AAA616: Program Analysis

Lecture 7 - The Octagon Abstract Domain

Hakjoo Oh
2016 Fall

Reference

- Antoine Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Computation. Volume 19 Issue 1, March 2006

Numerical Abstract Domains

Infer numerical properties of program variables: e.g.,

- division by zero,
- array index out of bounds,
- integer overflow, etc.

Well-known numerical domains:

- interval domain: $\boldsymbol{x} \in[\boldsymbol{l}, \boldsymbol{u}]$
- octagon domain: $\pm \boldsymbol{x} \pm \boldsymbol{y} \leq \boldsymbol{c}$
- polyhedron domain (affine inequalities): $a_{1} x_{1}+\cdots+a_{n} x_{n} \leq c$
- Karr's domain (affine equalities): $a_{1} x_{1}+\cdots+a_{n} x_{n}=c$
- congruence domain: $\boldsymbol{x} \in \boldsymbol{a} \mathbb{Z}+\boldsymbol{b}$

The octagon domain is a restriction of the polyhedron domain where each constraint involves at most two variables and unit coefficients.

Interval vs. Octagon

```
i = 0;
p = 0;
```

while (i<12) \{
$i=i+1 ;$
$\mathrm{p}=\mathrm{p}+1 ;$
\}
assert(i==p)

Interval analysis

i	$[12,12]$
p	$[0,+\infty]$

Octagon analysis

i	$[12,12]$
p	$[12,12]$
$p-i$	$[0,0]$
$p+i$	$[24,24]$

Example

Example

Example

Example

Example

Octagon

- A finite set $\mathbf{V}=\left\{\boldsymbol{V}_{\mathbf{1}}, \ldots, \boldsymbol{V}_{\boldsymbol{n}}\right\}$ of variables.
- An environment $\rho \in(\mathbf{V} \rightarrow \mathbb{I})\left(\rho \in \mathbb{I}^{\boldsymbol{n}}\right)$, where \mathbb{I} can be \mathbb{Z}, \mathbb{Q}, or \mathbb{R}.
- An octagonal constraint is a constraint of the form $\pm \boldsymbol{V}_{\boldsymbol{i}} \pm \boldsymbol{V}_{j} \leq \boldsymbol{c}$.
- An octagon is the set of points satisfying a conjunction of octagonal constraints.

Potential Constraints

- A potential constraint (i.e., difference constraint): $\boldsymbol{V}_{\boldsymbol{i}}-\boldsymbol{V}_{\boldsymbol{j}} \leq \boldsymbol{c}$.
- Let \boldsymbol{C} be a set of potential constraints. \boldsymbol{C} can be represented by a potential graph $\mathbf{G}=(\mathbf{V}, \hookrightarrow)$.
- $(\hookrightarrow) \subseteq \mathbf{V} \times \mathbf{V} \times \mathbb{I}$

$$
V_{i} \hookrightarrow_{c} V_{j} \Longleftrightarrow\left(V_{j}-V_{i} \leq c\right) \in C
$$

- Assume that, for every $\boldsymbol{V}_{\boldsymbol{i}}, \boldsymbol{V}_{\boldsymbol{j}}$, there is at most one arc from $\boldsymbol{V}_{\boldsymbol{i}}$ to $\boldsymbol{V}_{\boldsymbol{j}}$.
- A potential set of C is the set of points in $\mathbb{I}^{\boldsymbol{n}}$ that satisfy \boldsymbol{C}.

Difference Bound Matrices (DBMs)

A DBM \mathbf{m} is a $\boldsymbol{n} \times \boldsymbol{n}$ square matrix, where \boldsymbol{n} is the number of program variables, with elements in $\overline{\mathbb{I}}=\mathbb{I} \cup\{+\infty\}$.

- $\mathbf{m}_{i j}= \begin{cases}c & \left(V_{i}-V_{j} \leq c\right) \in C \\ +\infty & \text { o.w. }\end{cases}$
- $\mathrm{DBM}=\overline{\mathbb{I}}^{n \times n}$: the set of all DBMS.
- The potential set described by \mathbf{m} :

$$
\gamma^{P o t}(\mathbf{m})=\left\{\left(\boldsymbol{v}_{1}, \ldots, v_{n}\right) \in \mathbb{I}^{n} \mid \forall i, j . v_{j}-v_{i} \leq \mathbf{m}_{i j}\right\}
$$

Example

(a) $\left\{\begin{array}{l}V_{2}-V_{1} \leq 4 \\ V_{1}-V_{2} \leq-1 \\ V_{3}-V_{1} \leq 3 \\ V_{1}-V_{3} \leq-1 \\ V_{2}-V_{3} \leq 1\end{array}\right.$
(b)

j i $\|$1 2 3 1 $+\infty$ 4 2 3 2 -1 $+\infty$ 3 -1 1		$+\infty$

(c)

(d)

Encoding Octagonal Constraints as Potential Constraints

- $\mathbf{V}=\left\{V_{1}, \ldots, V_{n}\right\}$: the set of program variables.
- Define $\mathbf{V}^{\prime}=\left\{V_{1}^{\prime}, \ldots, V_{2 n}^{\prime}\right\}$, where each $V_{i} \in \mathbf{V}$ has both a positive form $V_{2 n-1}^{\prime}$ and a negative form $V_{2 n}^{\prime}$
- $V_{2 n-1}^{\prime}=V_{i}$ and $V_{2 n}^{\prime}=-V_{n}$
- A conjunction of octagonal constraints on \mathbf{V} can be represented as a conjunction of potential constraints on \mathbf{V}^{\prime}.
- $2 n \times 2 n$ DBM with elements in $\overline{\mathbb{I}}$
- $\forall i, V_{2 i-1}^{\prime}=-V_{2 i}^{\prime}$ holds for any DBM that encodes octagonal constraints

the constraint		is represented as		
$V_{i}-V_{j} \leq c \quad(i \neq j)$	$V_{2 i-1}^{\prime}-V_{2 j-1}^{\prime} \leq c \quad$ and $\quad V_{2 j}^{\prime}-V_{2 i}^{\prime} \leq c$			
$V_{i}+V_{j} \leq c \quad(i \neq j)$	$V_{2 i-1}^{\prime}-V_{2 j}^{\prime} \leq c \quad$ and $V_{2 j-1}^{\prime}-V_{2 i}^{\prime} \leq c$			
$-V_{i}-V_{j} \leq c \quad(i \neq j)$	$V_{2 i}^{\prime}-V_{2 j-1}^{\prime} \leq c$	and $V_{2 j}^{\prime}-V_{2 i-1}^{\prime} \leq c$		
$V_{i} \leq c$	$V_{2 i-1}^{\prime}-V_{2 i}^{\prime} \leq 2 c$			
$V_{i} \geq c$	$V_{2 i}^{\prime}-V_{2 i-1}^{\prime} \leq-2 c$			

Concretization

Given a DBM \mathbf{m} of dimension $2 \boldsymbol{n}$, the octagon described by \mathbf{m} is defined as follows:

$$
\gamma^{O c t}: \mathrm{DBM} \rightarrow \wp(\mathbf{V} \rightarrow \mathbb{I})
$$

$\gamma^{O c t}(\mathbf{m})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{I}^{n} \mid\left(v_{1},-v_{1}, \ldots, v_{n},-v_{n}\right) \in \gamma^{P o t}(\mathbf{m})\right\}$

Coherence

- A DBM m must be coherent if it encodes a set of octagonal constraints:

$$
\mathbf{m} \text { is coherent } \Longleftrightarrow \forall i, j \cdot \mathbf{m}_{i j}=\mathbf{m} \bar{j} \bar{i}
$$

where - switches between the positive and negative forms of a variable:

$$
\bar{i}= \begin{cases}i+1 & \text { if } i \text { is odd } \\ i-1 & \text { if } i \text { is even }\end{cases}
$$

- Let CDBM be the set of all coherent DBMs.

Lattice Structure

The set of DBMs forms a complete lattice $(\mathbb{I} \neq \mathbb{Q})$:

$(\mathrm{CDBM}, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$

- \top is a DBM such that $\top_{i j}=+\infty$
- \perp is a new smallest element
- $\forall \mathbf{m} . \perp \sqsubseteq \mathbf{m}$
- $\forall \mathbf{m} \cdot \perp \sqcup \mathbf{m}=\mathbf{m} \sqcup \perp=\mathbf{m}$
- $\forall \mathbf{m} . \perp \sqcap \mathbf{m}=\mathbf{m} \sqcap \perp=\mathbf{m}$
- $\forall \mathbf{m}, \mathbf{n} . \mathbf{m} \sqsubseteq \mathbf{n} \Longleftrightarrow \forall i, j . \mathbf{m}_{i j} \leq \mathbf{n}_{i j}(\mathbf{m}, \mathbf{n} \neq \perp)$
- $\forall \mathbf{m}, \mathbf{n} .(\mathbf{m} \sqcup \mathbf{n})_{i j}=\max \left(\mathbf{m}_{i j}, \mathbf{n}_{i j}\right)(\mathbf{m}, \mathbf{n} \neq \perp)$
- $\forall \mathbf{m}, \mathbf{n} .(\mathbf{m} \sqcap \mathbf{n})_{i j}=\min \left(\mathbf{m}_{i j}, \mathbf{n}_{i j}\right)(\mathbf{m}, \mathbf{n} \neq \perp)$

Galois Connection

$$
\wp(\mathbf{V} \rightarrow \mathbb{I}) \underset{\alpha^{o c t}}{\stackrel{\gamma^{o c t}}{\leftrightarrows}} \text { CDBM }
$$

$$
\alpha^{O c t}(\emptyset)=\perp
$$

$$
\left(\alpha^{O c t}(R)\right)_{i j}= \begin{cases}\max \left\{\rho\left(V_{l}\right)-\rho\left(V_{k}\right) \mid \rho \in R\right\} & i=2 k-1, j=2 l-1 \\ \max \left\{\rho\left(V_{l}\right)+\rho\left(V_{k}\right) \mid \rho \in R\right\} & \text { or } i=2 l, j=2 k \\ \max \left\{-\rho\left(V_{l}\right)-\rho\left(V_{k}\right) \mid \rho \in R\right\} & i=2 k, j=2 l-1 \\ \operatorname{mon}-j=2 l\end{cases}
$$

Normalization

Different, incomparable DBMs may represent the same potential set:

$$
\begin{aligned}
& \\
& \text { (b) } \\
& \text { (c) }
\end{aligned}
$$

Shortest-Path Closure

The shortest-path closure \mathbf{m}^{*} of \mathbf{m} is defined as follows:

$$
\left\{\begin{array}{l}
\mathbf{m}_{i i}^{*} \stackrel{\text { def }}{=} 0 \\
\mathbf{m}_{i j}^{*} \stackrel{\text { def }}{=} \min _{\substack{\text { all path from } i \text { to } j \\
\left\langle i=i_{1}, i_{2}, \ldots, i_{m}=j\right\rangle}}
\end{array} \sum_{k=1}^{m-1} \mathbf{m}_{i_{k} i_{k+1}} \quad \text { if } i \neq j\right.
$$

The closure \mathbf{m}^{*} of \mathbf{m} is the smallest DBM representing $\gamma^{P o t}(\mathbf{m})$:

$$
\forall X \in \text { DBM. } \gamma^{P o t}(\mathbf{m})=\gamma^{P o t}(X) \Longrightarrow \mathbf{m}^{*} \sqsubseteq X
$$

Floyd-Warshall Algorithm:

$$
\begin{cases}\mathbf{m}^{0} & \stackrel{\text { def }}{=} \mathbf{m} \\ \mathbf{m}_{i j}^{k} & \stackrel{\text { def }}{=} \min \left(\mathbf{m}_{i j}^{k-1}, \mathbf{m}_{i k}^{k-1}+\mathbf{m}_{k j}^{k-1}\right) \quad \text { if } 1 \leq i, j, k \leq n \\ \mathbf{m}_{i j}^{*} \stackrel{\text { def }}{=} \begin{cases}\mathbf{m}_{i j}^{n} & \text { if } i \neq j \\ 0 & \text { if } i=j\end{cases} \end{cases}
$$

Implicit Constraints

Closuring a DBM makes implicit constraints explicit:

$$
V_{j}-V_{k} \leq c \wedge V_{k}-V_{l} \leq d \Longrightarrow V_{j}-V_{i} \leq c+d
$$

Strong Closure

The closure \mathbf{m}^{*} of \mathbf{m} may not be the smallest DBM representing $\gamma^{O c t}(\mathbf{m})$:

Strong Closure

The strong closure \mathbf{m}^{\bullet} of \mathbf{m} is the smallest DBM representing $\gamma^{O c t} . \mathbf{m}$ is strongly closed iff:

$$
\begin{array}{ll}
\forall i, j, k . & \mathbf{m}_{i j} \leq \mathbf{m}_{i k}+\mathbf{m}_{k j} \\
\forall i, j . & \mathbf{m}_{i j} \leq\left(\mathbf{m}_{\bar{i}}+\mathbf{m}_{\bar{j} j}\right) / \mathbf{2} \\
\forall i, & \mathbf{m}_{i i}=\mathbf{0}
\end{array}
$$

The encoding of octagonal constraints implies

$$
V_{j}^{\prime}-V_{\bar{j}}^{\prime} \leq c \wedge V_{\bar{i}}^{\prime}-V_{i}^{\prime} \leq d \Longrightarrow V_{j}^{\prime}-V_{i}^{\prime} \leq(c+d) / 2
$$

Abstract Transfer Functions

Abstract counterparts of concrete transfer functions:

- union, intersection
- assignment
- test (guard)

Soundness condition:

$$
\boldsymbol{F} \circ \gamma \sqsubseteq \gamma \circ \hat{\boldsymbol{F}}
$$

Union

The union of two octagons may not be an octagon. \sqcup gives a sound approximation.

m

$$
\left(\mathbf{m} \sqcup^{\mathrm{DBM}} \mathbf{n}\right)^{\bullet}
$$

n

$$
\begin{aligned}
& \mathbf{m}^{\bullet} \sqcup^{\mathrm{DBM}} \mathbf{n}^{\bullet}= \\
& \left(\mathbf{m}^{\bullet} \sqcup^{\mathrm{DBM}} \mathbf{n}^{\bullet}\right)^{\bullet}
\end{aligned}
$$

Figure 11. Abstract union of octagons, based on \sqcup^{DBM}. DBMs should be strongly closed for best precision. This also ensures that the result is strongly closed.

Intersection

The intersection of two octagons is always an octagon. \square gives the exact intersection of two octagons.

Figure 12. Exact intersection of octagons, based on Π^{DBM}. The arguments do not need to be strongly closed, and the result is seldom strongly closed.

Assignment (the forget operator)

Concrete semantics:

$$
\begin{aligned}
\left\{V_{f} \leftarrow ?\right\}(R) & \stackrel{\text { def }}{=}\left\{\rho\left[V_{f} \mapsto v\right] \mid \rho \in R, v \in \mathbb{I}\right\} \\
= & \left\{\rho \mid \exists v \in \mathbb{I}, \rho\left[V_{f} \mapsto v\right] \in R\right\}
\end{aligned}
$$

Abstract semantics:

$$
\left.\left(\left\{V_{f} \leftarrow ?\right\}\right\}^{O c t}(\mathbf{m})\right)_{i j} \stackrel{\text { def }}{=} \begin{cases}\mathbf{m}_{i j} & \text { if } i \neq 2 f-1,2 f \text { and } j \neq 2 f-1,2 f \\ 0 & \text { if } i=j=2 f-1 \text { or } i=j=2 f \\ +\infty & \text { otherwise }\end{cases}
$$

Assignment (the forget operator)

When the argument is strongly closed, the result is exact:

Assignments

- $\left(\mathbb{\|} V_{j 0} \leftarrow[a, b] \mathbb{H}_{\text {exact }}^{O c t}(\mathbf{m})\right)_{i j} \stackrel{\text { def }}{=}$

$$
\begin{cases}-2 a & \text { if } i=2 j_{0}-1, j=2 j_{0} \\ 2 b & \text { if } i=2 j_{0}, j=2 j_{0}-1 \\ \left(\mathbb{\|} V_{j_{0} \leftarrow ?} \leftarrow \mathbb{1}^{\circ c t}\left(\mathbf{m}^{\bullet}\right)\right)_{i j} & \text { otherwise }\end{cases}
$$

- $\left(\| V_{j 0} \leftarrow V_{j 0}+[a, b] \mathbb{t}_{\text {exact }}^{O c t}(\mathbf{m})\right)_{i j} \stackrel{\text { def }}{=}$

$$
\begin{cases}\mathbf{m}_{i j}-a & \text { if } i=2 j_{0}-1, j \neq 2 j_{0}-1,2 j_{0} \\ & \text { or } j=2 j_{0}, i \neq 2 j_{0}-1,2 j_{0} \\ \mathbf{m}_{i j}+b & \text { if } i \neq 2 j_{0}-1,2 j_{0}, j=2 j_{0}-1 \\ & \text { or } j \neq 2 j_{0}-1,2 j_{0}, i=2 j_{0} \\ \mathbf{m}_{i j}-2 a & \text { if } i=2 j_{0}-1, j=2 j_{0} \\ \mathbf{m}_{i j}+2 b & \text { if } i=2 j_{0}, j=2 j_{0}-1 \\ \mathbf{m}_{i j} & \text { otherwise }\end{cases}
$$

- $\left(\mathbb{\|} V_{j 0} \leftarrow V_{i 0}+[a, b] \mathbb{H}_{\text {exact }}^{\text {Oct }}(\mathbf{m})\right)_{i j} \stackrel{\text { det }}{=}$

$$
\begin{cases}-a & \text { if } i=2 j_{0}-1, j=2 i_{0}-1 \\ & \text { or } i=2 i_{0}, j=2 j_{0} \\ b & \text { if } i=2 i_{0}-1, j=2 j_{0}-1 \\ & \text { or } i=2 j_{0}, j=2 i_{0} \\ \left.\left(\| V_{j_{0}} \leftarrow ?\right\}^{O c t}\left(\mathrm{~m}^{\bullet}\right)\right)_{i j} & \text { otherwise }\end{cases}
$$

- $\left.\left(\mathbb{\|} V_{j 0} \leftarrow-V_{j 0}\right\}_{\text {exact }}^{O \text { ct }}(\mathrm{m})\right)_{i j} \stackrel{\text { def }}{=}$

$$
\begin{cases}\mathbf{m}_{\bar{i} j} & \text { if } i \in\left\{2 j_{0}-1,2 j_{0}\right\} \text { and } j \notin\left\{2 j_{0}-1,2 j_{0}\right\} \\ \mathbf{m}_{i \bar{j}} & \text { if } i \notin\left\{2 j_{0}-1,2 j_{0}\right\} \text { and } j \in\left\{2 j_{0}-1,2 j_{0}\right\} \\ \mathbf{m}_{\bar{i} j} & \text { if } i \in\left\{2 j_{0}-1,2 j_{0}\right\} \text { and } j \in\left\{2 j_{0}-1,2 j_{0}\right\} \\ \mathbf{m}_{i j} & \text { if } i \notin\left\{2 j_{0}-1,2 j_{0}\right\} \text { and } j \notin\left\{2 j_{0}-1,2 j_{0}\right\}\end{cases}
$$

$-\left\{V_{j_{0}} \leftarrow-V_{i_{0}}\right\}_{\text {exact }}^{\text {Oct }} \stackrel{\text { dof }}{=}\left\{V_{j_{0}} \leftarrow-V_{j_{0}}\right\rangle_{\text {eract }}^{\text {Oct }} \circ\left\{V_{j_{0}} \leftarrow V_{i_{0}}\right\}_{\text {exact }}^{O c t}$

- $\left\{V_{j_{0}} \leftarrow-V_{j_{0}}+[a, b]\right\}_{\text {exact }}^{\text {Oct }} \stackrel{\text { def }}{=}$
$\left\{V_{j_{0}} \leftarrow V_{j_{0}}+[a, b]\right\}_{\text {exact }}^{O_{c t}} \circ\left\{V_{j_{0}} \leftarrow-V_{j_{0}}\right\}_{\text {exact }}^{O_{c t}}$
- $\left\{V_{j_{0}} \leftarrow-V_{i_{0}}+[a, b]\right]_{\text {exact }}^{O c t}$ dee
$\left\{V_{j 0} \leftarrow V_{j 0}+[a, b]\right\}_{\text {exact }}^{O c t} \circ\left\{V_{j 0} \leftarrow-V_{i 0}\right\}_{\text {exact }}^{O c t}$

Variable Clustering

- A collection $\boldsymbol{\Pi}: \wp(\wp(\mathbf{V}))$ of variable clusters such that

$$
\bigcup_{\pi \in \Pi} \pi=\mathrm{V}
$$

- The complete lattice:

$$
\mathbb{O}_{\Pi}=\prod_{\pi \in \Pi} \mathbb{O}_{\pi}
$$

where $\mathbb{O}_{\boldsymbol{\pi}}$ is the lattice of Octagon for variables in $\boldsymbol{\pi}$.

- Challenge: How to choose a good Π ?
- Heo et al. "Learning a Variable-Clustering Strategy for Octagon from Labeled Data Generated by a Static Analysis". SAS 2016

