AAA616: Program Analysis

Lecture 7 — The Octagon Abstract Domain

Hakjoo Oh 2016 Fall

Reference

• Antoine Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Computation. Volume 19 Issue 1, March 2006

Numerical Abstract Domains

Infer numerical properties of program variables: e.g.,

- division by zero,
- array index out of bounds,
- integer overflow, etc.

Well-known numerical domains:

- interval domain: $x \in [l, u]$
- octagon domain: $\pm x \pm y \leq c$
- polyhedron domain (affine inequalities): $a_1x_1 + \dots + a_nx_n \leq c$
- Karr's domain (affine equalities): $a_1x_1 + \dots + a_nx_n = c$

• congruence domain: $x \in a\mathbb{Z} + b$

The octagon domain is a restriction of the polyhedron domain where each constraint involves at most two variables and unit coefficients.

Interval vs. Octagon

Octagon

- A finite set $\mathbf{V} = \{V_1, \dots, V_n\}$ of variables.
- An environment $\rho \in (\mathsf{V} \to \mathbb{I})$ $(\rho \in \mathbb{I}^n)$, where \mathbb{I} can be \mathbb{Z}, \mathbb{Q} , or \mathbb{R} .
- An octagonal constraint is a constraint of the form $\pm V_i \pm V_j \leq c$.
- An *octagon* is the set of points satisfying a conjunction of octagonal constraints.

Potential Constraints

- A potential constraint (i.e., difference constraint): $V_i V_j \leq c$.
- Let C be a set of potential constraints. C can be represented by a potential graph G = (V, ↔).
 - $\blacktriangleright \ (\hookrightarrow) \subseteq \mathbf{V} \times \mathbf{V} \times \mathbb{I}$

$$V_i \hookrightarrow_c V_j \iff (V_j - V_i \le c) \in C$$

- Assume that, for every V_i, V_j , there is at most one arc from V_i to V_j .
- A potential set of C is the set of points in \mathbb{I}^n that satisfy C.

Difference Bound Matrices (DBMs)

A DBM **m** is a $n \times n$ square matrix, where n is the number of program variables, with elements in $\overline{\mathbb{I}} = \mathbb{I} \cup \{+\infty\}$.

•
$$\mathsf{m}_{ij} = \left\{ egin{array}{cc} c & (V_i - V_j \leq c) \in C \\ +\infty & o.w. \end{array}
ight.$$

- **DBM** = $\overline{\mathbb{I}}^{n \times n}$: the set of all DBMS.
- The potential set described by **m**:

$$\gamma^{Pot}(\mathsf{m}) = \{(v_1, \dots, v_n) \in \mathbb{I}^n \mid \forall i, j.v_j - v_i \leq \mathsf{m}_{ij}\}$$

Encoding Octagonal Constraints as Potential Constraints

- $V = \{V_1, \ldots, V_n\}$: the set of program variables.
- Define $V' = \{V'_1, \dots, V'_{2n}\}$, where each $V_i \in V$ has both a positive form V'_{2n-1} and a negative form V'_{2n}
 - $\blacktriangleright \ V_{2n-1}' = V_i \text{ and } V_{2n}' = -V_n$
- A conjunction of octagonal constraints on **V** can be represented as a conjunction of potential constraints on **V**'.
 - ▶ 2n imes 2n DBM with elements in $\overline{\mathbb{I}}$
 - $\blacktriangleright ~\forall i, V'_{2i-1} = -V'_{2i}$ holds for any DBM that encodes octagonal constraints

the constraint		is represented as				
$V_i - V_j \leq c$	$(i \neq j)$	$V_{2i-1}' - V_{2j-1}'$	$\leq c$	and	$V_{2j}^\prime - V_{2i}^\prime$	$\leq c$
$V_i + V_j \leq c$	$(i\neq j)$	$V_{2i-1}^\prime-V_{2j}^\prime$	$\leq c$	and	$V_{2j-1}^\prime-V_{2i}^\prime$	$\leq c$
$-V_i - V_j \leq c$	$(i \neq j)$	$V_{2i}^\prime-V_{2j-1}^\prime$	$\leq c$	and	$V_{2j}^\prime-V_{2i-1}^\prime$	$\leq c$
$V_i \leq c$		$V_{2i-1}^{\prime}-V_{2i}^{\prime}$				
$V_i \geq c$		$V_{2i}^\prime-V_{2i-1}^\prime$	$\leq -2c$			

Concretization

Given a DBM \mathbf{m} of dimension 2n, the octagon described by \mathbf{m} is defined as follows:

$$\gamma^{Oct}:\mathsf{DBM}\to\wp(\mathsf{V}\to\mathbb{I})$$

 $\gamma^{\mathit{Oct}}(\mathsf{m}) = \{(v_1,\ldots,v_n) \in \mathbb{I}^n \mid (v_1,-v_1,\ldots,v_n,-v_n) \in \gamma^{\mathit{Pot}}(\mathsf{m})\}$

Coherence

• A DBM **m** must be coherent if it encodes a set of octagonal constraints:

$$\mathbf{m}$$
 is coherent $\iff \forall i, j. \mathbf{m}_{ij} = \mathbf{m}\overline{j}\overline{i}$

where $\overline{\cdot}$ switches between the positive and negative forms of a variable:

$$ar{i} = \left\{egin{array}{cc} i+1 & ext{if } i ext{ is odd} \ i-1 & ext{if } i ext{ is even} \end{array}
ight.$$

• Let **CDBM** be the set of all coherent DBMs.

Lattice Structure

The set of DBMs forms a complete lattice $(\mathbb{I} \neq \mathbb{Q})$:

$$(\mathsf{CDBM}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$$

$$ullet$$
 o is a DBM such that $op_{ij}=+\infty$

- \perp is a new smallest element
 - ▶ ∀m. ⊥ ⊑ m
 - $\blacktriangleright \forall \mathbf{m}. \perp \sqcup \mathbf{m} = \mathbf{m} \sqcup \perp = \mathbf{m}$
 - $\blacktriangleright \forall \mathbf{m}. \perp \Box \mathbf{m} = \mathbf{m} \Box \perp = \mathbf{m}$
- $\forall \mathsf{m}, \mathsf{n}. \mathsf{m} \sqsubseteq \mathsf{n} \iff \forall i, j. \mathsf{m}_{ij} \le \mathsf{n}_{ij} \ (\mathsf{m}, \mathsf{n} \ne \bot)$
- $\forall m, n. \ (m \sqcup n)_{ij} = \max(m_{ij}, n_{ij}) \ (m, n \neq \bot)$
- $\forall m, n. \ (m \sqcap n)_{ij} = \min(m_{ij}, n_{ij}) \ (m, n \neq \bot)$

Galois Connection

$$\wp(\mathsf{V} o \mathbb{I}) \xleftarrow{\gamma^{oct}}{\alpha^{oct}} \mathsf{CDBM}$$

$$\begin{split} \alpha^{\mathit{Oct}}(\emptyset) &= \bot \\ \left(\alpha^{\mathit{Oct}}(R)\right)_{ij} &= \begin{cases} \max\{\rho(V_l) - \rho(V_k) \mid \rho \in R\} & i = 2k - 1, j = 2l - 1 \\ & \text{or } i = 2l, j = 2k \\ \max\{\rho(V_l) + \rho(V_k) \mid \rho \in R\} & i = 2k, j = 2l - 1 \\ \max\{-\rho(V_l) - \rho(V_k) \mid \rho \in R\} & i = 2k - 1, j = 2l \end{cases} \end{split}$$

Normalization

Different, incomparable DBMs may represent the same potential set:

Shortest-Path Closure

The shortest-path closure \mathbf{m}^* of \mathbf{m} is defined as follows:

$$\begin{cases} \mathbf{m}_{ii}^* \stackrel{\text{def}}{=} 0\\ \mathbf{m}_{ij}^* \stackrel{\text{def}}{=} \min_{\substack{\text{all path from } i \text{ to } j \\ \langle i = i_1, i_2, \dots, i_m = j \rangle}} \sum_{k=1}^{m-1} \mathbf{m}_{i_k i_{k+1}} & \text{ if } i \neq j \end{cases}$$

The closure \mathbf{m}^* of \mathbf{m} is the smallest DBM representing $\gamma^{Pot}(\mathbf{m})$:

$$\forall X \in \mathsf{DBM.} \; \gamma^{Pot}(\mathsf{m}) = \gamma^{Pot}(X) \implies \mathsf{m}^* \sqsubseteq X$$

Floyd-Warshall Algorithm:

$$\begin{cases} \mathbf{m}^{0} \stackrel{\text{def}}{=} \mathbf{m} \\ \mathbf{m}_{ij}^{k} \stackrel{\text{def}}{=} \min(\mathbf{m}_{ij}^{k-1}, \mathbf{m}_{ik}^{k-1} + \mathbf{m}_{kj}^{k-1}) & \text{if } 1 \leq i, j, k \leq n \\ \\ \mathbf{m}_{ij}^{*} \stackrel{\text{def}}{=} \begin{cases} \mathbf{m}_{ij}^{n} & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases} \end{cases}$$

Implicit Constraints

Closuring a DBM makes implicit constraints explicit:

$$V_j - V_k \leq c \wedge V_k - V_l \leq d \implies V_j - V_i \leq c + d$$

Strong Closure

The closure \mathbf{m}^* of \mathbf{m} may not be the smallest DBM representing $\gamma^{Oct}(\mathbf{m})$:

Strong Closure

The strong closure \mathbf{m}^{\bullet} of \mathbf{m} is the smallest DBM representing γ^{Oct} . \mathbf{m} is strongly closed iff:

$$egin{array}{lll} orall i,j,k. & \mathsf{m}_{ij} \leq \mathsf{m}_{ik} + \mathsf{m}_{kj} \ orall i,j. & \mathsf{m}_{ij} \leq (\mathsf{m}_{iar{i}} + \mathsf{m}_{ar{j}j})/2 \ orall i, & \mathsf{m}_{ii} = 0 \end{array}$$

The encoding of octagonal constraints implies

$$V_j'-V_{\overline{j}}'\leq c\wedge V_{\overline{i}}'-V_i'\leq d\implies V_j'-V_i'\leq (c+d)/2$$

Abstract Transfer Functions

Abstract counterparts of concrete transfer functions:

- union, intersection
- assignment
- test (guard)

Soundness condition:

 $F\circ\gamma\sqsubseteq\gamma\circ\hat{F}$

Union

The union of two octagons may not be an octagon. \Box gives a sound approximation.

Figure 11. Abstract union of octagons, based on \sqcup^{DBM} . DBMs should be strongly closed for best precision. This also ensures that the result is strongly closed.

Intersection

The intersection of two octagons is always an octagon. \Box gives the exact intersection of two octagons.

Figure 12. Exact intersection of octagons, based on \sqcap^{DBM} . The arguments do not need to be strongly closed, and the result is seldom strongly closed.

AAA616 2016 Fall, Lecture 7

Assignment (the forget operator)

Concrete semantics:

$$\{ V_f \leftarrow ? \} (R) \stackrel{\text{def}}{=} \{ \rho[V_f \mapsto v] \mid \rho \in R, v \in \mathbb{I} \}$$

= $\{ \rho \mid \exists v \in \mathbb{I}, \rho[V_f \mapsto v] \in R \}$

Abstract semantics:

$$(\{ V_f \leftarrow ?\} Oct(\mathbf{m}))_{ij} \stackrel{\text{def}}{=} \begin{cases} \mathbf{m}_{ij} & \text{if } i \neq 2f-1, 2f \text{ and } j \neq 2f-1, 2f \\ 0 & \text{if } i = j = 2f-1 \text{ or } i = j = 2f \\ +\infty & \text{otherwise} \end{cases}$$

Assignment (the forget operator)

When the argument is strongly closed, the result is exact:

Assignments

Variable Clustering

• A collection $\Pi:\wp(\wp(V))$ of variable clusters such that

$$\bigcup_{\pi\in\Pi}\pi=\mathsf{V}$$

• The complete lattice:

$$\mathbb{O}_{\Pi} = \prod_{\pi \in \Pi} \mathbb{O}_{\pi}$$

where \mathbb{O}_{π} is the lattice of Octagon for variables in π .

- Challenge: How to choose a good Π ?
 - ► Heo et al. "Learning a Variable-Clustering Strategy for Octagon from Labeled Data Generated by a Static Analysis". SAS 2016