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Reference

Antoine Miné. The Octagon Abstract Domain. Higher-Order and
Symbolic Computation. Volume 19 Issue 1, March 2006
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Numerical Abstract Domains

Infer numerical properties of program variables: e.g.,

division by zero,

array index out of bounds,

integer overflow, etc.

Well-known numerical domains:

interval domain: x ∈ [l, u]

octagon domain: ±x± y ≤ c
polyhedron domain (affine inequalities): a1x1 + · · ·+ anxn ≤ c
Karr’s domain (affine equalities): a1x1 + · · ·+ anxn = c

congruence domain: x ∈ aZ + b

The octagon domain is a restriction of the polyhedron domain where each
constraint involves at most two variables and unit coefficients.
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Interval vs. Octagon

Hakjoo Oh AAA616 2016 Fall, Lecture 7 November 3, 2016 4 / 30



Example
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Example
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Octagon

A finite set V = {V1, . . . , Vn} of variables.

An environment ρ ∈ (V→ I) (ρ ∈ In), where I can be Z,Q, or R.

An octagonal constraint is a constraint of the form ±Vi ± Vj ≤ c.

An octagon is the set of points satisfying a conjunction of octagonal
constraints.
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Potential Constraints

A potential constraint (i.e., difference constraint): Vi − Vj ≤ c.

Let C be a set of potential constraints. C can be represented by a
potential graph G = (V, ↪→).

I (↪→) ⊆ V × V × I

Vi ↪→c Vj ⇐⇒ (Vj − Vi ≤ c) ∈ C

I Assume that, for every Vi, Vj , there is at most one arc from Vi to Vj .

A potential set of C is the set of points in In that satisfy C.
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Difference Bound Matrices (DBMs)

A DBM m is a n× n square matrix, where n is the number of program
variables, with elements in Ī = I ∪ {+∞}.

mij =

{
c (Vi − Vj ≤ c) ∈ C
+∞ o.w.

DBM = Īn×n: the set of all DBMS.

The potential set described by m:

γPot(m) = {(v1, . . . , vn) ∈ In | ∀i, j.vj − vi ≤ mij}
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Example
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Encoding Octagonal Constraints as Potential Constraints

V = {V1, . . . , Vn}: the set of program variables.

Define V′ = {V ′1 , . . . , V ′2n}, where each Vi ∈ V has both a positive
form V ′2n−1 and a negative form V ′2n

I V ′2n−1 = Vi and V ′2n = −Vn

A conjunction of octagonal constraints on V can be represented as a
conjunction of potential constraints on V′.

I 2n× 2n DBM with elements in Ī
I ∀i, V ′2i−1 = −V ′2i holds for any DBM that encodes octagonal

constraints
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Concretization

Given a DBM m of dimension 2n, the octagon described by m is defined
as follows:

γOct : DBM→ ℘(V→ I)

γOct(m) = {(v1, . . . , vn) ∈ In | (v1,−v1, . . . , vn,−vn) ∈ γPot(m)}
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Coherence

A DBM m must be coherent if it encodes a set of octagonal
constraints:

m is coherent ⇐⇒ ∀i, j. mij = mj̄ī

where ·̄ switches between the positive and negative forms of a
variable:

ī =

{
i+ 1 if i is odd
i− 1 if i is even

Let CDBM be the set of all coherent DBMs.
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Lattice Structure

The set of DBMs forms a complete lattice (I 6= Q):

(CDBM,v,t,u,⊥,>)

> is a DBM such that >ij = +∞
⊥ is a new smallest element

I ∀m. ⊥ v m
I ∀m. ⊥ tm = m t ⊥ = m
I ∀m. ⊥ um = m u ⊥ = m

∀m, n. m v n ⇐⇒ ∀i, j. mij ≤ nij (m, n 6= ⊥)

∀m, n. (m t n)ij = max(mij, nij) (m, n 6= ⊥)

∀m, n. (m u n)ij = min(mij, nij) (m, n 6= ⊥)
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Galois Connection

℘(V→ I) −−−−→←−−−−
αOct

γOct

CDBM

αOct(∅) = ⊥

(
αOct(R)

)
ij

=


max{ρ(Vl)− ρ(Vk) | ρ ∈ R} i = 2k − 1, j = 2l− 1

or i = 2l, j = 2k
max{ρ(Vl) + ρ(Vk) | ρ ∈ R} i = 2k, j = 2l− 1
max{−ρ(Vl)− ρ(Vk) | ρ ∈ R} i = 2k − 1, j = 2l
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Normalization

Different, incomparable DBMs may represent the same potential set:
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Shortest-Path Closure

The shortest-path closure m∗ of m is defined as follows:

The closure m∗ of m is the smallest DBM representing γPot(m):

∀X ∈ DBM. γPot(m) = γPot(X) =⇒ m∗ v X

Floyd-Warshall Algorithm:
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Implicit Constraints

Closuring a DBM makes implicit constraints explicit:

Vj − Vk ≤ c ∧ Vk − Vl ≤ d =⇒ Vj − Vi ≤ c+ d

Hakjoo Oh AAA616 2016 Fall, Lecture 7 November 3, 2016 21 / 30



Strong Closure

The closure m∗ of m may not be the smallest DBM representing γOct(m):
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Strong Closure

The strong closure m• of m is the smallest DBM representing γOct . m is
strongly closed iff:

∀i, j, k. mij ≤ mik + mkj

∀i, j. mij ≤ (mīi + mj̄j)/2

∀i, mii = 0

The encoding of octagonal constraints implies

V ′j − V
′
j̄
≤ c ∧ V ′

ī
− V ′i ≤ d =⇒ V ′j − V

′
i ≤ (c+ d)/2
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Abstract Transfer Functions

Abstract counterparts of concrete transfer functions:

union, intersection

assignment

test (guard)

Soundness condition:
F ◦ γ v γ ◦ F̂
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Union

The union of two octagons may not be an octagon. t gives a sound
approximation.
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Intersection

The intersection of two octagons is always an octagon. u gives the exact
intersection of two octagons.
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Assignment (the forget operator)

Concrete semantics:

Abstract semantics:
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Assignment (the forget operator)

When the argument is strongly closed, the result is exact:
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Assignments
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Variable Clustering

A collection Π : ℘(℘(V)) of variable clusters such that⋃
π∈Π

π = V

The complete lattice:

OΠ =
∏
π∈Π

Oπ

where Oπ is the lattice of Octagon for variables in π.

Challenge: How to choose a good Π?
I Heo et al. “Learning a Variable-Clustering Strategy for Octagon from

Labeled Data Generated by a Static Analysis”. SAS 2016
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