK] of expression e: for every s 6= ?,

JnK(s)= ite(n � 0,F,>
v

), Je1 + e2K(s)= Je1K(s)tv

Je2K(s)
JxK(s)= s(x), Je1 � e2K(s)= >

v

The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >

v

. Observe that the + operator is inter-
preted as the least upper bound t

v

, so that e1+e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >

v

.

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [2, 14])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [14]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [14]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K1.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (⇥, ,!) defined as follows:

⇥ = C⇥ Var, (,!) ✓ ⇥⇥⇥

The node set consists of pairs of program nodes and variables, and
(,!) is the edge relation between the nodes.

Definition 2 (,!). The value-flow relation (,!) ✓ (C ⇥ Var) ⇥
(C⇥Var) links the vertices in ⇥ based on how values of variables
flow to other variables in each primitive command:

(c, x) ,! (c0, x0) iff
8
<

:

c ! c

0 ^ x = x

0 (cmd(c0) = skip)
c ! c

0 ^ x = x

0 (cmd(c0) = y := e ^ y 6= x

0)
c ! c

0 ^ x 2 var(e) (cmd(c0) = y := e ^ y = x

0)

We can extend the ,! to its context-enriched version ,!
K

:

Definition 3 (,!
K

). The context-enriched value-flow relation
(,!

K

) ✓ (C
K

⇥Var)⇥(C
K

⇥Var) links the vertices in C
K

⇥Var

according to the specification below:

((c,), x) ,!
K

((c0,0), x0) iff
8
<

:

(c,) !
K

(c0,0) ^ x = x

0 (cmd(c0) = skip)
(c,) !

K

(c0,0) ^ x = x

0 (y 6= x

0)
(c,) !

K

(c0,0) ^ x 2 var(e) (y = x

0)

(where cmd(c0) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (,!†

K

) ✓ ⇥⇥⇥:

Definition 4 (,!†
K

). The reachability relation (,!†
K

) ✓ ⇥ ⇥ ⇥
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ,!†
K

(c0, x0) i↵
9,0

. (◆, ✏) !⇤
K

(c,) ^ ((c,), x) ,!⇤
K

((c0,0), x0).

We use the tabulation algorithm in [14] for computing (,!†
K

).
While computing (,!†

K

), the algorithm also collects the set C of
reachable nodes: C = {c | 9. (◆, ✏) !⇤

K

(c,)}.
Third, our algorithm computes a set ⇥

v

of generators for each
abstract value v in V. Generators for v are vertices in ⇥ whose
commands join v in their abstract semantics:

⇥
v

= {(c, x) | cmd(c) = x := e ^ const(e) = v}
[(if (v = >

v

) then {(◆, x) | x 2 Var} else {})

Finally, using (,!†
K

) and ⇥
v

, the algorithm constructs PA
K

:

Efficiency Conditions

43

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

8s 2 S, s] 2 S]

. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y 2 D and X

]

, Y

] 2 D],

(X 2 �(X]) ^ Y 2 �(Y])) =) X

`
Y 2 �(X] t Y

]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M 2 D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K1). Let P 2 D]

be the pre-analysis result, i.e., the least solution of (6). Then,
8c 2 C, 2 C⇤

c

. M(c,) 2 �(P (c,)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ? or functions from program variables
to abstract values: S] = {?} [(Var ! V), where V is a finite
complete lattice (V,v

v

,?
v

,>
v

,t
v

,u
v

). An initial abstract
state is s]

I

= �x.>
v

.
2. The abstract semantics of primitive commands has a simple

form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =
⇢

s[x 7! JeK](s)] (s 6= ?)
? (s = ?)

where JeK] has the following form: for every s 6= ?,

JeK](s) = s(x1) t . . . t s(x
n

) t v

for some variables x1, . . . , xn

and an abstract value v 2 V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn

}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K1.

1. Let V = {?
v

,F,>
v

} be a lattice such that ?
v

v
v

F v
v

>
v

.

Define the function �

v

: {?
v

,F,>
v

} ! }(I) as follows:

�

v

(>
v

) = I, �

v

(F) = {[a, b] 2 I | 0 a}, �

v

(?
v

) = ;
This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {?}[(Var !
V). The meaning of abstract states in S] is given by � such that
�(?) = {?} and, for s] 6= ?,

�(s]) = {s 2 S | s = ? _ 8x 2 Var. s(x) 2 �

v

(s](x))}.

3. Initial abstract state: s]
I

= > = �x.>
v

.

4. Abstract evaluation JeK] of expression e: for every s 6= ?,

JnK(s)= ite(n � 0,F,>
v

), Je1 + e2K(s)= Je1K(s)tv

Je2K(s)
JxK(s)= s(x), Je1 � e2K(s)= >

v

The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >

v

. Observe that the + operator is inter-
preted as the least upper bound t

v

, so that e1+e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >

v

.

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [2, 14])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [14]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [14]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K1.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (⇥, ,!) defined as follows:

⇥ = C⇥ Var, (,!) ✓ ⇥⇥⇥

The node set consists of pairs of program nodes and variables, and
(,!) is the edge relation between the nodes.

Definition 2 (,!). The value-flow relation (,!) ✓ (C ⇥ Var) ⇥
(C⇥Var) links the vertices in ⇥ based on how values of variables
flow to other variables in each primitive command:

(c, x) ,! (c0, x0) iff
8
<

:

c ! c

0 ^ x = x

0 (cmd(c0) = skip)
c ! c

0 ^ x = x

0 (cmd(c0) = y := e ^ y 6= x

0)
c ! c

0 ^ x 2 var(e) (cmd(c0) = y := e ^ y = x

0)

We can extend the ,! to its context-enriched version ,!
K

:

Definition 3 (,!
K

). The context-enriched value-flow relation
(,!

K

) ✓ (C
K

⇥Var)⇥(C
K

⇥Var) links the vertices in C
K

⇥Var

according to the specification below:

((c,), x) ,!
K

((c0,0), x0) iff
8
<

:

(c,) !
K

(c0,0) ^ x = x

0 (cmd(c0) = skip)
(c,) !

K

(c0,0) ^ x = x

0 (y 6= x

0)
(c,) !

K

(c0,0) ^ x 2 var(e) (y = x

0)

(where cmd(c0) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (,!†

K

) ✓ ⇥⇥⇥:

Definition 4 (,!†
K

). The reachability relation (,!†
K

) ✓ ⇥ ⇥ ⇥
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ,!†
K

(c0, x0) i↵
9,0

. (◆, ✏) !⇤
K

(c,) ^ ((c,), x) ,!⇤
K

((c0,0), x0).

We use the tabulation algorithm in [14] for computing (,!†
K

).
While computing (,!†

K

), the algorithm also collects the set C of
reachable nodes: C = {c | 9. (◆, ✏) !⇤

K

(c,)}.
Third, our algorithm computes a set ⇥

v

of generators for each
abstract value v in V. Generators for v are vertices in ⇥ whose
commands join v in their abstract semantics:

⇥
v

= {(c, x) | cmd(c) = x := e ^ const(e) = v}
[(if (v = >

v

) then {(◆, x) | x 2 Var} else {})

Finally, using (,!†
K

) and ⇥
v

, the algorithm constructs PA
K

:

Example

44

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

8s 2 S, s] 2 S]

. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y 2 D and X

]

, Y

] 2 D],

(X 2 �(X]) ^ Y 2 �(Y])) =) X

`
Y 2 �(X] t Y

]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M 2 D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K1). Let P 2 D]

be the pre-analysis result, i.e., the least solution of (6). Then,
8c 2 C, 2 C⇤

c

. M(c,) 2 �(P (c,)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ? or functions from program variables
to abstract values: S] = {?} [(Var ! V), where V is a finite
complete lattice (V,v

v

,?
v

,>
v

,t
v

,u
v

). An initial abstract
state is s]

I

= �x.>
v

.
2. The abstract semantics of primitive commands has a simple

form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =
⇢

s[x 7! JeK](s)] (s 6= ?)
? (s = ?)

where JeK] has the following form: for every s 6= ?,

JeK](s) = s(x1) t . . . t s(x
n

) t v

for some variables x1, . . . , xn

and an abstract value v 2 V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn

}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K1.

1. Let V = {?
v

,F,>
v

} be a lattice such that ?
v

v
v

F v
v

>
v

.

Define the function �

v

: {?
v

,F,>
v

} ! }(I) as follows:

�

v

(>
v

) = I, �

v

(F) = {[a, b] 2 I | 0 a}, �

v

(?
v

) = ;
This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {?}[(Var !
V). The meaning of abstract states in S] is given by � such that
�(?) = {?} and, for s] 6= ?,

�(s]) = {s 2 S | s = ? _ 8x 2 Var. s(x) 2 �

v

(s](x))}.

3. Initial abstract state: s]
I

= > = �x.>
v

.

4. Abstract evaluation JeK] of expression e: for every s 6= ?,

JnK(s)= ite(n � 0,F,>
v

), Je1 + e2K(s)= Je1K(s)tv

Je2K(s)
JxK(s)= s(x), Je1 � e2K(s)= >

v

The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >

v

. Observe that the + operator is inter-
preted as the least upper bound t

v

, so that e1+e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >

v

.

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [2, 14])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [14]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [14]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K1.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (⇥, ,!) defined as follows:

⇥ = C⇥ Var, (,!) ✓ ⇥⇥⇥

The node set consists of pairs of program nodes and variables, and
(,!) is the edge relation between the nodes.

Definition 2 (,!). The value-flow relation (,!) ✓ (C ⇥ Var) ⇥
(C⇥Var) links the vertices in ⇥ based on how values of variables
flow to other variables in each primitive command:

(c, x) ,! (c0, x0) iff
8
<

:

c ! c

0 ^ x = x

0 (cmd(c0) = skip)
c ! c

0 ^ x = x

0 (cmd(c0) = y := e ^ y 6= x

0)
c ! c

0 ^ x 2 var(e) (cmd(c0) = y := e ^ y = x

0)

We can extend the ,! to its context-enriched version ,!
K

:

Definition 3 (,!
K

). The context-enriched value-flow relation
(,!

K

) ✓ (C
K

⇥Var)⇥(C
K

⇥Var) links the vertices in C
K

⇥Var

according to the specification below:

((c,), x) ,!
K

((c0,0), x0) iff
8
<

:

(c,) !
K

(c0,0) ^ x = x

0 (cmd(c0) = skip)
(c,) !

K

(c0,0) ^ x = x

0 (y 6= x

0)
(c,) !

K

(c0,0) ^ x 2 var(e) (y = x

0)

(where cmd(c0) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (,!†

K

) ✓ ⇥⇥⇥:

Definition 4 (,!†
K

). The reachability relation (,!†
K

) ✓ ⇥ ⇥ ⇥
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ,!†
K

(c0, x0) i↵
9,0

. (◆, ✏) !⇤
K

(c,) ^ ((c,), x) ,!⇤
K

((c0,0), x0).

We use the tabulation algorithm in [14] for computing (,!†
K

).
While computing (,!†

K

), the algorithm also collects the set C of
reachable nodes: C = {c | 9. (◆, ✏) !⇤

K

(c,)}.
Third, our algorithm computes a set ⇥

v

of generators for each
abstract value v in V. Generators for v are vertices in ⇥ whose
commands join v in their abstract semantics:

⇥
v

= {(c, x) | cmd(c) = x := e ^ const(e) = v}
[(if (v = >

v

) then {(◆, x) | x 2 Var} else {})

Finally, using (,!†
K

) and ⇥
v

, the algorithm constructs PA
K

:

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

8s 2 S, s] 2 S]

. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y 2 D and X

]

, Y

] 2 D],

(X 2 �(X]) ^ Y 2 �(Y])) =) X

`
Y 2 �(X] t Y

]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M 2 D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K1). Let P 2 D]

be the pre-analysis result, i.e., the least solution of (6). Then,
8c 2 C, 2 C⇤

c

. M(c,) 2 �(P (c,)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ? or functions from program variables
to abstract values: S] = {?} [(Var ! V), where V is a finite
complete lattice (V,v

v

,?
v

,>
v

,t
v

,u
v

). An initial abstract
state is s]

I

= �x.>
v

.
2. The abstract semantics of primitive commands has a simple

form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =
⇢

s[x 7! JeK](s)] (s 6= ?)
? (s = ?)

where JeK] has the following form: for every s 6= ?,

JeK](s) = s(x1) t . . . t s(x
n

) t v

for some variables x1, . . . , xn

and an abstract value v 2 V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn

}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K1.

1. Let V = {?
v

,F,>
v

} be a lattice such that ?
v

v
v

F v
v

>
v

.

Define the function �

v

: {?
v

,F,>
v

} ! }(I) as follows:

�

v

(>
v

) = I, �

v

(F) = {[a, b] 2 I | 0 a}, �

v

(?
v

) = ;
This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {?}[(Var !
V). The meaning of abstract states in S] is given by � such that
�(?) = {?} and, for s] 6= ?,

�(s]) = {s 2 S | s = ? _ 8x 2 Var. s(x) 2 �

v

(s](x))}.

3. Initial abstract state: s]
I

= > = �x.>
v

.

4. Abstract evaluation JeK] of expression e: for every s 6= ?,

JnK(s)= ite(n � 0,F,>
v

), Je1 + e2K(s)= Je1K(s)tv

Je2K(s)
JxK(s)= s(x), Je1 � e2K(s)= >

v

The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >

v

. Observe that the + operator is inter-
preted as the least upper bound t

v

, so that e1+e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >

v

.

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [2, 14])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [14]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [14]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K1.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (⇥, ,!) defined as follows:

⇥ = C⇥ Var, (,!) ✓ ⇥⇥⇥

The node set consists of pairs of program nodes and variables, and
(,!) is the edge relation between the nodes.

Definition 2 (,!). The value-flow relation (,!) ✓ (C ⇥ Var) ⇥
(C⇥Var) links the vertices in ⇥ based on how values of variables
flow to other variables in each primitive command:

(c, x) ,! (c0, x0) iff
8
<

:

c ! c

0 ^ x = x

0 (cmd(c0) = skip)
c ! c

0 ^ x = x

0 (cmd(c0) = y := e ^ y 6= x

0)
c ! c

0 ^ x 2 var(e) (cmd(c0) = y := e ^ y = x

0)

We can extend the ,! to its context-enriched version ,!
K

:

Definition 3 (,!
K

). The context-enriched value-flow relation
(,!

K

) ✓ (C
K

⇥Var)⇥(C
K

⇥Var) links the vertices in C
K

⇥Var

according to the specification below:

((c,), x) ,!
K

((c0,0), x0) iff
8
<

:

(c,) !
K

(c0,0) ^ x = x

0 (cmd(c0) = skip)
(c,) !

K

(c0,0) ^ x = x

0 (y 6= x

0)
(c,) !

K

(c0,0) ^ x 2 var(e) (y = x

0)

(where cmd(c0) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (,!†

K

) ✓ ⇥⇥⇥:

Definition 4 (,!†
K

). The reachability relation (,!†
K

) ✓ ⇥ ⇥ ⇥
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ,!†
K

(c0, x0) i↵
9,0

. (◆, ✏) !⇤
K

(c,) ^ ((c,), x) ,!⇤
K

((c0,0), x0).

We use the tabulation algorithm in [14] for computing (,!†
K

).
While computing (,!†

K

), the algorithm also collects the set C of
reachable nodes: C = {c | 9. (◆, ✏) !⇤

K

(c,)}.
Third, our algorithm computes a set ⇥

v

of generators for each
abstract value v in V. Generators for v are vertices in ⇥ whose
commands join v in their abstract semantics:

⇥
v

= {(c, x) | cmd(c) = x := e ^ const(e) = v}
[(if (v = >

v

) then {(◆, x) | x 2 Var} else {})

Finally, using (,!†
K

) and ⇥
v

, the algorithm constructs PA
K

:

Reachability-based Algorithm

45

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

8s 2 S, s] 2 S]

. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y 2 D and X

]

, Y

] 2 D],

(X 2 �(X]) ^ Y 2 �(Y])) =) X

`
Y 2 �(X] t Y

]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M 2 D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K1). Let P 2 D]

be the pre-analysis result, i.e., the least solution of (6). Then,
8c 2 C, 2 C⇤

c

. M(c,) 2 �(P (c,)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ? or functions from program variables
to abstract values: S] = {?} [(Var ! V), where V is a finite
complete lattice (V,v

v

,?
v

,>
v

,t
v

,u
v

). An initial abstract
state is s]

I

= �x.>
v

.
2. The abstract semantics of primitive commands has a simple

form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =
⇢

s[x 7! JeK](s)] (s 6= ?)
? (s = ?)

where JeK] has the following form: for every s 6= ?,

JeK](s) = s(x1) t . . . t s(x
n

) t v

for some variables x1, . . . , xn

and an abstract value v 2 V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn

}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K1.

1. Let V = {?
v

,F,>
v

} be a lattice such that ?
v

v
v

F v
v

>
v

.

Define the function �

v

: {?
v

,F,>
v

} ! }(I) as follows:

�

v

(>
v

) = I, �

v

(F) = {[a, b] 2 I | 0 a}, �

v

(?
v

) = ;
This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {?}[(Var !
V). The meaning of abstract states in S] is given by � such that
�(?) = {?} and, for s] 6= ?,

�(s]) = {s 2 S | s = ? _ 8x 2 Var. s(x) 2 �

v

(s](x))}.

3. Initial abstract state: s]
I

= > = �x.>
v

.

4. Abstract evaluation JeK] of expression e: for every s 6= ?,

JnK(s)= ite(n � 0,F,>
v

), Je1 + e2K(s)= Je1K(s)tv

Je2K(s)
JxK(s)= s(x), Je1 � e2K(s)= >

v

The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >

v

. Observe that the + operator is inter-
preted as the least upper bound t

v

, so that e1+e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >

v

.

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [2, 14])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [14]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [14]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K1.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (⇥, ,!) defined as follows:

⇥ = C⇥ Var, (,!) ✓ ⇥⇥⇥

The node set consists of pairs of program nodes and variables, and
(,!) is the edge relation between the nodes.

Definition 2 (,!). The value-flow relation (,!) ✓ (C ⇥ Var) ⇥
(C⇥Var) links the vertices in ⇥ based on how values of variables
flow to other variables in each primitive command:

(c, x) ,! (c0, x0) iff
8
<

:

c ! c

0 ^ x = x

0 (cmd(c0) = skip)
c ! c

0 ^ x = x

0 (cmd(c0) = y := e ^ y 6= x

0)
c ! c

0 ^ x 2 var(e) (cmd(c0) = y := e ^ y = x

0)

We can extend the ,! to its context-enriched version ,!
K

:

Definition 3 (,!
K

). The context-enriched value-flow relation
(,!

K

) ✓ (C
K

⇥Var)⇥(C
K

⇥Var) links the vertices in C
K

⇥Var

according to the specification below:

((c,), x) ,!
K

((c0,0), x0) iff
8
<

:

(c,) !
K

(c0,0) ^ x = x

0 (cmd(c0) = skip)
(c,) !

K

(c0,0) ^ x = x

0 (y 6= x

0)
(c,) !

K

(c0,0) ^ x 2 var(e) (y = x

0)

(where cmd(c0) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (,!†

K

) ✓ ⇥⇥⇥:

Definition 4 (,!†
K

). The reachability relation (,!†
K

) ✓ ⇥ ⇥ ⇥
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ,!†
K

(c0, x0) i↵
9,0

. (◆, ✏) !⇤
K

(c,) ^ ((c,), x) ,!⇤
K

((c0,0), x0).

We use the tabulation algorithm in [14] for computing (,!†
K

).
While computing (,!†

K

), the algorithm also collects the set C of
reachable nodes: C = {c | 9. (◆, ✏) !⇤

K

(c,)}.
Third, our algorithm computes a set ⇥

v

of generators for each
abstract value v in V. Generators for v are vertices in ⇥ whose
commands join v in their abstract semantics:

⇥
v

= {(c, x) | cmd(c) = x := e ^ const(e) = v}
[(if (v = >

v

) then {(◆, x) | x 2 Var} else {})

Finally, using (,!†
K

) and ⇥
v

, the algorithm constructs PA
K

:

• Value-flow graph:

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

8s 2 S, s] 2 S]

. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y 2 D and X

]

, Y

] 2 D],

(X 2 �(X]) ^ Y 2 �(Y])) =) X

`
Y 2 �(X] t Y

]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M 2 D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K1). Let P 2 D]

be the pre-analysis result, i.e., the least solution of (6). Then,
8c 2 C, 2 C⇤

c

. M(c,) 2 �(P (c,)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ? or functions from program variables
to abstract values: S] = {?} [(Var ! V), where V is a finite
complete lattice (V,v

v

,?
v

,>
v

,t
v

,u
v

). An initial abstract
state is s]

I

= �x.>
v

.
2. The abstract semantics of primitive commands has a simple

form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =
⇢

s[x 7! JeK](s)] (s 6= ?)
? (s = ?)

where JeK] has the following form: for every s 6= ?,

JeK](s) = s(x1) t . . . t s(x
n

) t v

for some variables x1, . . . , xn

and an abstract value v 2 V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn

}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K1.

1. Let V = {?
v

,F,>
v

} be a lattice such that ?
v

v
v

F v
v

>
v

.

Define the function �

v

: {?
v

,F,>
v

} ! }(I) as follows:

�

v

(>
v

) = I, �

v

(F) = {[a, b] 2 I | 0 a}, �

v

(?
v

) = ;
This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {?}[(Var !
V). The meaning of abstract states in S] is given by � such that
�(?) = {?} and, for s] 6= ?,

�(s]) = {s 2 S | s = ? _ 8x 2 Var. s(x) 2 �

v

(s](x))}.

3. Initial abstract state: s]
I

= > = �x.>
v

.

4. Abstract evaluation JeK] of expression e: for every s 6= ?,

JnK(s)= ite(n � 0,F,>
v

), Je1 + e2K(s)= Je1K(s)tv

Je2K(s)
JxK(s)= s(x), Je1 � e2K(s)= >

v

The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >

v

. Observe that the + operator is inter-
preted as the least upper bound t

v

, so that e1+e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >

v

.

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [2, 14])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [14]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [14]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K1.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (⇥, ,!) defined as follows:

⇥ = C⇥ Var, (,!) ✓ ⇥⇥⇥

The node set consists of pairs of program nodes and variables, and
(,!) is the edge relation between the nodes.

Definition 2 (,!). The value-flow relation (,!) ✓ (C ⇥ Var) ⇥
(C⇥Var) links the vertices in ⇥ based on how values of variables
flow to other variables in each primitive command:

(c, x) ,! (c0, x0) iff
8
<

:

c ! c

0 ^ x = x

0 (cmd(c0) = skip)
c ! c

0 ^ x = x

0 (cmd(c0) = y := e ^ y 6= x

0)
c ! c

0 ^ x 2 var(e) (cmd(c0) = y := e ^ y = x

0)

We can extend the ,! to its context-enriched version ,!
K

:

Definition 3 (,!
K

). The context-enriched value-flow relation
(,!

K

) ✓ (C
K

⇥Var)⇥(C
K

⇥Var) links the vertices in C
K

⇥Var

according to the specification below:

((c,), x) ,!
K

((c0,0), x0) iff
8
<

:

(c,) !
K

(c0,0) ^ x = x

0 (cmd(c0) = skip)
(c,) !

K

(c0,0) ^ x = x

0 (y 6= x

0)
(c,) !

K

(c0,0) ^ x 2 var(e) (y = x

0)

(where cmd(c0) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (,!†

K

) ✓ ⇥⇥⇥:

Definition 4 (,!†
K

). The reachability relation (,!†
K

) ✓ ⇥ ⇥ ⇥
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ,!†
K

(c0, x0) i↵
9,0

. (◆, ✏) !⇤
K

(c,) ^ ((c,), x) ,!⇤
K

((c0,0), x0).

We use the tabulation algorithm in [14] for computing (,!†
K

).
While computing (,!†

K

), the algorithm also collects the set C of
reachable nodes: C = {c | 9. (◆, ✏) !⇤

K

(c,)}.
Third, our algorithm computes a set ⇥

v

of generators for each
abstract value v in V. Generators for v are vertices in ⇥ whose
commands join v in their abstract semantics:

⇥
v

= {(c, x) | cmd(c) = x := e ^ const(e) = v}
[(if (v = >

v

) then {(◆, x) | x 2 Var} else {})

Finally, using (,!†
K

) and ⇥
v

, the algorithm constructs PA
K

:

Reachability-based Algorithm

46

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

8s 2 S, s] 2 S]

. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y 2 D and X

]

, Y

] 2 D],

(X 2 �(X]) ^ Y 2 �(Y])) =) X

`
Y 2 �(X] t Y

]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M 2 D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K1). Let P 2 D]

be the pre-analysis result, i.e., the least solution of (6). Then,
8c 2 C, 2 C⇤

c

. M(c,) 2 �(P (c,)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ? or functions from program variables
to abstract values: S] = {?} [(Var ! V), where V is a finite
complete lattice (V,v

v

,?
v

,>
v

,t
v

,u
v

). An initial abstract
state is s]

I

= �x.>
v

.
2. The abstract semantics of primitive commands has a simple

form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =
⇢

s[x 7! JeK](s)] (s 6= ?)
? (s = ?)

where JeK] has the following form: for every s 6= ?,

JeK](s) = s(x1) t . . . t s(x
n

) t v

for some variables x1, . . . , xn

and an abstract value v 2 V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn

}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K1.

1. Let V = {?
v

,F,>
v

} be a lattice such that ?
v

v
v

F v
v

>
v

.

Define the function �

v

: {?
v

,F,>
v

} ! }(I) as follows:

�

v

(>
v

) = I, �

v

(F) = {[a, b] 2 I | 0 a}, �

v

(?
v

) = ;
This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {?}[(Var !
V). The meaning of abstract states in S] is given by � such that
�(?) = {?} and, for s] 6= ?,

�(s]) = {s 2 S | s = ? _ 8x 2 Var. s(x) 2 �

v

(s](x))}.

3. Initial abstract state: s]
I

= > = �x.>
v

.

4. Abstract evaluation JeK] of expression e: for every s 6= ?,

JnK(s)= ite(n � 0,F,>
v

), Je1 + e2K(s)= Je1K(s)tv

Je2K(s)
JxK(s)= s(x), Je1 � e2K(s)= >

v

The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >

v

. Observe that the + operator is inter-
preted as the least upper bound t

v

, so that e1+e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >

v

.

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [2, 14])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [14]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [14]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K1.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (⇥, ,!) defined as follows:

⇥ = C⇥ Var, (,!) ✓ ⇥⇥⇥

The node set consists of pairs of program nodes and variables, and
(,!) is the edge relation between the nodes.

Definition 2 (,!). The value-flow relation (,!) ✓ (C ⇥ Var) ⇥
(C⇥Var) links the vertices in ⇥ based on how values of variables
flow to other variables in each primitive command:

(c, x) ,! (c0, x0) iff
8
<

:

c ! c

0 ^ x = x

0 (cmd(c0) = skip)
c ! c

0 ^ x = x

0 (cmd(c0) = y := e ^ y 6= x

0)
c ! c

0 ^ x 2 var(e) (cmd(c0) = y := e ^ y = x

0)

We can extend the ,! to its context-enriched version ,!
K

:

Definition 3 (,!
K

). The context-enriched value-flow relation
(,!

K

) ✓ (C
K

⇥Var)⇥(C
K

⇥Var) links the vertices in C
K

⇥Var

according to the specification below:

((c,), x) ,!
K

((c0,0), x0) iff
8
<

:

(c,) !
K

(c0,0) ^ x = x

0 (cmd(c0) = skip)
(c,) !

K

(c0,0) ^ x = x

0 (y 6= x

0)
(c,) !

K

(c0,0) ^ x 2 var(e) (y = x

0)

(where cmd(c0) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (,!†

K

) ✓ ⇥⇥⇥:

Definition 4 (,!†
K

). The reachability relation (,!†
K

) ✓ ⇥ ⇥ ⇥
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ,!†
K

(c0, x0) i↵
9,0

. (◆, ✏) !⇤
K

(c,) ^ ((c,), x) ,!⇤
K

((c0,0), x0).

We use the tabulation algorithm in [14] for computing (,!†
K

).
While computing (,!†

K

), the algorithm also collects the set C of
reachable nodes: C = {c | 9. (◆, ✏) !⇤

K

(c,)}.
Third, our algorithm computes a set ⇥

v

of generators for each
abstract value v in V. Generators for v are vertices in ⇥ whose
commands join v in their abstract semantics:

⇥
v

= {(c, x) | cmd(c) = x := e ^ const(e) = v}
[(if (v = >

v

) then {(◆, x) | x 2 Var} else {})

Finally, using (,!†
K

) and ⇥
v

, the algorithm constructs PA
K

:

Reachability-based Algorithm

47

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

8s 2 S, s] 2 S]

. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y 2 D and X

]

, Y

] 2 D],

(X 2 �(X]) ^ Y 2 �(Y])) =) X

`
Y 2 �(X] t Y

]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M 2 D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K1). Let P 2 D]

be the pre-analysis result, i.e., the least solution of (6). Then,
8c 2 C, 2 C⇤

c

. M(c,) 2 �(P (c,)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ? or functions from program variables
to abstract values: S] = {?} [(Var ! V), where V is a finite
complete lattice (V,v

v

,?
v

,>
v

,t
v

,u
v

). An initial abstract
state is s]

I

= �x.>
v

.
2. The abstract semantics of primitive commands has a simple

form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =
⇢

s[x 7! JeK](s)] (s 6= ?)
? (s = ?)

where JeK] has the following form: for every s 6= ?,

JeK](s) = s(x1) t . . . t s(x
n

) t v

for some variables x1, . . . , xn

and an abstract value v 2 V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn

}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K1.

1. Let V = {?
v

,F,>
v

} be a lattice such that ?
v

v
v

F v
v

>
v

.

Define the function �

v

: {?
v

,F,>
v

} ! }(I) as follows:

�

v

(>
v

) = I, �

v

(F) = {[a, b] 2 I | 0 a}, �

v

(?
v

) = ;
This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {?}[(Var !
V). The meaning of abstract states in S] is given by � such that
�(?) = {?} and, for s] 6= ?,

�(s]) = {s 2 S | s = ? _ 8x 2 Var. s(x) 2 �

v

(s](x))}.

3. Initial abstract state: s]
I

= > = �x.>
v

.

4. Abstract evaluation JeK] of expression e: for every s 6= ?,

JnK(s)= ite(n � 0,F,>
v

), Je1 + e2K(s)= Je1K(s)tv

Je2K(s)
JxK(s)= s(x), Je1 � e2K(s)= >

v

The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >

v

. Observe that the + operator is inter-
preted as the least upper bound t

v

, so that e1+e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >

v

.

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [2, 14])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [14]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [14]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K1.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (⇥, ,!) defined as follows:

⇥ = C⇥ Var, (,!) ✓ ⇥⇥⇥

The node set consists of pairs of program nodes and variables, and
(,!) is the edge relation between the nodes.

Definition 2 (,!). The value-flow relation (,!) ✓ (C ⇥ Var) ⇥
(C⇥Var) links the vertices in ⇥ based on how values of variables
flow to other variables in each primitive command:

(c, x) ,! (c0, x0) iff
8
<

:

c ! c

0 ^ x = x

0 (cmd(c0) = skip)
c ! c

0 ^ x = x

0 (cmd(c0) = y := e ^ y 6= x

0)
c ! c

0 ^ x 2 var(e) (cmd(c0) = y := e ^ y = x

0)

We can extend the ,! to its context-enriched version ,!
K

:

Definition 3 (,!
K

). The context-enriched value-flow relation
(,!

K

) ✓ (C
K

⇥Var)⇥(C
K

⇥Var) links the vertices in C
K

⇥Var

according to the specification below:

((c,), x) ,!
K

((c0,0), x0) iff
8
<

:

(c,) !
K

(c0,0) ^ x = x

0 (cmd(c0) = skip)
(c,) !

K

(c0,0) ^ x = x

0 (y 6= x

0)
(c,) !

K

(c0,0) ^ x 2 var(e) (y = x

0)

(where cmd(c0) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (,!†

K

) ✓ ⇥⇥⇥:

Definition 4 (,!†
K

). The reachability relation (,!†
K

) ✓ ⇥ ⇥ ⇥
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ,!†
K

(c0, x0) i↵
9,0

. (◆, ✏) !⇤
K

(c,) ^ ((c,), x) ,!⇤
K

((c0,0), x0).

We use the tabulation algorithm in [14] for computing (,!†
K

).
While computing (,!†

K

), the algorithm also collects the set C of
reachable nodes: C = {c | 9. (◆, ✏) !⇤

K

(c,)}.
Third, our algorithm computes a set ⇥

v

of generators for each
abstract value v in V. Generators for v are vertices in ⇥ whose
commands join v in their abstract semantics:

⇥
v

= {(c, x) | cmd(c) = x := e ^ const(e) = v}
[(if (v = >

v

) then {(◆, x) | x 2 Var} else {})

Finally, using (,!†
K

) and ⇥
v

, the algorithm constructs PA
K

:

Reachability-based Algorithm

48

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

8s 2 S, s] 2 S]

. s 2 �(s]) =) JcmdK(s) 2 �(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y 2 D and X

]

, Y

] 2 D],

(X 2 �(X]) ^ Y 2 �(Y])) =) X

`
Y 2 �(X] t Y

]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M 2 D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K1). Let P 2 D]

be the pre-analysis result, i.e., the least solution of (6). Then,
8c 2 C, 2 C⇤

c

. M(c,) 2 �(P (c,)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ? or functions from program variables
to abstract values: S] = {?} [(Var ! V), where V is a finite
complete lattice (V,v

v

,?
v

,>
v

,t
v

,u
v

). An initial abstract
state is s]

I

= �x.>
v

.
2. The abstract semantics of primitive commands has a simple

form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =
⇢

s[x 7! JeK](s)] (s 6= ?)
? (s = ?)

where JeK] has the following form: for every s 6= ?,

JeK](s) = s(x1) t . . . t s(x
n

) t v

for some variables x1, . . . , xn

and an abstract value v 2 V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn

}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K1.

1. Let V = {?
v

,F,>
v

} be a lattice such that ?
v

v
v

F v
v

>
v

.

Define the function �

v

: {?
v

,F,>
v

} ! }(I) as follows:

�

v

(>
v

) = I, �

v

(F) = {[a, b] 2 I | 0 a}, �

v

(?
v

) = ;
This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {?}[(Var !
V). The meaning of abstract states in S] is given by � such that
�(?) = {?} and, for s] 6= ?,

�(s]) = {s 2 S | s = ? _ 8x 2 Var. s(x) 2 �

v

(s](x))}.

3. Initial abstract state: s]
I

= > = �x.>
v

.

4. Abstract evaluation JeK] of expression e: for every s 6= ?,

JnK(s)= ite(n � 0,F,>
v

), Je1 + e2K(s)= Je1K(s)tv

Je2K(s)
JxK(s)= s(x), Je1 � e2K(s)= >

v

The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >

v

. Observe that the + operator is inter-
preted as the least upper bound t

v

, so that e1+e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >

v

.

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [2, 14])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [14]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [14]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K1.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (⇥, ,!) defined as follows:

⇥ = C⇥ Var, (,!) ✓ ⇥⇥⇥

The node set consists of pairs of program nodes and variables, and
(,!) is the edge relation between the nodes.

Definition 2 (,!). The value-flow relation (,!) ✓ (C ⇥ Var) ⇥
(C⇥Var) links the vertices in ⇥ based on how values of variables
flow to other variables in each primitive command:

(c, x) ,! (c0, x0) iff
8
<

:

c ! c

0 ^ x = x

0 (cmd(c0) = skip)
c ! c

0 ^ x = x

0 (cmd(c0) = y := e ^ y 6= x

0)
c ! c

0 ^ x 2 var(e) (cmd(c0) = y := e ^ y = x

0)

We can extend the ,! to its context-enriched version ,!
K

:

Definition 3 (,!
K

). The context-enriched value-flow relation
(,!

K

) ✓ (C
K

⇥Var)⇥(C
K

⇥Var) links the vertices in C
K

⇥Var

according to the specification below:

((c,), x) ,!
K

((c0,0), x0) iff
8
<

:

(c,) !
K

(c0,0) ^ x = x

0 (cmd(c0) = skip)
(c,) !

K

(c0,0) ^ x = x

0 (y 6= x

0)
(c,) !

K

(c0,0) ^ x 2 var(e) (y = x

0)

(where cmd(c0) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (,!†

K

) ✓ ⇥⇥⇥:

Definition 4 (,!†
K

). The reachability relation (,!†
K

) ✓ ⇥ ⇥ ⇥
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ,!†
K

(c0, x0) i↵
9,0

. (◆, ✏) !⇤
K

(c,) ^ ((c,), x) ,!⇤
K

((c0,0), x0).

We use the tabulation algorithm in [14] for computing (,!†
K

).
While computing (,!†

K

), the algorithm also collects the set C of
reachable nodes: C = {c | 9. (◆, ✏) !⇤

K

(c,)}.
Third, our algorithm computes a set ⇥

v

of generators for each
abstract value v in V. Generators for v are vertices in ⇥ whose
commands join v in their abstract semantics:

⇥
v

= {(c, x) | cmd(c) = x := e ^ const(e) = v}
[(if (v = >

v

) then {(◆, x) | x 2 Var} else {})

Finally, using (,!†
K

) and ⇥
v

, the algorithm constructs PA
K

:Definition 5 (PA
K

). PA

K

2 C ! S] is defined as follows:

PA

K

(c)= if (c 62 C) then ?
else �x.

F
{v 2 V |9(c0, x0)2⇥

v

.(c0, x0) ,!†
K

(c, x)}.
Then, PA

K

is the solution of our pre-analysis:

Lemma 2. Let X be the least solution satisfying (6). Then,
PA

K

(c) =
F

2C⇤ X(c,).

Our reachability-based algorithm is |V|3-times faster in the
worst case than the RHS algorithm [14]. The algorithm in [14]
works on a graph with the following set of vertices:

⇥0={(c, s) | c 2 C ^ s 6= ? ^ (9x.8y.y 6= x =) s(y) = ?
v

)}

Note that the set ⇥0 is |V|-times larger than set ⇥ used in our
algorithm and the worst-case time complexity is cubic on the size
of the underlying graph [14].

5.2 Use of the Pre-Analysis Results
Using the pre-analysis results, we select queries that are likely to
benefit from the increased context-sensitivity of the main analy-
sis. Also, we collect calling contexts that are worth being distin-
guished during the main analysis. The collected contexts are used
to construct a context selector K (Definition 10), which instructs
how much context-sensitivity the main analysis should use for each
procedure call. This main analysis with K is guaranteed to benefit
from the increased context-sensitivity (Proposition 1).

Query selection We first select queries that can benefit from in-
creased context-sensitivity. Among given queries Q ✓ C⇥S⇥Var

about the given program, we select the following ones:

Q]={(c, x) 2 (C⇥ Var) | 9s 2 S.
(c, s, x) 2 Q ^ 8s0 2 �(PA

K1(c)). s t s

0 6= >} (7)

where PA
K1 : C ! S] is the pre-analysis result. The first conjunct

says that (c, x) 2 Q] comes from some query (c, s, x) 2 Q, and
the second conjunct expresses that according to the pre-analysis re-
sult, the main analysis does not lose too much information regard-
ing this query. For instance, consider the case of interval analysis.
In this case, we are usually interested in checking an assertion like
1 x at c, which corresponds to a query (c, s, x) with the abstract
state s = (�z. if (x = z) then [1,1] else >). Then, the second
conjunct in (7) becomes equivalent to PA

K1(c)(x) v F. That
is, we select the query only when the pre-analysis estimates that
the variable x will have at least a non-negative interval in the main
analysis. In the rest of this section, we assume for brevity that there
is only one selected query (c

q

, x

q

) 2 Q] in the program.

Building a context selector Next, we construct a context selector
K : F ! }(C⇤

c

). K is to answer which calling contexts the main
analysis should distinguish in order to achieve most of the benefits
of context sensitivity on the given query (c

q

, x

q

). Our construction
considers the following proxy of this goal: which contexts should
the pre-analysis distinguish to achieve the same precision on the
selected query (c

q

, x

q

) as in the case of the full context-sensitivity?
In this subsection, we will define a context selector K (Definition
10) that answers this question (Proposition 1).

We construct K in two steps. Before giving our construction, we
remind the reader that the impact pre-analysis works on the value-
flow graph (⇥, ,!) of the program and computes the reachability
relation (,!†

K1
) ✓ ⇥⇥⇥ over the interprocedurally-valid paths.

The first step is to build a program slice that includes all
the dependencies of the query (c

q

, x

q

). A query (c
q

, x

q

) de-
pends on a vertex (c, x) in the value-flow graph if there exists
an interprocedurally-valid path between (c, x) and (c

q

, x

q

) on the
graph (i.e., (c, x) ,!†

K1
(c

q

, x

q

)). Tracing the dependency back-

CFG

1
x = 1

2
call f

3
y = x

4
call g

5
z = y+1

6
z > 0?

7
y = 10

8
call g

m

f

g

h

Calling
Contexts

0 2·0 {4·2·0, 8·1} 1

Context
Selector K = {m 7! ✏, f 7! {2, ✏}, g 7! {4·2, 8}, h 7! ✏}

Figure 2. Example context selector. Gray and black nodes in CFG
are source and query points, respectively.

wards from the query eventually hits vertices with no predecessors.
We call such vertices sources and denote their set by �:

Definition 6 (�). Sources � are vertices in ⇥ where dependencies
begin: � = {(c0, x0) 2 ⇥ | ¬(9(c, x) 2 ⇥. (c, x) ,! (c0, x0))}.
We compute the set �(cq ,xq) of sources on which the query (c

q

, x

q

)
depends:

Definition 7 (�(cq ,xq)). Sources on which the query (c
q

, x

q

) de-
pends: �(cq ,xq) = {(c0, x0) 2 � | (c0, x0) ,!†

K1
(c

q

, x

q

)}.
Example 4. Consider the control flow graph in Figure 2. Node
6 denotes the query point, i.e., (c

q

, x

q

) = (6, z). The gray nodes
represent the sources on which the query depends, i.e., �(6,z) =
{(1, x), (7, y)}.

For a source (c0, x0) 2 �(cq ,xq) and an initial context 0 such that
(◆, ✏) !⇤

K1 (c0,0), the following interprocedurally-valid path

((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

) (8)

represents a dependency path for the query (c
q

, x

q

). We denote the
set of all dependency paths for the query by Paths(cq ,xq):

Definition 8 (Paths(cq ,xq)). The set of all dependency paths for
the query (c

q

, x

q

) is defined as follows:

Paths(cq ,xq) = {((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

)
| (c0, x0) 2 �(cq ,xq) ^ (◆, ✏) !⇤

K1 (c0,0)}.
Paths(cq ,xq) is the program slice we intend to construct in this step.

Example 5. In Figure 2, suppose that 0 and 1 are the initial
contexts of procedures m and h, respectively. For source (1, x), we
find the following dependency path to the query (6, z):
p1 = ((1,0), x) ,!

K1 ((2,0), x) ,!
K1 ((3, 2 · 0), y)

,!
K1((4, 2 · 0), y) ,!

K1((5, 4 · 2 · 0), z) ,!
K1((6, 4 · 2 · 0), z)

and, for source (7, y), we find the following path to (6, z):
p2 = ((7,1), y) ,!

K1 ((8,1), y) ,!
K1 ((5, 8 · 1), z)

,!
K1 ((6, 8 · 1), z).

Then, Paths(6,z) = {p1, p2}.

The next step is to compute calling contexts that should be
treated precisely. Consider a dependency path from Paths(cq ,xq):

((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

) (9)

where 0,1, . . . ,q

are the calling contexts appeared in the (fully
context-sensitive) pre-analysis. Instead, we are interested in partial

Query Selection

49

• in our case,

• select queries for which the analysis does not lose
too much information

Definition 5 (PA
K

). PA

K

2 C ! S] is defined as follows:

PA

K

(c)= if (c 62 C) then ?
else �x.

F
{v 2 V |9(c0, x0)2⇥

v

.(c0, x0) ,!†
K

(c, x)}.
Then, PA

K

is the solution of our pre-analysis:

Lemma 2. Let X be the least solution satisfying (6). Then,
PA

K

(c) =
F

2C⇤ X(c,).

Our reachability-based algorithm is |V|3-times faster in the
worst case than the RHS algorithm [14]. The algorithm in [14]
works on a graph with the following set of vertices:

⇥0={(c, s) | c 2 C ^ s 6= ? ^ (9x.8y.y 6= x =) s(y) = ?
v

)}

Note that the set ⇥0 is |V|-times larger than set ⇥ used in our
algorithm and the worst-case time complexity is cubic on the size
of the underlying graph [14].

5.2 Use of the Pre-Analysis Results
Using the pre-analysis results, we select queries that are likely to
benefit from the increased context-sensitivity of the main analy-
sis. Also, we collect calling contexts that are worth being distin-
guished during the main analysis. The collected contexts are used
to construct a context selector K (Definition 10), which instructs
how much context-sensitivity the main analysis should use for each
procedure call. This main analysis with K is guaranteed to benefit
from the increased context-sensitivity (Proposition 1).

Query selection We first select queries that can benefit from in-
creased context-sensitivity. Among given queries Q ✓ C⇥S⇥Var

about the given program, we select the following ones:

Q]={(c, x) 2 (C⇥ Var) | 9s 2 S.
(c, s, x) 2 Q ^ 8s0 2 �(PA

K1(c)). s t s

0 6= >} (7)

where PA
K1 : C ! S] is the pre-analysis result. The first conjunct

says that (c, x) 2 Q] comes from some query (c, s, x) 2 Q, and
the second conjunct expresses that according to the pre-analysis re-
sult, the main analysis does not lose too much information regard-
ing this query. For instance, consider the case of interval analysis.
In this case, we are usually interested in checking an assertion like
1 x at c, which corresponds to a query (c, s, x) with the abstract
state s = (�z. if (x = z) then [1,1] else >). Then, the second
conjunct in (7) becomes equivalent to PA

K1(c)(x) v F. That
is, we select the query only when the pre-analysis estimates that
the variable x will have at least a non-negative interval in the main
analysis. In the rest of this section, we assume for brevity that there
is only one selected query (c

q

, x

q

) 2 Q] in the program.

Building a context selector Next, we construct a context selector
K : F ! }(C⇤

c

). K is to answer which calling contexts the main
analysis should distinguish in order to achieve most of the benefits
of context sensitivity on the given query (c

q

, x

q

). Our construction
considers the following proxy of this goal: which contexts should
the pre-analysis distinguish to achieve the same precision on the
selected query (c

q

, x

q

) as in the case of the full context-sensitivity?
In this subsection, we will define a context selector K (Definition
10) that answers this question (Proposition 1).

We construct K in two steps. Before giving our construction, we
remind the reader that the impact pre-analysis works on the value-
flow graph (⇥, ,!) of the program and computes the reachability
relation (,!†

K1
) ✓ ⇥⇥⇥ over the interprocedurally-valid paths.

The first step is to build a program slice that includes all
the dependencies of the query (c

q

, x

q

). A query (c
q

, x

q

) de-
pends on a vertex (c, x) in the value-flow graph if there exists
an interprocedurally-valid path between (c, x) and (c

q

, x

q

) on the
graph (i.e., (c, x) ,!†

K1
(c

q

, x

q

)). Tracing the dependency back-

CFG

1
x = 1

2
call f

3
y = x

4
call g

5
z = y+1

6
z > 0?

7
y = 10

8
call g

m

f

g

h

Calling
Contexts

0 2·0 {4·2·0, 8·1} 1

Context
Selector K = {m 7! ✏, f 7! {2, ✏}, g 7! {4·2, 8}, h 7! ✏}

Figure 2. Example context selector. Gray and black nodes in CFG
are source and query points, respectively.

wards from the query eventually hits vertices with no predecessors.
We call such vertices sources and denote their set by �:

Definition 6 (�). Sources � are vertices in ⇥ where dependencies
begin: � = {(c0, x0) 2 ⇥ | ¬(9(c, x) 2 ⇥. (c, x) ,! (c0, x0))}.
We compute the set �(cq ,xq) of sources on which the query (c

q

, x

q

)
depends:

Definition 7 (�(cq ,xq)). Sources on which the query (c
q

, x

q

) de-
pends: �(cq ,xq) = {(c0, x0) 2 � | (c0, x0) ,!†

K1
(c

q

, x

q

)}.
Example 4. Consider the control flow graph in Figure 2. Node
6 denotes the query point, i.e., (c

q

, x

q

) = (6, z). The gray nodes
represent the sources on which the query depends, i.e., �(6,z) =
{(1, x), (7, y)}.

For a source (c0, x0) 2 �(cq ,xq) and an initial context 0 such that
(◆, ✏) !⇤

K1 (c0,0), the following interprocedurally-valid path

((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

) (8)

represents a dependency path for the query (c
q

, x

q

). We denote the
set of all dependency paths for the query by Paths(cq ,xq):

Definition 8 (Paths(cq ,xq)). The set of all dependency paths for
the query (c

q

, x

q

) is defined as follows:

Paths(cq ,xq) = {((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

)
| (c0, x0) 2 �(cq ,xq) ^ (◆, ✏) !⇤

K1 (c0,0)}.
Paths(cq ,xq) is the program slice we intend to construct in this step.

Example 5. In Figure 2, suppose that 0 and 1 are the initial
contexts of procedures m and h, respectively. For source (1, x), we
find the following dependency path to the query (6, z):
p1 = ((1,0), x) ,!

K1 ((2,0), x) ,!
K1 ((3, 2 · 0), y)

,!
K1((4, 2 · 0), y) ,!

K1((5, 4 · 2 · 0), z) ,!
K1((6, 4 · 2 · 0), z)

and, for source (7, y), we find the following path to (6, z):
p2 = ((7,1), y) ,!

K1 ((8,1), y) ,!
K1 ((5, 8 · 1), z)

,!
K1 ((6, 8 · 1), z).

Then, Paths(6,z) = {p1, p2}.

The next step is to compute calling contexts that should be
treated precisely. Consider a dependency path from Paths(cq ,xq):

((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

) (9)

where 0,1, . . . ,q

are the calling contexts appeared in the (fully
context-sensitive) pre-analysis. Instead, we are interested in partial

Definition 5 (PA
K

). PA

K

2 C ! S] is defined as follows:

PA

K

(c)= if (c 62 C) then ?
else �x.

F
{v 2 V |9(c0, x0)2⇥

v

.(c0, x0) ,!†
K

(c, x)}.
Then, PA

K

is the solution of our pre-analysis:

Lemma 2. Let X be the least solution satisfying (6). Then,
PA

K

(c) =
F

2C⇤ X(c,).

Our reachability-based algorithm is |V|3-times faster in the
worst case than the RHS algorithm [14]. The algorithm in [14]
works on a graph with the following set of vertices:

⇥0={(c, s) | c 2 C ^ s 6= ? ^ (9x.8y.y 6= x =) s(y) = ?
v

)}

Note that the set ⇥0 is |V|-times larger than set ⇥ used in our
algorithm and the worst-case time complexity is cubic on the size
of the underlying graph [14].

5.2 Use of the Pre-Analysis Results
Using the pre-analysis results, we select queries that are likely to
benefit from the increased context-sensitivity of the main analy-
sis. Also, we collect calling contexts that are worth being distin-
guished during the main analysis. The collected contexts are used
to construct a context selector K (Definition 10), which instructs
how much context-sensitivity the main analysis should use for each
procedure call. This main analysis with K is guaranteed to benefit
from the increased context-sensitivity (Proposition 1).

Query selection We first select queries that can benefit from in-
creased context-sensitivity. Among given queries Q ✓ C⇥S⇥Var

about the given program, we select the following ones:

Q]={(c, x) 2 (C⇥ Var) | 9s 2 S.
(c, s, x) 2 Q ^ 8s0 2 �(PA

K1(c)). s t s

0 6= >} (7)

where PA
K1 : C ! S] is the pre-analysis result. The first conjunct

says that (c, x) 2 Q] comes from some query (c, s, x) 2 Q, and
the second conjunct expresses that according to the pre-analysis re-
sult, the main analysis does not lose too much information regard-
ing this query. For instance, consider the case of interval analysis.
In this case, we are usually interested in checking an assertion like
1 x at c, which corresponds to a query (c, s, x) with the abstract
state s = (�z. if (x = z) then [1,1] else >). Then, the second
conjunct in (7) becomes equivalent to PA

K1(c)(x) v F. That
is, we select the query only when the pre-analysis estimates that
the variable x will have at least a non-negative interval in the main
analysis. In the rest of this section, we assume for brevity that there
is only one selected query (c

q

, x

q

) 2 Q] in the program.

Building a context selector Next, we construct a context selector
K : F ! }(C⇤

c

). K is to answer which calling contexts the main
analysis should distinguish in order to achieve most of the benefits
of context sensitivity on the given query (c

q

, x

q

). Our construction
considers the following proxy of this goal: which contexts should
the pre-analysis distinguish to achieve the same precision on the
selected query (c

q

, x

q

) as in the case of the full context-sensitivity?
In this subsection, we will define a context selector K (Definition
10) that answers this question (Proposition 1).

We construct K in two steps. Before giving our construction, we
remind the reader that the impact pre-analysis works on the value-
flow graph (⇥, ,!) of the program and computes the reachability
relation (,!†

K1
) ✓ ⇥⇥⇥ over the interprocedurally-valid paths.

The first step is to build a program slice that includes all
the dependencies of the query (c

q

, x

q

). A query (c
q

, x

q

) de-
pends on a vertex (c, x) in the value-flow graph if there exists
an interprocedurally-valid path between (c, x) and (c

q

, x

q

) on the
graph (i.e., (c, x) ,!†

K1
(c

q

, x

q

)). Tracing the dependency back-

CFG

1
x = 1

2
call f

3
y = x

4
call g

5
z = y+1

6
z > 0?

7
y = 10

8
call g

m

f

g

h

Calling
Contexts

0 2·0 {4·2·0, 8·1} 1

Context
Selector K = {m 7! ✏, f 7! {2, ✏}, g 7! {4·2, 8}, h 7! ✏}

Figure 2. Example context selector. Gray and black nodes in CFG
are source and query points, respectively.

wards from the query eventually hits vertices with no predecessors.
We call such vertices sources and denote their set by �:

Definition 6 (�). Sources � are vertices in ⇥ where dependencies
begin: � = {(c0, x0) 2 ⇥ | ¬(9(c, x) 2 ⇥. (c, x) ,! (c0, x0))}.
We compute the set �(cq ,xq) of sources on which the query (c

q

, x

q

)
depends:

Definition 7 (�(cq ,xq)). Sources on which the query (c
q

, x

q

) de-
pends: �(cq ,xq) = {(c0, x0) 2 � | (c0, x0) ,!†

K1
(c

q

, x

q

)}.
Example 4. Consider the control flow graph in Figure 2. Node
6 denotes the query point, i.e., (c

q

, x

q

) = (6, z). The gray nodes
represent the sources on which the query depends, i.e., �(6,z) =
{(1, x), (7, y)}.

For a source (c0, x0) 2 �(cq ,xq) and an initial context 0 such that
(◆, ✏) !⇤

K1 (c0,0), the following interprocedurally-valid path

((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

) (8)

represents a dependency path for the query (c
q

, x

q

). We denote the
set of all dependency paths for the query by Paths(cq ,xq):

Definition 8 (Paths(cq ,xq)). The set of all dependency paths for
the query (c

q

, x

q

) is defined as follows:

Paths(cq ,xq) = {((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

)
| (c0, x0) 2 �(cq ,xq) ^ (◆, ✏) !⇤

K1 (c0,0)}.
Paths(cq ,xq) is the program slice we intend to construct in this step.

Example 5. In Figure 2, suppose that 0 and 1 are the initial
contexts of procedures m and h, respectively. For source (1, x), we
find the following dependency path to the query (6, z):
p1 = ((1,0), x) ,!

K1 ((2,0), x) ,!
K1 ((3, 2 · 0), y)

,!
K1((4, 2 · 0), y) ,!

K1((5, 4 · 2 · 0), z) ,!
K1((6, 4 · 2 · 0), z)

and, for source (7, y), we find the following path to (6, z):
p2 = ((7,1), y) ,!

K1 ((8,1), y) ,!
K1 ((5, 8 · 1), z)

,!
K1 ((6, 8 · 1), z).

Then, Paths(6,z) = {p1, p2}.

The next step is to compute calling contexts that should be
treated precisely. Consider a dependency path from Paths(cq ,xq):

((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

) (9)

where 0,1, . . . ,q

are the calling contexts appeared in the (fully
context-sensitive) pre-analysis. Instead, we are interested in partial

Building a Context Selector

50

Definition 5 (PA
K

). PA

K

2 C ! S] is defined as follows:

PA

K

(c)= if (c 62 C) then ?
else �x.

F
{v 2 V |9(c0, x0)2⇥

v

.(c0, x0) ,!†
K

(c, x)}.
Then, PA

K

is the solution of our pre-analysis:

Lemma 2. Let X be the least solution satisfying (6). Then,
PA

K

(c) =
F

2C⇤ X(c,).

Our reachability-based algorithm is |V|3-times faster in the
worst case than the RHS algorithm [14]. The algorithm in [14]
works on a graph with the following set of vertices:

⇥0={(c, s) | c 2 C ^ s 6= ? ^ (9x.8y.y 6= x =) s(y) = ?
v

)}

Note that the set ⇥0 is |V|-times larger than set ⇥ used in our
algorithm and the worst-case time complexity is cubic on the size
of the underlying graph [14].

5.2 Use of the Pre-Analysis Results
Using the pre-analysis results, we select queries that are likely to
benefit from the increased context-sensitivity of the main analy-
sis. Also, we collect calling contexts that are worth being distin-
guished during the main analysis. The collected contexts are used
to construct a context selector K (Definition 10), which instructs
how much context-sensitivity the main analysis should use for each
procedure call. This main analysis with K is guaranteed to benefit
from the increased context-sensitivity (Proposition 1).

Query selection We first select queries that can benefit from in-
creased context-sensitivity. Among given queries Q ✓ C⇥S⇥Var

about the given program, we select the following ones:

Q]={(c, x) 2 (C⇥ Var) | 9s 2 S.
(c, s, x) 2 Q ^ 8s0 2 �(PA

K1(c)). s t s

0 6= >} (7)

where PA
K1 : C ! S] is the pre-analysis result. The first conjunct

says that (c, x) 2 Q] comes from some query (c, s, x) 2 Q, and
the second conjunct expresses that according to the pre-analysis re-
sult, the main analysis does not lose too much information regard-
ing this query. For instance, consider the case of interval analysis.
In this case, we are usually interested in checking an assertion like
1 x at c, which corresponds to a query (c, s, x) with the abstract
state s = (�z. if (x = z) then [1,1] else >). Then, the second
conjunct in (7) becomes equivalent to PA

K1(c)(x) v F. That
is, we select the query only when the pre-analysis estimates that
the variable x will have at least a non-negative interval in the main
analysis. In the rest of this section, we assume for brevity that there
is only one selected query (c

q

, x

q

) 2 Q] in the program.

Building a context selector Next, we construct a context selector
K : F ! }(C⇤

c

). K is to answer which calling contexts the main
analysis should distinguish in order to achieve most of the benefits
of context sensitivity on the given query (c

q

, x

q

). Our construction
considers the following proxy of this goal: which contexts should
the pre-analysis distinguish to achieve the same precision on the
selected query (c

q

, x

q

) as in the case of the full context-sensitivity?
In this subsection, we will define a context selector K (Definition
10) that answers this question (Proposition 1).

We construct K in two steps. Before giving our construction, we
remind the reader that the impact pre-analysis works on the value-
flow graph (⇥, ,!) of the program and computes the reachability
relation (,!†

K1
) ✓ ⇥⇥⇥ over the interprocedurally-valid paths.

The first step is to build a program slice that includes all
the dependencies of the query (c

q

, x

q

). A query (c
q

, x

q

) de-
pends on a vertex (c, x) in the value-flow graph if there exists
an interprocedurally-valid path between (c, x) and (c

q

, x

q

) on the
graph (i.e., (c, x) ,!†

K1
(c

q

, x

q

)). Tracing the dependency back-

CFG

1
x = 1

2
call f

3
y = x

4
call g

5
z = y+1

6
z > 0?

7
y = 10

8
call g

m

f

g

h

Calling
Contexts

0 2·0 {4·2·0, 8·1} 1

Context
Selector K = {m 7! ✏, f 7! {2, ✏}, g 7! {4·2, 8}, h 7! ✏}

Figure 2. Example context selector. Gray and black nodes in CFG
are source and query points, respectively.

wards from the query eventually hits vertices with no predecessors.
We call such vertices sources and denote their set by �:

Definition 6 (�). Sources � are vertices in ⇥ where dependencies
begin: � = {(c0, x0) 2 ⇥ | ¬(9(c, x) 2 ⇥. (c, x) ,! (c0, x0))}.
We compute the set �(cq ,xq) of sources on which the query (c

q

, x

q

)
depends:

Definition 7 (�(cq ,xq)). Sources on which the query (c
q

, x

q

) de-
pends: �(cq ,xq) = {(c0, x0) 2 � | (c0, x0) ,!†

K1
(c

q

, x

q

)}.
Example 4. Consider the control flow graph in Figure 2. Node
6 denotes the query point, i.e., (c

q

, x

q

) = (6, z). The gray nodes
represent the sources on which the query depends, i.e., �(6,z) =
{(1, x), (7, y)}.

For a source (c0, x0) 2 �(cq ,xq) and an initial context 0 such that
(◆, ✏) !⇤

K1 (c0,0), the following interprocedurally-valid path

((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

) (8)

represents a dependency path for the query (c
q

, x

q

). We denote the
set of all dependency paths for the query by Paths(cq ,xq):

Definition 8 (Paths(cq ,xq)). The set of all dependency paths for
the query (c

q

, x

q

) is defined as follows:

Paths(cq ,xq) = {((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

)
| (c0, x0) 2 �(cq ,xq) ^ (◆, ✏) !⇤

K1 (c0,0)}.
Paths(cq ,xq) is the program slice we intend to construct in this step.

Example 5. In Figure 2, suppose that 0 and 1 are the initial
contexts of procedures m and h, respectively. For source (1, x), we
find the following dependency path to the query (6, z):
p1 = ((1,0), x) ,!

K1 ((2,0), x) ,!
K1 ((3, 2 · 0), y)

,!
K1((4, 2 · 0), y) ,!

K1((5, 4 · 2 · 0), z) ,!
K1((6, 4 · 2 · 0), z)

and, for source (7, y), we find the following path to (6, z):
p2 = ((7,1), y) ,!

K1 ((8,1), y) ,!
K1 ((5, 8 · 1), z)

,!
K1 ((6, 8 · 1), z).

Then, Paths(6,z) = {p1, p2}.

The next step is to compute calling contexts that should be
treated precisely. Consider a dependency path from Paths(cq ,xq):

((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

) (9)

where 0,1, . . . ,q

are the calling contexts appeared in the (fully
context-sensitive) pre-analysis. Instead, we are interested in partial

Theoretical Guarantee

51

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

Proof Sketch

52

Q

Proof Sketch

53

Observation
There exist generators that dominate the query

Q

Proof Sketch

54

Q

insensitive

sensitive

Proof Sketch

55

Q

1. All generators reach the query without losing precision

no joins

Proof Sketch

56

Q
✘ ✘

2. No spurious paths reach the query

