
Lecture 6

Static Analysis Engineering
Techniques

Hakjoo Oh
2016 Fall

A Story

• In 2007, I participated commercializing

• memory-bug-finding tool for full C, non domain-specific

• designed in abstract interpretation framework

• sound in design, unsound yet scalable in reality

• Realistic workbench available

• “let’s try to scale-up its sound & global analysis version”

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

2

The Elusive Three in
Static Analysis

Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

(sound-&-global version)

3

Typical Static Analyzer for C

• Abstract semantic function

• One abstract state that subsumes all reachable
states at each program point

: abstract semantics at point c

c

c0c0

Computing

⌅⇥ ⇥�(abstract interpretation)

⌅⇥ ⇥�: �⇥�⇤
⌅⇥ ⇥� ¿: ⇤�
⌅⇥ ⇥� ¿: �⇧
⌅⇥ ⇥� ¿: Theorem⇥

Fixpoint Transfer Theorems

⇤ �⇥ ⇥⇥⇥ �� ��� Ñ�⇥ ���?

Theorem (fixpoint transfer)

D@ D̂î �� CPO�⇧ ⇥\D ⌅� ⇠¥⇥‰. �⇠ F : D ⌅ Dî
ç�⇠�⇧ F̂ : D̂ ⌅ D̂î Ë��⇠�⇤� =��⇠�‰. � ⇥ F ⌃ F̂ ⇥ �
�‰. ¯Ït,

�(lfpF) ⌃
G

i2N
F̂ i(⇧̂).

Theorem (fixpoint transfer2)

CPO D@ D̂î ⇥\D ⌅ D �⌅⇤��
⇥

D̂ ⇠¥⇥‰. F : D ⌅ D�⇧

F̂ : D̂ ⌅ D̂ �‰. � f ⌃ f̂ �t �(F f) ⌃ F̂ f̂ �‰. ¯Ït,

�(lfpF) ⌃
G

i2N
F̂ i(⇧̂).

Prof. Kwangkeun Yi SNU 4541.664A Program Analysis Note 7

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

Naive fixpoint algorithm Worklist algorithm

W ⇥ Worklist = 2C

X̂ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

W := C
X̂ := �c.⇧
repeat

c := choose(W)

ŝ := f̂c(
�

c���cX(c⇥))

if ŝ ⇤� X̂(c)

W := W ⌃ {c⇥ ⇥ C | c ⇥� c⇥}
X̂(c) := X̂(c) ⌥ ŝ

until W = ⌅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ ⇥ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

X̂ := X̂ ⇥ := �c.⇧
repeat

X̂ ⇥ := X̂

for all c ⇥ C do
X̂(c) := f̂c(

�
c���cX(c⇥))

until X̂ � X̂ ⇥

Figure 2.2: A naive fixpoint algorithm.

14

W ⇥ Worklist = 2C

X̂ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

W := C
X̂ := �c.⇧
repeat

c := choose(W)

ŝ := f̂c(
�

c���cX(c⇥))

if ŝ ⇤� X̂(c)

W := W ⌃ {c⇥ ⇥ C | c ⇥� c⇥}
X̂(c) := X̂(c) ⌥ ŝ

until W = ⌅

Figure 2.1: The worklist-based fixpoint computation algorithm. For brevity, we
omit the widening operation, which is necessary for analysis’ termination.

X̂, X̂ ⇥ ⇥ C � Ŝ
f̂c ⇥ Ŝ � Ŝ

X̂ := X̂ ⇥ := �c.⇧
repeat

X̂ ⇥ := X̂

for all c ⇥ C do
X̂(c) := f̂c(

�
c���cX(c⇥))

until X̂ � X̂ ⇥

Figure 2.2: A naive fixpoint algorithm.

14

Real C Programs
less-382 (23,822 LoC)

nethack-3.3.0 (211KLoC)

Real C Programs

The First Goal: Scalability
Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

(2012, sound-&-global version)

8

Scalability Improvement

• < 1.4M in 10hr
with intervals

• < 0.14M in 20hrs
with octagons

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09
��������
�
���
��
���	�

���(��)

���(�
�)

���(�
�)

20 35 55 75 105 290 1364

10 17.5 27.5 37.5 52.5 145 682

1 4 25 60 150 350 600

1 0.95 0.90 0.90 0.80 0.80 0.40

1 4 25 60 150 350 600

10 18 28 38 53 145 682

1 2 3 4 5 15 68

APLAS’09 SPE’10 VMCAI’11

PLDI’12 (submitted)

2008.09 2009.03 2009.09 2010.03 2010.09 2011.03 2011.09
��������
��
���	�

27 35 50 75 105 210 1364

0.2 1 4 12 30 58 100

100 90 85 83 81 70 35

Scalability

#False Alarms

VMCAI’12

APLAS’11

Efficacy
(Scalability / #False Alarms)

1 4 28
67

188

438

1500

1312

1050

APLAS’09 SPE’10 VMCAI’11

PLDI’12 (submitted)

Speed

#False Alarms

VMCAI’12

APLAS’11

Efficacy
(Speed / #False Alarms)

1 4 28
67

188

438

1500

1312

1050

Scalability

APLAS’09

SPE’10

VM
CAI’11

PLDI’12
APLAS’11

Scalability (speed)

1x
4x 25x 60x

150x

350x

600x

460x

Scalability (LOC)

35K
40K 50K 80K

100K

300K

900K

1.3MCatching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

sound & global analysis version

Key Idea: Localization

• Spatial localization [VMCAI’11,APLAS’11,SCP’13]

• Temporal localization [PLDI’12,TOPLAS’14]

“framing”
“abstract garbage collection”

“Right Part at Right Moment”

Scalability Improvement

Programs LOC Intervalvanilla Intervalbase Spd"1 Mem#1 Intervalsparse Spd"2 Mem#2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K 1 N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K 1 N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K 1 N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K 1 N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K 1 N/A 1 N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K 1 N/A 1 N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K 1 N/A 1 N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K 1 N/A 1 N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K 1 N/A 1 N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K 1 N/A 1 N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K 1 N/A 1 N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K 1 N/A 1 N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. 1 means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd"1 is
the speed-up of Intervalbase over Intervalvanilla. Mem#1 shows the memory savings of Intervalbase over Intervalvanilla. Spd"2 is the speed-up of Intervalsparse over Intervalbase.
Mem#2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis
Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion
Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.

9 2012/1/12

spatia
l

locali
zat

ion
none

spatia
l+tem

poral

locali
zat

ion

Performance of sound
& global

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

Spatial LocalizationMemory Localization
(spatial localization)

f

call f

local (accessible)

return

global
(non-accessible)

BenefitsBenefits

int g;

int f() {...}

int main() {
 g = 0;
 f();

 g = 1;
 f();
}

f does not access g

Vital in PracticeVital in Practice

27

less-382 (23,822 LOC)

On average 755 re-analyses
per procedure

Program LOC #Functions
less-382
bash-2.05a
vim60
emacs-22.1
linux-3.0
ghostscript-9.00

23K 382
105K 955
227K 2,770
399K 3,388
710K 13,856

1,363K 10,224

A Catch-22 Situation

Analysis Localization

The optimal localization is impossible

Reachability-based
Localization

• Remove the unreachable from params and
globals

f
call f

reachable

unreachable

Reachability-based
Localization

362 H. Oh, L. Brutschy, and K. Yi

3.1 Conventional Reachability-Based Localization for Procedures

We first formalize the reachability-based approach on top of our baseline analyzer
Airac. We call our analyzer based on this approach AiracReach.

When calling a procedure, AiracReach passes the memory parts that are reach-
able from global variables or parameters. Formally, given a call node call(fx,e)
and its input memory state m̂ (parameter-bound), AiracReach computes the fol-
lowing set of abstract locations (let Globals be the set of global variables in the
program):

R(fx, m̂) = Reach(Globals, m̂) ∪ Reach({x}, m̂)

We use Reach(X, m̂) to denote the set of abstract locations in m̂ that are (directly
or transitively) reachable from a location set X .

Reach(X, m̂) = lfp(λY.X ∪ OneHop(Y, m̂))

OneHop(X, m̂) is the set of locations that are directly reachable from X :

OneHop(X, m̂) =
⋃

x∈X m̂(x).2 ∪ {l | ⟨l, o, s⟩ ∈ m̂(x).3} ∪ {⟨l, f⟩ | ⟨l, {f}⟩ ∈ m̂(x).4}

Given an input memory m̂ to a call node call(fx,e), the definition of the
transfer function f̂ is changed as follows:

f̂ call(fx,e) m̂ = m̂ ′|R(fx,m̂′) where m̂ ′ = m̂{V̂(e)(m̂)//{x}}

We also have to consider procedure returns. When a procedure returns to a
return node, in order to recover the local information from the corresponding
call node, we combine the returned memory with the memory parts that were
not propagated to called procedures from the call node. Note that the issue of
cutpoints [20] is not involved in our analysis because our semantics is store-based
and every object is represented by a fixed location.

3.2 Access-Based Localization for Procedures

For performing the localization more aggressively, we separate the entire analysis
into two phases: (1) the set of abstract locations that are accessed by a procedure
during actual analysis is conservatively estimated by a pre-analysis; (2) then, the
actual analysis uses the access-information and filters out memory entries that
will definitely not be accessed by called procedures. The pre-analysis is derived
from the abstract semantics of the original analysis by applying conservative
abstractions. We call our analyzer based on the new technique AiracProcAcc.

Pre-analysis. For ensuring the correctness of the actual analysis, the pre-
analysis should be an over-approximation of the actual analysis. The pre-analysis
should not only find locations that are accessed in real executions, but find a set
of abstract locations that contains all locations required by the actual analysis.
For example, consider an expression *p. Suppose p points to a variable a dur-
ing real execution. Suppose further, during actual analysis, p points to variables
a and b, where b is a by-product of abstraction. In this case, our pre-analysis

362 H. Oh, L. Brutschy, and K. Yi

3.1 Conventional Reachability-Based Localization for Procedures

We first formalize the reachability-based approach on top of our baseline analyzer
Airac. We call our analyzer based on this approach AiracReach.

When calling a procedure, AiracReach passes the memory parts that are reach-
able from global variables or parameters. Formally, given a call node call(fx,e)
and its input memory state m̂ (parameter-bound), AiracReach computes the fol-
lowing set of abstract locations (let Globals be the set of global variables in the
program):

R(fx, m̂) = Reach(Globals, m̂) ∪ Reach({x}, m̂)

We use Reach(X, m̂) to denote the set of abstract locations in m̂ that are (directly
or transitively) reachable from a location set X .

Reach(X, m̂) = lfp(λY.X ∪ OneHop(Y, m̂))

OneHop(X, m̂) is the set of locations that are directly reachable from X :

OneHop(X, m̂) =
⋃

x∈X m̂(x).2 ∪ {l | ⟨l, o, s⟩ ∈ m̂(x).3} ∪ {⟨l, f⟩ | ⟨l, {f}⟩ ∈ m̂(x).4}

Given an input memory m̂ to a call node call(fx,e), the definition of the
transfer function f̂ is changed as follows:

f̂ call(fx,e) m̂ = m̂ ′|R(fx,m̂′) where m̂ ′ = m̂{V̂(e)(m̂)//{x}}

We also have to consider procedure returns. When a procedure returns to a
return node, in order to recover the local information from the corresponding
call node, we combine the returned memory with the memory parts that were
not propagated to called procedures from the call node. Note that the issue of
cutpoints [20] is not involved in our analysis because our semantics is store-based
and every object is represented by a fixed location.

3.2 Access-Based Localization for Procedures

For performing the localization more aggressively, we separate the entire analysis
into two phases: (1) the set of abstract locations that are accessed by a procedure
during actual analysis is conservatively estimated by a pre-analysis; (2) then, the
actual analysis uses the access-information and filters out memory entries that
will definitely not be accessed by called procedures. The pre-analysis is derived
from the abstract semantics of the original analysis by applying conservative
abstractions. We call our analyzer based on the new technique AiracProcAcc.

Pre-analysis. For ensuring the correctness of the actual analysis, the pre-
analysis should be an over-approximation of the actual analysis. The pre-analysis
should not only find locations that are accessed in real executions, but find a set
of abstract locations that contains all locations required by the actual analysis.
For example, consider an expression *p. Suppose p points to a variable a dur-
ing real execution. Suppose further, during actual analysis, p points to variables
a and b, where b is a by-product of abstraction. In this case, our pre-analysis

362 H. Oh, L. Brutschy, and K. Yi

3.1 Conventional Reachability-Based Localization for Procedures

We first formalize the reachability-based approach on top of our baseline analyzer
Airac. We call our analyzer based on this approach AiracReach.

When calling a procedure, AiracReach passes the memory parts that are reach-
able from global variables or parameters. Formally, given a call node call(fx,e)
and its input memory state m̂ (parameter-bound), AiracReach computes the fol-
lowing set of abstract locations (let Globals be the set of global variables in the
program):

R(fx, m̂) = Reach(Globals, m̂) ∪ Reach({x}, m̂)

We use Reach(X, m̂) to denote the set of abstract locations in m̂ that are (directly
or transitively) reachable from a location set X .

Reach(X, m̂) = lfp(λY.X ∪ OneHop(Y, m̂))

OneHop(X, m̂) is the set of locations that are directly reachable from X :

OneHop(X, m̂) =
⋃

x∈X m̂(x).2 ∪ {l | ⟨l, o, s⟩ ∈ m̂(x).3} ∪ {⟨l, f⟩ | ⟨l, {f}⟩ ∈ m̂(x).4}

Given an input memory m̂ to a call node call(fx,e), the definition of the
transfer function f̂ is changed as follows:

f̂ call(fx,e) m̂ = m̂ ′|R(fx,m̂′) where m̂ ′ = m̂{V̂(e)(m̂)//{x}}

We also have to consider procedure returns. When a procedure returns to a
return node, in order to recover the local information from the corresponding
call node, we combine the returned memory with the memory parts that were
not propagated to called procedures from the call node. Note that the issue of
cutpoints [20] is not involved in our analysis because our semantics is store-based
and every object is represented by a fixed location.

3.2 Access-Based Localization for Procedures

For performing the localization more aggressively, we separate the entire analysis
into two phases: (1) the set of abstract locations that are accessed by a procedure
during actual analysis is conservatively estimated by a pre-analysis; (2) then, the
actual analysis uses the access-information and filters out memory entries that
will definitely not be accessed by called procedures. The pre-analysis is derived
from the abstract semantics of the original analysis by applying conservative
abstractions. We call our analyzer based on the new technique AiracProcAcc.

Pre-analysis. For ensuring the correctness of the actual analysis, the pre-
analysis should be an over-approximation of the actual analysis. The pre-analysis
should not only find locations that are accessed in real executions, but find a set
of abstract locations that contains all locations required by the actual analysis.
For example, consider an expression *p. Suppose p points to a variable a dur-
ing real execution. Suppose further, during actual analysis, p points to variables
a and b, where b is a by-product of abstraction. In this case, our pre-analysis

362 H. Oh, L. Brutschy, and K. Yi

3.1 Conventional Reachability-Based Localization for Procedures

We first formalize the reachability-based approach on top of our baseline analyzer
Airac. We call our analyzer based on this approach AiracReach.

When calling a procedure, AiracReach passes the memory parts that are reach-
able from global variables or parameters. Formally, given a call node call(fx,e)
and its input memory state m̂ (parameter-bound), AiracReach computes the fol-
lowing set of abstract locations (let Globals be the set of global variables in the
program):

R(fx, m̂) = Reach(Globals, m̂) ∪ Reach({x}, m̂)

We use Reach(X, m̂) to denote the set of abstract locations in m̂ that are (directly
or transitively) reachable from a location set X .

Reach(X, m̂) = lfp(λY.X ∪ OneHop(Y, m̂))

OneHop(X, m̂) is the set of locations that are directly reachable from X :

OneHop(X, m̂) =
⋃

x∈X m̂(x).2 ∪ {l | ⟨l, o, s⟩ ∈ m̂(x).3} ∪ {⟨l, f⟩ | ⟨l, {f}⟩ ∈ m̂(x).4}

Given an input memory m̂ to a call node call(fx,e), the definition of the
transfer function f̂ is changed as follows:

f̂ call(fx,e) m̂ = m̂ ′|R(fx,m̂′) where m̂ ′ = m̂{V̂(e)(m̂)//{x}}

We also have to consider procedure returns. When a procedure returns to a
return node, in order to recover the local information from the corresponding
call node, we combine the returned memory with the memory parts that were
not propagated to called procedures from the call node. Note that the issue of
cutpoints [20] is not involved in our analysis because our semantics is store-based
and every object is represented by a fixed location.

3.2 Access-Based Localization for Procedures

For performing the localization more aggressively, we separate the entire analysis
into two phases: (1) the set of abstract locations that are accessed by a procedure
during actual analysis is conservatively estimated by a pre-analysis; (2) then, the
actual analysis uses the access-information and filters out memory entries that
will definitely not be accessed by called procedures. The pre-analysis is derived
from the abstract semantics of the original analysis by applying conservative
abstractions. We call our analyzer based on the new technique AiracProcAcc.

Pre-analysis. For ensuring the correctness of the actual analysis, the pre-
analysis should be an over-approximation of the actual analysis. The pre-analysis
should not only find locations that are accessed in real executions, but find a set
of abstract locations that contains all locations required by the actual analysis.
For example, consider an expression *p. Suppose p points to a variable a dur-
ing real execution. Suppose further, during actual analysis, p points to variables
a and b, where b is a by-product of abstraction. In this case, our pre-analysis

Key Observation
2 Hakjoo Oh and Kwangkeun Yi

Table 1. Reachability-based Approach Is Too Conservative.

Program LOC accessed memory
/ reachable memory

spell-1.0 2,213 5 / 453 (1.1%)
barcode-0.96 4,460 19 / 1175 (1.6%)
httptunnel-3.3 6,174 10 / 673 (1.5%)
gzip-1.2.4a 7,327 22 / 1002 (2.2%)
jwhois-3.0.1 9,344 28 / 830 (3.4%)
parser 10,900 75 / 1787 (4.2%)
bc-1.06 13,093 24 / 824 (2.9%)
less-290 18,449 86 / 1546 (5.6%)

the called procedure bodies. Table 1 shows, given a reachability-based localized
input state to a procedure, how much is actually accessed inside the (directly or
transitively) called procedures.1 For each a/b (r%) in the table, a is the average
number of memory entries accessed in the called procedures, b is the average size
of the reachable input state, and r is their ratio. The results show that only a
few reachable memory entries were actually accessed: procedures accessed only
1.1%–5.6% of reachable memory states. Nonetheless, the reachability-based ap-
proach propagates all the reachable parts to procedures. So, it’s possible for
a procedure body to be needlessly recomputed for input memory states whose
only di�erences lie in the reachable-but-unaccessed portions. This means that
the reachability-based approach is too conservative for real C programs and
hence is ine⇥cient both in time and memory cost. This finding originates from
the di⇥culty of having a fast enough industrial-strength static analyzers [10–12,
16] that uses the reachability-based localization.

In this paper we present a new memory localization technique that localizes
the input memory states more aggressively than the reachability-based approach.
In our approach, in addition to excluding unreachable memory entries from the
localized state, we also exclude memory entries that are reachable but unac-
cessed. The main problem is finding the memory parts that will be needed to
analyze a procedure before actually analyzing the procedure. We solve the prob-
lem by staging: (1) the set of memory cells that are accessed by a procedure is
conservatively estimated by a pre-analysis before the actual analysis; (2) then,
the actual analysis uses the accessed-cells-information and filters out memory
cells that will definitely not be accessed by called procedures. The pre-analysis
aggressively applies a conservative abstraction to the abstract semantics of the
original analysis and runs with a small cost. By reducing the sizes of localized

1 The reachable- and accessed-memory ratio is an average over the procedures. We
ran the reachability-based analysis and recorded, for every analysis of procedures,
the sizes of localized memory and its accessed portion. We average the size ratio over
the total number of analyses of procedures.

Reachability is too conservative

average : 4%

Access-based Localization

• Staging the analysis into two phasesAccess-based Localization

pre-analysis
conservative

access information
actual analysis

f
{a,b,c}Over-approximation of

actual access info.

{a,b}

∪

actual access info.

VMCAI’1
1

Access-based LocalizationAccess-based Localization

pre-analysis
conservative

access information
actual analysis

f
call f

non-accessible

{a,b,c}

Our Pre-analysisOur Pre-analysis

• abstract domain

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) ⇧ ⇥(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) ⇧ ⇥(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) ⇧ ⇥(lfp(F̂p))

27

• abstract semantic function

ŝpre = fixF̂p

ImplementationImplementation on Sparrow
(modifying semantic function)

where f̂c ⇧ Ŝ ⇤ Ŝ is a semantic function at control point c.

f̂c(ŝ) =

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

ŝ[L̂(lv)(ŝ) w⌃⇤ V̂(e)(ŝ)] cmd(c) = lv := e

ŝ[L̂(lv)(ŝ) w⌃⇤ �⌥,⌥, {�l, [0, 0], V̂(e)(ŝ).1 },⌥] cmd(c) = lv := alloc([e]l)

ŝ[L̂(lv)(ŝ) w⌃⇤ �⌥,⌥,⌥, {�l, {x} }] cmd(c) = lv := alloc({x}l)

ŝ[x ⌃⇤ �ŝ(x).1 ⌦ [�⌅, u(V̂(e)(ŝ).1)], ŝ(x).2, ŝ(x).3, ŝ(x).4] cmd(c) = assume(x < e)

ŝ[x ⌃⇤ V̂(e)(ŝ)] cmd(c) = call(fx, e)

ŝ cmd(c) = returnf

Auxiliary functions V̂(e)(ŝ) and L̂(lv)(ŝ) computes abstract values for e and ab-

stract locations for lv , respectively, under ŝ. The e�ect of node lv := e is to

(weakly) update the abstract value of e into abstract locations L̂(lv)(ŝ).2 The ar-

ray allocation command lv := alloc([e]l) creates a new array block with o�set 0

and size e. The structure block command lv := alloc({x}l) creates a new structure

block. In both cases, we use the allocation site l as the base address, by which

many (possibly infinite) concrete locations are summarized by finite abstract loca-

tions. Assume assume(x < e) confines the value of x so that the resulting memory

state satisfies the condition (u([a, b]) = b). The call command call(fx, e) binds the

formal parameter x to the value of actual parameter e. Note that the output of

the call node is the memory state that flows into the body of the called procedure,

not the memory state returned from the call. The abstract semantics for procedure

calls show that our analysis is context-insensitive: it ignores the calling context in

which procedures are invoked.3

Lemma 1 (Soundness) If � ⇥ F ↵ F̂ ⇥ �, then, �(lfpF) ↵ lfpF̂ .
2For brevity, we consider only weak updates. Applying strong updates is orthogonal to our

localization techniques.
3Extention to context-sensitivity is presented in Chapter 5

11

where f̂c ⇧ Ŝ ⇤ Ŝ is a semantic function at control point c.

f̂c(ŝ) =

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

ŝ[L̂(lv)(ŝ) w⌃⇤ V̂(e)(ŝ)] cmd(c) = lv := e

ŝ[L̂(lv)(ŝ) w⌃⇤ �⌥,⌥, {�l, [0, 0], V̂(e)(ŝ).1 },⌥] cmd(c) = lv := alloc([e]l)

ŝ[L̂(lv)(ŝ) w⌃⇤ �⌥,⌥,⌥, {�l, {x} }] cmd(c) = lv := alloc({x}l)

ŝ[x ⌃⇤ �ŝ(x).1 ⌦ [�⌅, u(V̂(e)(ŝ).1)], ŝ(x).2, ŝ(x).3, ŝ(x).4] cmd(c) = assume(x < e)

ŝ[x ⌃⇤ V̂(e)(ŝ)] cmd(c) = call(fx, e)

ŝ cmd(c) = returnf

Auxiliary functions V̂(e)(ŝ) and L̂(lv)(ŝ) computes abstract values for e and ab-

stract locations for lv , respectively, under ŝ. The e�ect of node lv := e is to

(weakly) update the abstract value of e into abstract locations L̂(lv)(ŝ).2 The ar-

ray allocation command lv := alloc([e]l) creates a new array block with o�set 0

and size e. The structure block command lv := alloc({x}l) creates a new structure

block. In both cases, we use the allocation site l as the base address, by which

many (possibly infinite) concrete locations are summarized by finite abstract loca-

tions. Assume assume(x < e) confines the value of x so that the resulting memory

state satisfies the condition (u([a, b]) = b). The call command call(fx, e) binds the

formal parameter x to the value of actual parameter e. Note that the output of

the call node is the memory state that flows into the body of the called procedure,

not the memory state returned from the call. The abstract semantics for procedure

calls show that our analysis is context-insensitive: it ignores the calling context in

which procedures are invoked.3

Lemma 1 (Soundness) If � ⇥ F ↵ F̂ ⇥ �, then, �(lfpF) ↵ lfpF̂ .
2For brevity, we consider only weak updates. Applying strong updates is orthogonal to our

localization techniques.
3Extention to context-sensitivity is presented in Chapter 5

11

call-point c (such that cmd(c) = call(fx, e)), the semantic function f̂c for the call

statement is changed as follows:

f̂c(ŝ) = ŝ�|access(f) where ŝ� = ŝ[x ⇥� V̂(e)(ŝ)]

After parameter bound (ŝ�), the memory state is restricted to the set of accessed

locations access(f) that represents the set of abstract locations that are accessed

by procedure f :

access(f) =
�

g⇥callees(f)(
�

c⇥control(g)A(c)(ŝpre))

where callees(f) denotes the set of procedures, including f , that are reachable from

f via the call-graph and control(f) the set of control points in procedure f , and

ŝpre is the analysis result from the pre-analysis. The following theorem ensures the

safety of the localization.

Theorem 1 (Safety of Access-based Localization) For all procedure f , access(f)

conservatively estimates abstract locations that are accessed during the original anal-

ysis of f .

Proof Abstract location a is accessed inside procedure f if and only if it is ac-

cessed either in the body of f or in the bodies of procedures that are called by

(reachable via call-graph from) f , which is the definition of access. Moreover, be-

cause ŝpre conservatively approximates the abstract memories of all program points

(lemma 6) and A is monotone (lemma 4), A(n)(ŝpre) contains all the abstract lo-

cations that would be accessed in actual analysis. Thus, access is a safe estimation

of accessed locations.

�

Access-based localization can be used in combination with the reachability-based

approach to localize memory states more aggressively. Given an input memory

state ŝ to a call point c such that cmd(c) = call(fx, e), reachable locations R(fx, ŝ),

30

call-point c (such that cmd(c) = call(fx, e)), the semantic function f̂c for the call

statement is changed as follows:

f̂c(ŝ) = ŝ�|access(f) where ŝ� = ŝ[x ⇥� V̂(e)(ŝ)]

After parameter bound (ŝ�), the memory state is restricted to the set of accessed

locations access(f) that represents the set of abstract locations that are accessed

by procedure f :

access(f) =
�

g⇥callees(f)(
�

c⇥control(g)A(c)(ŝpre))

where callees(f) denotes the set of procedures, including f , that are reachable from

f via the call-graph and control(f) the set of control points in procedure f , and

ŝpre is the analysis result from the pre-analysis. The following theorem ensures the

safety of the localization.

Theorem 1 (Safety of Access-based Localization) For all procedure f , access(f)

conservatively estimates abstract locations that are accessed during the original anal-

ysis of f .

Proof Abstract location a is accessed inside procedure f if and only if it is ac-

cessed either in the body of f or in the bodies of procedures that are called by

(reachable via call-graph from) f , which is the definition of access. Moreover, be-

cause ŝpre conservatively approximates the abstract memories of all program points

(lemma 6) and A is monotone (lemma 4), A(n)(ŝpre) contains all the abstract lo-

cations that would be accessed in actual analysis. Thus, access is a safe estimation

of accessed locations.

�

Access-based localization can be used in combination with the reachability-based

approach to localize memory states more aggressively. Given an input memory

state ŝ to a call point c such that cmd(c) = call(fx, e), reachable locations R(fx, ŝ),

30

Reach vs. Access

0

25

50

75

100

spell barcodehttptunnel gzip jwhois parser bc twolf tar less make AVERAGE

8
13

19

2452

21

32
10

5

100100100100100100100100100100100100

Reach
Access

78.5%-98.5% reduction
92.1% in average

23

20m ➔ 4m 17h ➔ 15m

24

Baseline vs. Reach

spell barcode httptunnel gzip jwhois parser bc tar make

112

72

16

3135

23

50

88

115

100100100100100100100100100

Baseline Reach
3h ➔ 50m

~6x speed-up

25

Pre-analysis Overhead

• Small overhead compared to the total analysis
time

• 0.1 ~ 8%

Program LOC Time
Overhead

Total Pre

gzip 7,327 95s 1.3s 1.4%

bc 13,093 730s 4.1s 0.6%

bash 105,174 2011s 20.2s 1%

26

Block-level Localization

M = P � R

P � Q

M � = Q � R

M = P � R

M � = Q � R

P � Q

loops branches

C

M = P � R

P � Q

M � = Q � R

basic blocks

Access-based localization at any level

27

Block-level Localization

0

25

50

75

100

spell barcode httptunnel gzip jwhois parser bc twolf tar less make AVERAGE

69

91

70
65

47

75
70

74

58

69
59

86

100100100100100100100100100100100100

AccessProc
AccessBlock

On average 31% reduction in time (k=6)

Precision

• No precision loss

• Sometimes, even improved

28

int g;

void f () {
 while (...) { ... }
}

void main () {
g = 0; f ();
g = 1; f ();

}

g : [0,0] [1,1] = [0,+oo]

g : [0,+oo] vs. [1,1]

f does not
access g

Temporal Localization

29

Temporal Localization

y:=x

t:=1

z:=y

y:=x

t:=1

z:=y

x

y

t

30

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

y

z

z

v

v

a
b

Sparse Analysis

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

replace syntactic dependency
by semantic dependency

(data dependency)

“Right Part at Right Moment”

PL
DI’1

2

Precision-Preserving
Sparse Analysis Framework

31

Theorem. (preservation of soundness and precision)

“An important strength is that the theoretical result is very
general ... The result should be highly influential on future
work in sparse analysis.” (from PLDI reviews)

Towards Sparse Version

 Analyzer computes the fixpoint of

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

where � and ⇥ are pointwise liftings of abstract and concretization function �S and

⇥S (such that 2S �⇧⌅�
�S

⇥S Ŝ), respectively. That is, we abstract the set of reachable

states by a single abstract state. Abstract memory state

Ŝ = L̂⇧ V̂

denotes a finite map from abstract locations (L̂) to abstract values (V̂).

L̂ = Var + AllocSite + AllocSite ⇥ FieldName

V̂ = Ẑ⇥ 2L̂ ⇥ 2AllocSite�Ẑ�Ẑ ⇥ 2AllocSite�2FieldName

Ẑ = {[l, u] | l, u ⌥ Z {�⌃,+⌃} ⌦ l ⇤ u} {�}

An abstract location may be a program variable (Var), an allocation site (AllocSite),

or a structure field (AllocSite ⇥FieldName). All elements of an array allocated at

allocation site l are collectively represented by l. The abstract location for field x

of a structure allocated at l is represented by ↵l, x�. An abstract value is a quadru-

ple. Numeric values are tracked by the interval values (Ẑ). Points-to information is

kept by the second component (2L̂): it indicates pointer targets an abstract loca-

tions may point to. Allocated arrays of memory locations are represented by array

blocks (2AllocSite�Ẑ�Ẑ): an array block ↵l, o, s� consists of abstract base address (l),

o�set (o), and size (s). A structure block ↵l, {x}� ⌥ 2AllocSite�2FieldName abstracts

structure values that are allocated at l and have a set of fields {x}.

2.4.2 Abstract Semantic Function

Abstract semantics is characterized by the least fixpoint of abstract semantic func-

tion F̂ ⌥ (C⇧ Ŝ)⇧ (C⇧ Ŝ) defined as,

F̂ (X̂) = ⇤c ⌥ C.f̂c(
�

c�⇤⇥c

X̂(c⇤)). (2.3)

10

• baseline non-sparse one

• unrealizable sparse version

• realizable sparse version

-

32

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

33

Unrealizable Sparse One

Data Dependency

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

c0 cnci

l 2 D(c0) l 2 U(cn)l 62 D(ci)

l

34

Unrealizable Sparse One

Data Dependency

Preserving

Def-Use Sets

2. Sparse Analysis Framework
2.1 Notation
Given function f A � B, we write f |C for the restriction
of function f to the domain dom(f) � C. We write f\C for the
restriction of f to the domain dom(f)� C. We abuse the notation
f |a and f\a for the domain restrictions on singleton set {a}. We
write f [a ↵� b] for the function got from function f by changing
the value for a to b. We write f [a1 ↵� b1, · · · , an ↵� bn] for
f [a1 ↵� b1] · · · [an ↵� bn]. We write f [{a1, · · · , an} w↵� b] for
f [a1 ↵� f(a1) ✓ b, · · · , an ↵� f(an) ✓ b] (weak update).

2.2 Program
A program is a tuple ⇣C, ⌅�⌘ where C is a finite set of con-
trol points and ⌅�⌃ C ⇥ C is a relation that denotes control
flows of the program; c⇥ ⌅� c indicates that c is a next control
point of c⇥. Each control point is associated with a command, de-
noted cmd(c). A path p = p0p1 . . . pn is a sequence of control
points such that p0 ⌅� p1 ⌅� · · · ⌅� pn. We write Paths =
lfp⇤P.{c0c1 | c0 ⌅� c1}�{p0 . . . pnc | p P ✏ pn ⌅� c} for the
set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an
invariant [[P]] C � 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S =
L � V, maps concrete locations (L) to concrete values (V).
The collecting semantics is characterized by the least fixpoint of
semantic function F (C� 2S)� (C� 2S) such that,

F (X) = ⇤c C.fc(
⇥

c0⇤�c

X(c⇥)). (1)

where fc 2S � 2S is a semantic function at control point c.
Because our framework is independent from target languages, we
leave out the definition of the concrete semantic function fc.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following
Galois connection

C� 2S ���⌥��
�

⇥
C� Ŝ (2)

where � and ⇥ are pointwise liftings of abstract and concretization
function �S and ⇥S (such that 2S ����⌥���

�S

⇥S Ŝ), respectively.
We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ � V̂ where L̂ is a finite set of
abstract locations, and V̂ is a (potentially infinite) set of abstract
values. All non-relational abstract domains, such as intervals [9],
are members of this family. Furthermore, the family covers some
numerical, relational domains. Practical relational analyses exploit
packed relationality [4, 13, 34, 43]; the abstract domain is of form
Packs � R̂ where Packs is a set of variable groups selected to be
related together. R̂ denotes numerical constraints among variables
in those groups. In such packed relational analysis, each variable
pack is treated as an abstract location (L̂) and numerical constraints
amount to abstract values (V̂). Examples of the numerical con-
straints are domain of octagons [34] and polyhedrons [12]. In prac-
tice, relational analyses are necessarily packed relational [4, 13]
because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ (C� Ŝ)� (C� Ŝ) defined as,

F̂ (X̂) = ⇤c C.f̂c(
�

c0⇤�c

X̂(c⇥)). (3)

where f̂c Ŝ � Ŝ is a monotone abstract semantic function for
control point c. We assume that F̂ is sound with respect to F , i.e.,

�⇧F ◆ F̂ ⇧�, then the soundness of abstract semantics is followed
by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to
propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c⇥ to control point c.

To make the analysis sparse, we need to eliminate this un-
necessary propagation by making the semantic function propagate
abstract values along data dependency, not control flows; that is,
we make the semantic function propagate only the abstract values
newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse while preserving its precision
and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.
They are defined in terms of abstract semantics, i.e., abstract se-
mantic function f̂c, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

(fixF̂)(c⇥).f̂c(ŝ)(l) ⌦= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

(fixF̂)(c⇥).f̂c(ŝ)|D(c) ⌦= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd � x := e | ⇤x := e
e � x | &x | ⇤x.

The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ⌅ Ŝ = Var ⇤ 2Var

f̂c(ŝ) =

8
>><

>>:

ŝ[x ⇧⇤ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y ⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

Ê(e)(ŝ) =

8
<

:

ŝ(x) e = x
{x} e = &xS

y⇤ŝ(x) ŝ(y) e = �x

Now suppose that we analyze program 10⌅x := &y; 11⌅⇤p := &z;
12⌅y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 11⌅ according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10⇥) = {x} U(10⇥) = �
D(11⇥) = {x, y} U(11⇥) = {p, x, y}
D(12⇥) = {y} U(12⇥) = {x}

2. Sparse Analysis Framework
2.1 Notation
Given function f A � B, we write f |C for the restriction
of function f to the domain dom(f) � C. We write f\C for the
restriction of f to the domain dom(f)� C. We abuse the notation
f |a and f\a for the domain restrictions on singleton set {a}. We
write f [a ↵� b] for the function got from function f by changing
the value for a to b. We write f [a1 ↵� b1, · · · , an ↵� bn] for
f [a1 ↵� b1] · · · [an ↵� bn]. We write f [{a1, · · · , an} w↵� b] for
f [a1 ↵� f(a1) ✓ b, · · · , an ↵� f(an) ✓ b] (weak update).

2.2 Program
A program is a tuple ⇣C, ⌅�⌘ where C is a finite set of con-
trol points and ⌅�⌃ C ⇥ C is a relation that denotes control
flows of the program; c⇥ ⌅� c indicates that c is a next control
point of c⇥. Each control point is associated with a command, de-
noted cmd(c). A path p = p0p1 . . . pn is a sequence of control
points such that p0 ⌅� p1 ⌅� · · · ⌅� pn. We write Paths =
lfp⇤P.{c0c1 | c0 ⌅� c1}�{p0 . . . pnc | p P ✏ pn ⌅� c} for the
set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an
invariant [[P]] C � 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S =
L � V, maps concrete locations (L) to concrete values (V).
The collecting semantics is characterized by the least fixpoint of
semantic function F (C� 2S)� (C� 2S) such that,

F (X) = ⇤c C.fc(
⇥

c0⇤�c

X(c⇥)). (1)

where fc 2S � 2S is a semantic function at control point c.
Because our framework is independent from target languages, we
leave out the definition of the concrete semantic function fc.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following
Galois connection

C� 2S ���⌥��
�

⇥
C� Ŝ (2)

where � and ⇥ are pointwise liftings of abstract and concretization
function �S and ⇥S (such that 2S ����⌥���

�S

⇥S Ŝ), respectively.
We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ � V̂ where L̂ is a finite set of
abstract locations, and V̂ is a (potentially infinite) set of abstract
values. All non-relational abstract domains, such as intervals [9],
are members of this family. Furthermore, the family covers some
numerical, relational domains. Practical relational analyses exploit
packed relationality [4, 13, 34, 43]; the abstract domain is of form
Packs � R̂ where Packs is a set of variable groups selected to be
related together. R̂ denotes numerical constraints among variables
in those groups. In such packed relational analysis, each variable
pack is treated as an abstract location (L̂) and numerical constraints
amount to abstract values (V̂). Examples of the numerical con-
straints are domain of octagons [34] and polyhedrons [12]. In prac-
tice, relational analyses are necessarily packed relational [4, 13]
because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ (C� Ŝ)� (C� Ŝ) defined as,

F̂ (X̂) = ⇤c C.f̂c(
�

c0⇤�c

X̂(c⇥)). (3)

where f̂c Ŝ � Ŝ is a monotone abstract semantic function for
control point c. We assume that F̂ is sound with respect to F , i.e.,

�⇧F ◆ F̂ ⇧�, then the soundness of abstract semantics is followed
by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to
propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c⇥ to control point c.

To make the analysis sparse, we need to eliminate this un-
necessary propagation by making the semantic function propagate
abstract values along data dependency, not control flows; that is,
we make the semantic function propagate only the abstract values
newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse while preserving its precision
and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.
They are defined in terms of abstract semantics, i.e., abstract se-
mantic function f̂c, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

(fixF̂)(c⇥).f̂c(ŝ)(l) ⌦= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l L̂ | �ŝ ◆
�

c0⇤�c

(fixF̂)(c⇥).f̂c(ŝ)|D(c) ⌦= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd � x := e | ⇤x := e
e � x | &x | ⇤x.

The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ⌅ Ŝ = Var ⇤ 2Var

f̂c(ŝ) =

8
>><

>>:

ŝ[x ⇧⇤ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y ⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w⇧⇤ Ê(e)(ŝ)] cmd(c) = �x := e

Ê(e)(ŝ) =

8
<

:

ŝ(x) e = x
{x} e = &xS

y⇤ŝ(x) ŝ(y) e = �x

Now suppose that we analyze program 10⌅x := &y; 11⌅⇤p := &z;
12⌅y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 11⌅ according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10⇥) = {x} U(10⇥) = �
D(11⇥) = {x, y} U(11⇥) = {p, x, y}
D(12⇥) = {y} U(12⇥) = {x}

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

Data Dependency Example

35

x = &y *p = &z y = x

Def

Use

{x}

ɸ

{y}{a, b}

{p, a, b} {x}

x

36

Realizable Sparse One

Realizable Data Dependency

Note that U(11⇥) contains D(11⇥) because of the weak update (w⌥⌅):
the semantics of weak update ŝ[l

w⌥⌅ v] = ŝ[l ⌥⌅ ŝ(l) � v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⇤ C� L̂� C defined as follows:

c0
l cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10⇥ x 11⇥ and 11⇥ x 12⇥.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l du cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D(c0) ⌦ U(cn) ↵ �i ⇧ (0, n).l ⌃⇧ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10⇥ x du 11⇥, 10⇥ x du

12⇥, and 11⇥ x du 12⇥ in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = �c ⇧ C.f̂c(
�

c0 l c

X̂(c�)|l).

As this definition is only different in that it is defined over data
dependency (), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

�c ⇧ C.�l ⇧ D(c).Ss(c)(l) = S(c)(l).
The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation a⇤ C � L̂ � C defined as
follows:

c0
l a cn , c0 . . . cn ⇧ Paths, l ⇧ L̂.

l ⇧ D̂(c0) ⌦ Û(cn) ↵ �i ⇧ (0, n).l ⌃⇧ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = �c ⇧ C.f̂c(
�

c0 l ac

X̂(c�)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.
Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10�) = {x} U(10�) = �
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10�) = {x} Û(10�) = �
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11⇥ is not included in approximated use set Û(11⇥).
With this approximation, abstract value of x at 10⇥ is not propagated
to 12⇥, while it is propagated in the original analysis (10⇥ x 12⇥, but
10⇥ ⌃ x a 12⇥). However, if {x} ⇤ Û(11⇥), then the abstract value

Preserving

If the following two conditions hold

still

37

Conditions of &

• over-approximation

• spurious definitions should be also included in uses

spurious definitions

Why the Conditions of &

Def

Use

{x}

ɸ

{y}{a, b}

{p, a, b} {x}

x

38

x = &y *p = &z y = x

Why the Conditions of &

Approx. Def

Approx. Use

{x}

ɸ

{y}{a, b, x}

{p, a, b} {x}

39

x = &y *p = &z y = x

D̂(c)� D(c) 6✓ Û(c)

{x}

x

Why the Conditions of &

{x}

ɸ

{y}

{x}

x

{a, b, x}

{p, a, b}

40

Approx. Def

Approx. Use

x = &y *p = &z y = x

D̂(c)� D(c) 6✓ Û(c)

{x}

Why the Conditions of &

{x}

ɸ

{y}

{x}

x

{a, b, x}

{p, a, b, x}

41

Approx. Def

Approx. Use

x = &y *p = &z y = x

{x}

Why the Conditions of &

{x}

ɸ

{y}

{x}

xx

{a, b, x}

{p, a, b, x}

42

Approx. Def

Approx. Use

x = &y *p = &z y = x

{x}

43

Hurdle: & Before
Analysis?

• Yes, by yet another analysis with further abstraction

• e.g., flow-insensitive abstraction

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) ⇧ ⇥(lfp(F̂p))

27

monotone, all the abstract locations that are accessed at c throughout the analysis

are captured by A(c)(ŝ), where ŝ =
�

c�⇤�c X̂(c⇥) is the input abstract memory at

fixpoint. However, because X̂ itself is computed from the original analysis (lfp(F̂)),

the accessed-locations-estimation phase would take at least as the same time as the

actual analysis. We have to find the accessed locations in a more e�cient way. We

do this by computing X̂ ⇥ that is more approximate than X̂, i.e., X̂ ⇧ X̂ ⇥.

Deriving a Further Abstraction We define a pre-analysis that computes such

a X̂ ⇥(⌃ X̂). To this end, we apply a conservative abstraction to the original anal-

ysis. The abstract domain C ⇤ Ŝ and semantic function F̂ ⌅ (C ⇤ Ŝ) ⇤ (C ⇤ Ŝ)
for the original (actual) analysis was defined as follows (the following is just a rep-

etition, for convenience, of the definition in Section 2.4) :

F̂ (X̂) = ⇤c ⌅ C.f̂c(
⇥

c�⇤�c

X̂(c⇥)). (3.1)

We apply a simple abstraction that ignores the orders of program statements (flow-

insensitivity). The abstract domain is obtained by defining a Galois connection:

C ⇤ Ŝ �⇤⇥�
�

⇥
Ŝ

such that,
� = ⇤X̂.

�
c⇤C X̂(c)

⇥ = ⇤ŝ.⇤c ⌅ C.ŝ

The semantic function F̂p : Ŝ ⇤ Ŝ is defined as follows:

F̂p = ⇤ŝ.(
⇥

c⇤C
f̂c(ŝ))

The following lemma shows that the pre-analysis is a conservative approximation

of the original analysis.

Lemma 6 lfp(F̂) ⇧ ⇥(lfp(F̂p))

27

• In implementation, U includes D

44

Existing Sparse Techniques
(developed mostly in dfa community)

• Different notion of data dependency

x ∈ D x ∈ Dmay x ∈ U

def-use chains fail to preserve original precision

45

Existing Sparse Techniques
(developed mostly in dfa community)

• Different notion of data dependency

x ∈ D x ∈ Dmay x ∈ D

our data dependency preserves original precision

46

Existing Sparse Techniques
(developed mostly in dfa community)

• Different notion of data dependency

• Existing sparse analyses are not general

• tightly coupled with particular analysis, or

• limited to a particular target language

x ∈ D x ∈ Dmay x ∈ D

Design and Implementation of
Sparse Global Analyses for C-like Languages

Hakjoo Oh Kihong Heo Wonchan Lee Woosuk Lee Kwangkeun Yi
Seoul National University

{pronto,khheo,wclee,wslee,kwang}@ropas.snu.ac.kr

Abstract
In this article we present a general method for achieving global
static analyzers that are precise, sound, yet also scalable. Our
method generalizes the sparse analysis techniques on top of the
abstract interpretation framework to support relational as well as
non-relational semantics properties for C-like languages. We first
use the abstract interpretation framework to have a global static
analyzer whose scalability is unattended. Upon this underlying
sound static analyzer, we add our generalized sparse analysis tech-
niques to improve its scalability while preserving the precision of
the underlying analysis. Our framework determines what to prove
to guarantee that the resulting sparse version should preserve the
precision of the underlying analyzer.

We formally present our framework; we present that existing
sparse analyses are all restricted instances of our framework; we
show more semantically elaborate design examples of sparse non-
relational and relational static analyses; we present their implemen-
tation results that scale to analyze up to one million lines of C pro-
grams. We also show a set of implementation techniques that turn
out to be critical to economically support the sparse analysis pro-
cess.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis

Keywords Static analysis, abstract interpretation, sparse analysis

1. Introduction
Precise, sound, scalable yet global static analyzers have been un-
achievable in general. Other than almost syntactic properties, once
the target property becomes slightly deep in semantics it’s been a
daunting challenge to achieve the four goals in a single static an-
alyzer. This situation explains why, for example, in the static er-
ror detection tools for full C, there exists a clear dichotomy: either
“bug-finders” that risk being unsound yet scalable or “verifiers”
that risk being unscalable yet sound. No such tools are scalable
to globally analyze million lines of C code while being sound and
precise enough for practical use.

In this article we present a general method for achieving global
static analyzers that are precise, sound, yet also scalable. Our ap-
proach generalizes the sparse analysis ideas on top of the abstract

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c� 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

interpretation framework. Since the abstract interpretation frame-
work [9, 11] guides us to design sound yet arbitrarily precise static
analyzers for any target language, we first use the framework to
have a global static analyzer whose scalability is unattended. Upon
this underlying sound static analyzer, we add our generalized sparse
analysis techniques to improve its scalability while preserving the
precision of the underlying analysis. Our framework determines
what to prove to guarantee that the resulting sparse version should
preserve the precision of the underlying analyzer.

Our framework bridges the gap between the two existing tech-
nologies – abstract interpretation and sparse analysis – towards
the design of sound, yet scalable global static analyzers. Note that
while abstract interpretation framework provides a theoretical knob
to control the analysis precision without violating its correctness,
the framework does not provide a knob to control the resulting an-
alyzer’s scalability preserving its precision. On the other hand, ex-
isting sparse analysis techniques [6, 14, 15, 19, 20, 24, 40, 42, 44]
achieve scalability, but they are mostly algorithmic and tightly cou-
pled with particular analyses.1 The sparse techniques are not gen-
eral enough to be used for an arbitrarily complicated semantic anal-
ysis.

Contributions Our contributions are as follows.

• We propose a general framework for designing sparse static
analysis. Our framework is semantics-based and precision-
preserving. We prove that our framework yields a correct sparse
analysis that has the same precision as the original.

• We present a new notion of data dependency, which is a key to
the precision-preserving sparse analysis. Unlike conventional
def-use chains, sparse analysis with our data dependency is
fully precise.

• We design sparse non-relational and relational analysis which
are still general as themselves. We can instantiate these designs
with a particular non-relational and relational abstract domains,
respectively.

• We prove the practicality of our framework by experimentally
demonstrating the achieved speedup of an industrial-strength
static analyzer [23, 26, 28, 35–38]. The sparse analysis can
analyze programs up to 1 million lines of C code with interval
domain and up to 100K lines of C code with octagon domain.

Outline Section 2 explains our sparse analysis framework. Sec-
tion 3 and 4 design sparse non-relational and relational analyes,
respectively, based on our framework. Section 5 discusses several
issues involved in the implementations. Section 6 presents the ex-
perimental studies. Section 7 discusses related work.

1 A few techniques [7, 39] are in general settings but instead they take
coarse-grained approach to sparsity.

General Sparse Analysis
Framework

A

Global Sparse Analysis Framework

Hakjoo Oh, Seoul National University
Kihong Heo, Seoul National University
Wonchan Lee, Seoul National University
Woosuk Lee, Seoul National University
Daejun Park, Seoul National University
Jeehoon Kang, Seoul National University
Kwangkeun Yi, Seoul National University

In this article we present a general method for achieving global static analyzers that are precise, sound,
yet also scalable. Our method, on top of the abstract interpretation framework, is a general sparse analysis
technique that supports relational as well as non-relational semantics properties for various programming
languages. Analysis designers first use the abstract interpretation framework to have a global and correct
static analyzer whose scalability is unattended. Upon this underlying sound static analyzer, analysis design-
ers add our generalized sparse analysis techniques to improve its scalability while preserving the precision
of the underlying analysis. Our method prescribes what to prove to guarantee that the resulting sparse
version should preserve the precision of the underlying analyzer.

We formally present our framework; we show that existing sparse analyses are all restricted instances
of our framework; we show more semantically elaborate design examples of sparse non-relational and re-
lational static analyses; we present their implementation results that scale to globally analyze up to one
million lines of C programs. We also show a set of implementation techniques that turn out to be critical to
economically support the sparse analysis process.

Categories and Subject Descriptors: F.3.2 [Semantics of Programming Languages]: Program Analysis

General Terms: Programming Languages, Program Analysis

Additional Key Words and Phrases: Static analysis, abstract interpretation, sparse analysis

ACM Reference Format:
ACM Trans. Program. Lang. Syst. V, N, Article A (January YYYY), 44 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Precise, sound, scalable yet global static analyzers have been unachievable in general.
Other than almost syntactic properties, once the target property becomes slightly deep
in semantics it’s been a daunting challenge to achieve the four goals in a single static
analyzer. This situation explains why, for example, in the static error detection tools for
full C, there exists a clear dichotomy: either “bug-finders” that risk being unsound yet
scalable or “verifiers” that risk being unscalable yet sound. No such tools are scalable
to globally analyze million lines of C code while being sound and precise enough for
practical use.

In this article we present a general method for achieving global static analyzers that
are precise, sound, yet also scalable. Our approach generalizes the sparse analysis
ideas on top of the abstract interpretation framework. Since the abstract interpreta-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

• General for

• programming languages,
e.g., imperative,
functional, oop, etc

• trace partitioning,
context-sensitivity, path-
sensitivity, loop-
unrolling, etc

Trace Semantics

A:4 Oh et al.

Our sparse analysis framework in Section 3 provides a general theory for designing
such a sparse analysis without violating the correctness and precision of the original
non-sparse analysis.

3. SPARSE ANALYSIS FRAMEWORK
In this section, we develop our sparse analysis framework. Given a static analysis
designed by abstract interpretation, our framework prescribes how to transform the
analysis into its sparse version without violating the analysis’ soundness and preci-
sion. In Section 3.2 and 3.3, we define the collecting semantics of the program. In
Section 3.4, we specify a family of baseline abstractions that our framework considers.
Then, we derive the sparse version of the baseline analysis in the remaining sections.

Though we use the C language as a main target in our experiments, we do not re-
strict the language. Our sparse analysis framework is general and applicable to vari-
ous programming languages (functional, object-oriented, etc), once their semantics are
operationally defined as transition systems.

3.1. Notation
We write P(S) for the power set of S. Given partial function f 2 A ! B, we write
dom(f) for the domain of f . We write f |

C

for the restriction of function f to the domain
dom(f) \ C such that f |

C

(x) = f(x) if x 2 dom(f) \ C and ? otherwise. We write f\
C

for the restriction of f to the domain dom(f) \ C. We abuse the notation f |
a

and f\
a

for the domain restrictions on singleton set dom(f)\{a} and dom(f)\{a}, respectively.
We write f [a 7! b] for function f with the value of a replaced by b. We write f [a1 7!
b1, · · · , an 7! b

n

] for f [a1 7! b1] · · · [an 7! b

n

]. For all domains, we assume appropriate
? and > as well as order v and join t. In particular, we define t,v,>,? for functions
in a pointwise fashion, e.g., f t g = �x.f(x) t g(x). We write f [{a1, · · · , an}

w7! b] for
f [a1 7! f(a1) t b, · · · , a

n

7! f(a
n

) t b] (weak update).
Given a (potentially infinite) set S, we write S

+ for the set of all finite non-empty
sequences of elements of S. When � is a finite sequence, �

k

denotes the (k+1)th element
of the sequence, �0 the first element, and �a the last element. Given a sequence � 2 S

+

and an element s 2 S, � · s denotes a sequence obtained by appending s to �.

3.2. Programs
We describe a program’s semantics as a transition system (S,!, S

◆

), where S is the
set of states of the program, (!) ✓ S ⇥ S is the transition relation describing how the
program execution progresses from one state to the next state, and S

◆

✓ S denotes
the set of initial states. A sequence � of states is said to be a trace if � is a (partial)
execution sequence, i.e., �0 2 S

◆

^ 8k.�
k

! �

k+1. We abuse the notion of transition
relation ! for traces, i.e., �0 ! � () 9s.(� = �

0 · s) ^ (�0
a ! s).

3.3. Collecting Semantics
The collecting semantics [[P]] 2 P(S+) of program P is the set of all finite traces of P :

[[P]] = {� 2 S+ | �0 2 S
◆

^ 8k.�
k

! �

k+1}

Note that the semantics [[P]] is the least fixpoint of the semantic function F 2 P(S+) !
P(S+), i.e., [[P]] = lfpF , defined as follows:

F (⌃) = S
◆

[{� · s | � 2 ⌃ ^ �a ! s}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Semantics
Global Sparse Analysis Framework A:5

3.4. Baseline Abstraction
We abstract the collecting semantics of program P by the following Galois connections:

P(S+) ���! ���
↵1

�1

�! P(S+) ���! ���
↵2

�2

�! Ŝ

The abstraction consists of two steps:

(1) Partitioning abstraction (↵1, �1): we abstract the set of traces (P(S+)) into parti-
tioned sets of traces (�! P(S+), where � is the set of partitioning indices).

(2) State abstraction (↵2, �2): for each partition, the associated set of traces is ab-
stracted into an abstract state (Ŝ) that over-approximates the reachable states of
the traces.

In Section 3.4.1, we specify the partitioning abstraction: the definitions of (↵1, �1) and
semantic function F

⇡ 2 (� ! P(S+)) ! (� ! P(S+)). In Section 3.4.2, we will define
the final abstract domain (� ! Ŝ) and abstract semantic function F̂ 2 (� ! Ŝ) !
(�! Ŝ) as a further abstraction of the partitioning abstraction.

3.4.1. Partitioning Abstraction. Following [Mauborgne and Rival 2005], we first partition
the set of traces. Suppose we are given a partitioning function ⇡ : �! P(S+) such that
⇡ is either a covering (i.e., S+ =

S
i2� ⇡(i)) or a partition (i.e., ⇡ is a covering and 8i, i0 2

�. i 6= i

0 =) ⇡(i) \ ⇡(i0) = ;). Then, the following ↵1 and �1

↵1(⌃) = �i 2 �.⌃ \ ⇡(i)

�1(�) =
[

i2�

�(i)

form a Galois connection:

P(S+) ���! ���
↵1

�1

�! P(S+).

We define the semantic function F

⇡ 2 (�! P(S+))! (�! P(S+)) as follows:

F

⇡(�) = �i 2 �.↵1(S◆)(i) [f

i

(
[

i

0)�i

�(i0))

where f

i

2 P(S+) ! P(S+) is the semantic function for partitioning index i and ()
�

) ✓ �⇥� is the transition relation between partitioning indices.

Definition 3.1 (Semantic Function). Semantic function f

i

2 P(S+) ! P(S+) under-
takes one step state transitions for index i:

f

i

(⌃) = {� | �0 2 ⌃ ^ �

0 ! � ^ � 2 ⇡(i)}.

2

Given a set ⌃ of input traces, f
i

makes their transitions one step forward if the result-
ing trace � arrives at the current partitioning index i.

Definition 3.2 (Transition Relation). Transition relation ()) ✓ � ⇥ � ⇥ (� !
P(S+)) is a ternary relation such that i

0)
�

i indicates that one step transition in
� may happen from i

0 to i according to the partitioning function ⇡:

()) = {(i0, i,�) | �0 2 �(i0) ^ �

0 ! � ^ � 2 ⇡(i)}.

2

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Global Sparse Analysis Framework A:7

3.4.2. State Abstraction. Next, we abstract the partitioned collecting semantics by ab-
stracting each partition’s traces into an abstract state. Suppose we have abstraction
and concretization functions for set of traces, i.e., ↵S and �S such that

P(S+) ���! ���
↵S

�S Ŝ

and ↵S is distributive over [, i.e., 8⌃1,⌃2 ✓ S+. ↵S(⌃1 [⌃2) = ↵S(⌃1) t ↵S(⌃2). Then,
the state abstraction is defined as the following Galois connection:

�! P(S+) ���! ���
↵2

�2

�! Ŝ

where ↵2 and �2 are pointwise liftings of ↵S and �S, respectively, i.e.,

↵2(�) = �i 2 �.↵S(�(i))

�2(�̂) = �i 2 �.�S(�̂(i))

We consider a particular, yet general enough, family of abstract domains such that
Ŝ is of form L̂ ! V̂ where L̂ is a finite set of abstract locations, and V̂ is a (potentially
infinite) set of abstract values. First, all non-relational abstract domains, such as in-
tervals [Cousot and Cousot 1977], are members of this family. Furthermore, the family
also covers some numerical, relational domains. Practical relational analyses exploit
packed relationality [Cousot et al. 2009; Miné 2006b; Venet and Brat 2004; Blanchet
et al. 2003]; the abstract domain is of form Packs! R̂ where Packs is a set of variable
groups selected to be related together. R̂ denotes numerical constraints among vari-
ables in those groups. In such packed relational analysis, each variable pack is treated
as an abstract location (L̂) and numerical constraints amount to abstract values (V̂).
Example of the numerical constraints are the domains of octagons [Miné 2006b] and
polyhedra1 [Cousot and Halbwachs 1978].

The final abstract semantics is characterized as the least fixpoint of the following
abstract semantic function F̂ 2 (�! Ŝ)! (�! Ŝ):

F̂ (�̂) = �i 2 �. f̂

i

(
G

i

0
,!�̂i

�̂(i0)) (1)

where f̂

i

2 Ŝ ! Ŝ (Definition 3.5) is an abstract semantic function for partitioning
index i and (,!

�̂

) ✓ �⇥� (Definition 3.6) is an abstract transition relation.

Definition 3.5 (Abstract Semantic Function). Abstract semantic function f̂

i

2 Ŝ !
Ŝ is an abstract counterpart of f

i

, which satisfies the following conditions:

(1) 8ŝ, ŝ0 2 Ŝ. ŝ v ŝ

0 =) f̂

i

(ŝ) v f̂

i

(ŝ0)
(2) ↵S � fi v f̂

i

� ↵S
(3) 8ŝ 2 Ŝ.↵S((↵1S◆)(i)) v f̂

i

(ŝ)

2

The first condition says that f̂

i

is monotone. The second and third conditions ensure
the soundness of the abstract semantics. In particular, the third condition requires
that f̂

i

subsumes the initial traces. If f̂
i

did not satisfy the third condition, we would

1Some domains such as the convex polyhedra is not associated with a Galois-connection. In this case, we
could reformulate the analysis only assuming the existence of a concretization function.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Towards Sparse Analysis

A:10 Oh et al.

cases: (1) when x points to a single location, we perform a strong update by replacing
the value of the pointed location; and (2) when x points to multiple locations, we make
an weak update to the locations in ŝ(x). The Ê function is simply defined as follows:

Ê(e)(ŝ) =

8
<

:

ŝ(x) e = x

{x} e = &xS
x

02ŝ(x) ŝ(x
0) e = ⇤x

For variables (x), we look up the abstract state to find their abstract values. The ab-
stract value of expression &x is {x}. The abstract value of expression ⇤x is obtained by
joining all the abstract values of variables in ŝ(x). 2

3.6. Definition and Use Set
The first step toward deriving correct sparse analysis is to precisely define the notion
of definitions and uses. Sparse analysis is derived based on these definitions and uses.
Because we are interested in properties of the abstract semantics, they are defined in
terms of the abstract semantic function f̂

i

.

Definition 3.10 (Definition Set). Definition set D(i) at partitioning index i is a set
of abstract locations whose abstract values are ever changed by f̂

i

during the analysis,
i.e., (let S = lfpF̂)

D(i) = {l 2 L̂ | 9ŝ v
G

i

0
,!Si

S(i0). f̂
i

(ŝ)(l) 6= ŝ(l)}.

2

In the definition,
F

i

0
,!Si

S(i0) denotes the input abstract state flowing to partitioning
index i at the fixpoint and therefore ŝ v

F
i

0
,!Si

S(i0) quantifies over the analysis pro-
cess’ intermediate states at partitioning index i. Thus, abstract location l is included
in D(i) if and only if f̂

i

changes the value of l at partitioning index i during the course
of the analysis. In other words, if an abstract location l is not included in the definition
set, the abstract semantic function has the identity transfer on l, which the following
lemma states.

LEMMA 3.11. For all i 2 �, l 2 L̂, ŝ 2 Ŝ,

(l 62 D(i) ^ ŝ v
G

i

0
,!(lfpF̂)i

(lfpF̂)(i0)) =) f̂

i

(ŝ)(l) = ŝ(l).

PROOF. Immediate from the dual statement of Definition 3.10.

Note that the notion of definition set is a semantic one. For example, suppose that
we analyze statement x := x. Even if the statement assigns a value to variable x, it has
semantically no effect. Therefore, according to our definition, variable x is not included
in the definition set of the statement.

Definition 3.12 (Use Set). Use set U(i) at partitioning index i consists of two parts:

U(i) = U

d

(i) [U

c

(i).

The first part (U
d

(i)) is the set of abstract locations without which some values in D(i)
are not properly generated, i.e., (let S = lfpF̂)

U

d

(i) = {l 2 L̂ | 9ŝ v
G

i

0
,!Si

S(i0). f̂
i

(ŝ)|D(i) 6= f̂

i

(ŝ\
l

)|D(i)}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Oh et al.

cases: (1) when x points to a single location, we perform a strong update by replacing
the value of the pointed location; and (2) when x points to multiple locations, we make
an weak update to the locations in ŝ(x). The Ê function is simply defined as follows:

Ê(e)(ŝ) =

8
<

:

ŝ(x) e = x

{x} e = &xS
x

02ŝ(x) ŝ(x
0) e = ⇤x

For variables (x), we look up the abstract state to find their abstract values. The ab-
stract value of expression &x is {x}. The abstract value of expression ⇤x is obtained by
joining all the abstract values of variables in ŝ(x). 2

3.6. Definition and Use Set
The first step toward deriving correct sparse analysis is to precisely define the notion
of definitions and uses. Sparse analysis is derived based on these definitions and uses.
Because we are interested in properties of the abstract semantics, they are defined in
terms of the abstract semantic function f̂

i

.

Definition 3.10 (Definition Set). Definition set D(i) at partitioning index i is a set
of abstract locations whose abstract values are ever changed by f̂

i

during the analysis,
i.e., (let S = lfpF̂)

D(i) = {l 2 L̂ | 9ŝ v
G

i

0
,!Si

S(i0). f̂
i

(ŝ)(l) 6= ŝ(l)}.

2

In the definition,
F

i

0
,!Si

S(i0) denotes the input abstract state flowing to partitioning
index i at the fixpoint and therefore ŝ v

F
i

0
,!Si

S(i0) quantifies over the analysis pro-
cess’ intermediate states at partitioning index i. Thus, abstract location l is included
in D(i) if and only if f̂

i

changes the value of l at partitioning index i during the course
of the analysis. In other words, if an abstract location l is not included in the definition
set, the abstract semantic function has the identity transfer on l, which the following
lemma states.

LEMMA 3.11. For all i 2 �, l 2 L̂, ŝ 2 Ŝ,

(l 62 D(i) ^ ŝ v
G

i

0
,!(lfpF̂)i

(lfpF̂)(i0)) =) f̂

i

(ŝ)(l) = ŝ(l).

PROOF. Immediate from the dual statement of Definition 3.10.

Note that the notion of definition set is a semantic one. For example, suppose that
we analyze statement x := x. Even if the statement assigns a value to variable x, it has
semantically no effect. Therefore, according to our definition, variable x is not included
in the definition set of the statement.

Definition 3.12 (Use Set). Use set U(i) at partitioning index i consists of two parts:

U(i) = U

d

(i) [U

c

(i).

The first part (U
d

(i)) is the set of abstract locations without which some values in D(i)
are not properly generated, i.e., (let S = lfpF̂)

U

d

(i) = {l 2 L̂ | 9ŝ v
G

i

0
,!Si

S(i0). f̂
i

(ŝ)|D(i) 6= f̂

i

(ŝ\
l

)|D(i)}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Global Sparse Analysis Framework A:11

In addition, we collect abstract locations that are necessary to generate transition flows
(,!): U

c

(i) representing the set of abstract locations without which some flows in ,!S
are not properly generated, i.e.,

U

c

(i) = {l 2 L̂ | 9i0 2 �.(i, i0) 2 (,!S) ^ (i, i0) 62 (,!S[i 7!S(i)\l])}.
2

Note that S[i 7! S(i)\
l

] represents S whose abstract state in index i (S(i)) does not
contain an abstract value for location l (S(i)\

l

). For static analysis of imperative lan-
guages, where transition relation ,! is given a priori and is not computed during the
analysis, U

c

(i) is ; and U(i) is identical to U

d

(i).

Example 3.13. Suppose that we analyze the following program with the analysis
designed in Example 3.9: (superscripts are control points.)

10�
x := &y; 11�⇤ p := &z; 12�

y := x; (2)

Suppose further that the points-to set for pointer p at 11� is {x, y} during the analysis.
Then, according to the analysis definition in Example 3.9, abstract semantic function
f̂

i

for each control point i is as follows:

f̂10�(ŝ) = ŝ[x 7! {y}]
f̂11�(ŝ) = ŝ[ŝ(p)

w7! {z}] = ŝ[{x, y} w7! {z}]
f̂12�(ŝ) = ŝ[y 7! ŝ(x)]

Then, the definition set and use set at each control point are as follows:
D(10�) = {x} U(10�) = ?
D(11�) = {x, y} U(11�) = {p, x, y}
D(12�) = {y} U(12�) = {x}

The definition sets (D(i)) are easy to check. Because f̂10� assigns a value to location x,
D(10�) includes x. Similarly, x and y are defined by f̂11�, and y is defined by f̂12�. For use
sets (U(i)), we compute U

d

(i) only, since our example analysis does not update transi-
tion relation ,! during the analysis and hence U

c

(i) is ;. U(10�) is ; because, according to
the definition of f̂10�, the values in D(10�)(= {x}) are generated without referring to any
abstract location. U(11�) includes p because p is dereferenced. In addition, U(11�) includes
x and y because of weak updates (w7!), ŝ[{x, y} w7! {z}] = ŝ[x 7! ŝ(x)[{z}, y 7! ŝ(y)[{z}],
where the values of x and y are referred. Note that this implicit use information, which
does not explicitly appear in the program text, is naturally captured by following the
abstract semantics. U(12�) includes x whose value is referred to, to generate the value
of y (D(12�)). 2

In the rest of the paper, we frequently use a generalized notion of use set U
d

(i).

Definition 3.14 (Use Template). We write d
Q

(i) for the set of abstract locations that
are necessary to properly generate the values in Q, i.e., (let S = lfpF̂)

d
Q

(i) = {l 2 L̂ | 9ŝ v
G

i

0
,!Si

S(i0). f̂
i

(ŝ)|
Q

6= f̂

i

(ŝ\
l

)|
Q

}.

Note that U
d

(i) = dD(i)(i). 2

Regarding the use set, we assume that abstract semantic function f̂

i

and transition
relation ,! are well-formed in the following sense.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Towards Sparse Analysis

A:12 Oh et al.

Definition 3.15 (Well-formed Abstract Semantic Function). We say that abstract
semantic function f̂

i

is well-formed if

8Q ✓ L, i 2 �, ŝ 2 Ŝ, U ◆ d
Q

(i). f̂
i

(ŝ)|
Q

= f̂

i

(ŝ|
U

)|
Q

.

2

The condition means that f̂
i

properly generates the values of abstract locations in D(i)
if the input state contains all the use set, which naturally holds in most semantic
functions in conventional static analysis. This requirement is not very important to
understand the rest of the paper but necessary in the correctness proof (Appendix A).
Similarly, we assume that ,! satisfies the following property.

Definition 3.16 (Well-formed Abstract Transition Relation). We say that abstract
transition relation ,! is well-formed if

8i 2 �, U ◆ U

c

(i), �̂ 2 � ! Ŝ.(,!
�̂

) = (,!
�̂[i 7!�̂(i)|U]).

2

3.7. Data Dependencies
Once we have identified definition and use sets at each partitioning index, we can
discover data dependencies of abstract semantic function F̂ between two partitioning
indices. Intuitively, if the abstract value of abstract location l defined at index i0 is
used at index i

n

, there is a data dependency between i0 and i

n

on l. A formal definition
of data dependency is given below.

Definition 3.17 (Data dependency). Data dependency is quadruple relation (;) ✓
�⇥ L̂⇥�⇥ (� ! Ŝ) defined as follows:

i0
l

;
�̂

i

n

i↵ 9i0 . . . in 2 Paths(�̂), l 2 L̂.
l 2 D(i0) \ U(i

n

) ^ 8k 2 (0, n).l 62 D(i
k

)
(3)

where Paths(�̂) is the set of all paths created by transition relation ,!
�̂

: a path p =
p0p1 · · · pn is a sequence of partitioning indices such that p0 ,!

�̂

p1 ,!
�̂

· · · ,!
�̂

p

n

, then,

Paths(�̂) = lfp�P.{i0i1 | i0 ,!
�̂

i1} [{p0p1 · · · pni | p 2 P ^ p

n

,!
�̂

i}.
2

The data dependency i0
l

;
�̂

i

n

means that if there exists a path from partitioning
index i0 to i

n

, a value of abstract location l can be defined at i0 and used at i
n

, and there
is no intermediate indices i

k

that may change the value of l, then a data dependency
exists between partitioning indices i0 and i

n

on location l.

Example 3.18. In the program presented in Example 3.13, we can find two data
dependencies, 10� x

; 11� and 11� x

; 12� as graphically depicted as follows:

10 11 12

x x

We omit the subscript �̂ from ; when the transition relation is determined without �̂.
2

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Global Sparse Analysis Framework A:13

3.8. Sparse Abstract Semantics Function
Using data dependency, we can make abstract semantic function sparse, by propa-
gating between partitioning indices only the abstract values that participate in the
fixpoint computation. Sparse abstract semantic function F̂

s

, whose definition is given
below, is the same as the original one (1) except that it propagates abstract values
along the data dependency, not along the transition relation:

F̂

s

(�̂) = �i 2 �.f̂

i

(
G

i

0 l
;�̂i

�̂(i0)|
l

). (4)

Compared to the dense abstract semantic function (1), this definition is different only
in that it is defined over data dependency (;), so we can reuse semantic function f̂

i

and its soundness result ↵S � fi v f̂

i

� ↵S from the original analysis design.
The following theorem states that the analysis result with the sparse abstract se-

mantic function is the same as the one of original analysis.
THEOREM 3.19 (CORRECTNESS).

8i 2 �.8l 2 D(i).(lfpF̂
s

)(i)(l) = (lfpF̂)(i)(l).

PROOF. Shortly, we will notice that this theorem is a corollary of Theorem 3.23,
where F̂

s

is an instance of F̂
a

such that D̂(i) = D(i) and Û(i) = U(i).
The theorem guarantees that the sparse analysis result is identical to the original
result only up to the entries that are defined at every partitioning index. Note that we
can also show the complete equivalence between lfpF̂ and lfpF̂

s

by reconstructing the
missing entries (see Appendix B).

3.9. Sparse Analysis with Approximated Data Dependency
The sparse analysis designed until Section 3.8 is not practical. The definitions of D and
U are purely mathematical but non-constructive, and they are defined in terms of the
original fixpoint lfpF̂ .

We now design a practical sparse analysis. The practicality is obtained by approxi-
mating the definition and the use sets. Note that the initial precision and soundness
of the original analysis are still preserved even with the approximations if some safety
conditions are satisfied. We discuss the safety conditions in Section 3.9.1. Suppose D̂

and Û are such safe approximations of D and U, respectively. With D̂ and Û, we can
approximate the data dependency.

Definition 3.20 (Approximated Data Dependency). Approximated data dependency
is quadruple relation () ✓ �⇥ L̂⇥�⇥ (� ! Ŝ) defined as follows:

i0
l
�̂

i

n

i↵ 9i0 . . . in 2 Paths(�̂), l 2 L̂.
l 2 D̂(i0) \ Û(i

n

) ^ 8k 2 (0, n).l 62 D̂(i
k

)

2

The definition is the same as (3) except that it is defined over D̂ and Û. The derived
sparse analysis is to compute the fixpoint of the following abstract semantic function:

F̂

a

(�̂) = �i 2 �.f̂

i

(
G

i

0 l �̂i

�̂(i0)|
l

). (5)

F̂

a

is the same as F̂

s

except that F̂
a

is defined over the approximated data dependency.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Global Sparse Analysis Framework A:13

3.8. Sparse Abstract Semantics Function
Using data dependency, we can make abstract semantic function sparse, by propa-
gating between partitioning indices only the abstract values that participate in the
fixpoint computation. Sparse abstract semantic function F̂

s

, whose definition is given
below, is the same as the original one (1) except that it propagates abstract values
along the data dependency, not along the transition relation:

F̂

s

(�̂) = �i 2 �.f̂

i

(
G

i

0 l
;�̂i

�̂(i0)|
l

). (4)

Compared to the dense abstract semantic function (1), this definition is different only
in that it is defined over data dependency (;), so we can reuse semantic function f̂

i

and its soundness result ↵S � fi v f̂

i

� ↵S from the original analysis design.
The following theorem states that the analysis result with the sparse abstract se-

mantic function is the same as the one of original analysis.
THEOREM 3.19 (CORRECTNESS).

8i 2 �.8l 2 D(i).(lfpF̂
s

)(i)(l) = (lfpF̂)(i)(l).

PROOF. Shortly, we will notice that this theorem is a corollary of Theorem 3.23,
where F̂

s

is an instance of F̂
a

such that D̂(i) = D(i) and Û(i) = U(i).
The theorem guarantees that the sparse analysis result is identical to the original
result only up to the entries that are defined at every partitioning index. Note that we
can also show the complete equivalence between lfpF̂ and lfpF̂

s

by reconstructing the
missing entries (see Appendix B).

3.9. Sparse Analysis with Approximated Data Dependency
The sparse analysis designed until Section 3.8 is not practical. The definitions of D and
U are purely mathematical but non-constructive, and they are defined in terms of the
original fixpoint lfpF̂ .

We now design a practical sparse analysis. The practicality is obtained by approxi-
mating the definition and the use sets. Note that the initial precision and soundness
of the original analysis are still preserved even with the approximations if some safety
conditions are satisfied. We discuss the safety conditions in Section 3.9.1. Suppose D̂

and Û are such safe approximations of D and U, respectively. With D̂ and Û, we can
approximate the data dependency.

Definition 3.20 (Approximated Data Dependency). Approximated data dependency
is quadruple relation () ✓ �⇥ L̂⇥�⇥ (� ! Ŝ) defined as follows:

i0
l
�̂

i

n

i↵ 9i0 . . . in 2 Paths(�̂), l 2 L̂.
l 2 D̂(i0) \ Û(i

n

) ^ 8k 2 (0, n).l 62 D̂(i
k

)

2

The definition is the same as (3) except that it is defined over D̂ and Û. The derived
sparse analysis is to compute the fixpoint of the following abstract semantic function:

F̂

a

(�̂) = �i 2 �.f̂

i

(
G

i

0 l �̂i

�̂(i0)|
l

). (5)

F̂

a

is the same as F̂

s

except that F̂
a

is defined over the approximated data dependency.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Towards Sparse Analysis

A:14 Oh et al.

3.9.1. Conditions for Safe Approximations. In order for the approximation to be safe, i.e.,
still lfpF̂ = lfpF̂

a

, D̂ and Û should satisfy two conditions.

(1) Both D̂(i) and Û(i) are over-approximations of D(i) and U(i), respectively.
(2) Abstract locations that are necessary to generate values of spurious definitions

(D̂(i)� D(i)) should be also included in Û(i).

The first condition is intuitive and we can easily show that the analysis computes
different results if one of them is not an over-approximation. Regarding the second
condition, the following example illustrates what happens when there exists an ab-
stract location which is used to generate spurious definitions but is not included in the
approximated use set.

Formally, safe approximations of definition and use sets are:

Definition 3.21 (Safe Approximations of D and U). We say that D̂ and Û are safe
approximations of D and U, respectively, if and only if

(1) D̂(i) ◆ D(i) ^ Û(i) ◆ U(i)
(2) Û(i) ◆ d(D̂(i)\D(i))(i)

2

Example 3.22. Suppose that we analyze the following program with the original
analysis designed in Example 3.9:

10�
x := &y; 11�⇤ p := &z; 12�

y := x;

Suppose further that the points-to set for pointer p at 11� is {y} during the original
analysis. Then, according to the analysis definition in Example 3.9, abstract semantic
function f̂

i

for each control point i is as follows:

f̂10�(ŝ) = ŝ[x 7! {y}]
f̂11�(ŝ) = ŝ[y 7! {z}]
f̂12�(ŝ) = ŝ[y 7! ŝ(x)]

Then, definition sets and use sets are as follows:

D(10�) = {x} U(10�) = ?
D(11�) = {y} U(11�) = {p}
D(12�) = {y} U(12�) = {x}.

With these definition and use sets, one data dependency 10� x

; 12� is generated as fol-
lows:

10 11 12

x

For a sparse version of the original analysis, we need to approximate the definition
and use sets. Note that, however, not all over-approximations make the sparse analysis
safe.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Global Sparse Analysis Framework A:15

The following is one example of an over-approximations of the above D and U, yet
unsafe ones.

D̂(10�) = {x} Û(10�) = ?
D̂(11�) = {x, y} Û(11�) = {p}
D̂(12�) = {y} Û(12�) = {x}

Here, x’s definition at 11� is spurious because of the approximation. With this approxi-
mation, we generate one data dependency 11� x 12�:

10 11 12

x

Because of the spurious definition of x at 11�, the x’s definition at 10� does not reach to
12�, which makes the subsequent main analysis unsafe.

To fix this problem, we need the second condition of the safe approximations ((2) of
Definition 3.21): we adjust Û to include locations that are necessary to generate values
of spurious definitions. For our example, we make Û(11�) include the spurious definition
of x:

D̂(10�) = {x} Û(10�) = ?
D̂(11�) = {x, y} Û(11�) = {p, x}
D̂(12�) = {y} Û(12�) = {x}.

With this approximation, we generate two data dependencies 10� x 11� and 11� x 12�:

10 11 12

x x

Following these two data dependencies, the abstract value of x at 10� will be propagated
to 12� in the subsequent main analysis. Note that, in the main analysis, x is not modified
at 11�: the approximated definitions (D̂) and uses (Û) are used only for the generation
of data dependencies. The main analysis (fixpoint computation) is performed following
these pre-constructed paths with the original abstract semantic function f̂

i

that does
not involve spurious definitions. This is why our sparse analysis with approximated
def-use paths does not degrade the analysis precision. 2

Formally, we can prove that the safe approximations D̂ and Û yield the correct sparse
analysis, which the following lemma states:

THEOREM 3.23 (CORRECTNESS). Suppose sparse abstract semantic function F̂

a

is
derived by safe approximations D̂ and Û. Then,

8i 2 �.8l 2 D̂(i).(lfpF̂
a

)(i)(l) = (lfpF̂)(i)(l).

PROOF. See Appendix A.

3.10. Precision Loss with Conventional Def-Use Chains
Our notion of data dependency is different from the conventional notion of def-use
chains. Conventional def-use chains connect each definition to every possible use of
the definition. We can express this def-use chain relation _ as follows:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Second Goal: Precision
Soundness

Scalability Precision

Challenge: Can we achieve it without scalability loss?
54

Naive Approaches
Soundness

Scalability Precision

context-sensitivity,
relational analysis,

etc

55

56

Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [1,1]
y [0,0]
z [1,1]

x [1,1]
y [0,0]
z [2,2]

x [1,1]
y [1,1]
z [2,2]

precise but costly

x [0,0]
y [0,0]
z [1,1]

57

Flow-Insensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1

x [0,+∞]

y [0,+∞]

z [1,+∞]

cheap but imprecise

58

Selective Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {x,y} FI : {z}

x [0,0]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [0,0]

x [1,+∞]
y [1,+∞]

z [1,+∞]

59

Selective Flow-Sensitivity

x=z

z=z+1

y=x

assert(y>0)

x=y=0;z=1
FS : {y,z} FI : {x}
y [0,0]
z [1,1]

y [0,0]
z [1,1]

y [0,0]
z [2,2]

y [0,+∞]
z [2,2]

x [0,+∞]

fail to prove

60

Hard Search Problem

• Intractably large space, if not infinite

• 2Var different abstractions for FS

• Most of them are too imprecise or costly

• P({x,y,z}) = {∅,{x},{y},{z},{x,y},{y,z},{x,z},{x,y,z}}

Our Approaches

• Two approaches:

• Finding a good fixed heuristic [PLDI’14, TOPLAS’16]

• Finding a heuristic automatically [OOPSLA’15, SAS’16,
APLAS,16, …]

61

Selective Context-Sensitivity
Guided by Impact Pre-Analysis

PL
DI’1

4

program
states

error
states

our method: 24% / 28%

program
states

error
states

vs.

3-CFA: 24% / 1300%

• Apply context-sensitivity only when/where it matters

• General for context-sensitivity, relational analysis, etc

Example Program

63

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

always holds

does not always hold

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

[-∞,+∞]int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

Context-Insensitivity

64

Context-insensitive interval analysis
cannot prove Q1

c1:

c2:

c4:
c5:
c6:

c3:

65

g

h

h

h

h

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

Context-Sensitivity: 3-CFA
Separate analysis for each call-string

[4,4]

[-∞,+∞]

[8,8]

[8,8]

[-∞,+∞]

[-∞,+∞]

value of n

66

g

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c1

c1
fg

[4,4]

[8,8]

[8,8]

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

Context-Sensitivity: 3-CFA
Separate analysis for each call-string

h

h

h

c2

c2

c2

[-∞,+∞]

[-∞,+∞]

[-∞,+∞]

67

g

h

h

h

h

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

[4,4]

[-∞,+∞]

[8,8]

[8,8]

[-∞,+∞]

[-∞,+∞]

Problems of k-CFA

68

g

h

h

h

h

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

[4,4]

[-∞,+∞]

[8,8]

[8,8]

[-∞,+∞]

[-∞,+∞]

Problems of k-CFA

f

69

h

h

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

m

c4

{c5,c6}
c3

c1

c1
fg

[4,4]

[8,8]

Our Selective Context-Sensitivity

h [-∞,+∞]

f

Our solution: Impact pre-analysis

Challenge: How to infer this
selective context-sensitivity?

c2

c2

Impact Pre-Analysis

• Approximate the interval domain

70

⊤

★

all intervals

non-negative intervals, e.g., [5,7], [0,∞]

• Full context-sensitivity

Impact Pre-Analysis

71

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

★

★

★

⊤

⊤

⊤

value of n

Impact Pre-Analysis

72

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

g

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c1

c1
fg

[4,4]

[8,8]

[8,8]

h

h

h

c2

c2

c2

★

★

★

⊤

⊤

⊤

Impact Pre-Analysis

73

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

[-∞,+∞]

[-∞,+∞]

[-∞,+∞]

74

1. Collect queries whose expressions
are assigned with ★

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

c1:

c2:

c4:
c5:
c6:

c3:

★

★

★

⊤

⊤

⊤

★

⊤

75

2. Find the program slice that contributes
to the selected query

c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

76

c1:

c2:

c4:
c5:
c6:

c3:

int h(n) {ret n;}

void f(a) {
 x = h(a);
 assert(x > 1); // Q1
 y = h(input());
 assert(y > 1); // Q2
}

void g() {f(8);}

void m() {
 f(4);
 g();
 g();
}

3. Collect contexts in the slice

g

h

h

h

h

h

h

f

fm

c4

c6

c5 c3

c3

c1

c2

c1

c2

c1

c2

fg

★

★

★

⊤

⊤

⊤

=> Contexts for h: {c3·c1, c4·c1}

a b c i
a 0 0 ∞ -1
b 0 0 ∞ -1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

non-selective analysis

cf) Relational Analysis

77

1 int a = b;
2 int c = input();
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Q1
5 assert (i < c); // Q2
6 }

a = b

i < b

i-a ≤ -1

i-c ≤ ∞

a b i
a 0 0 -1
b 0 0 -1
i ∞ ∞ 0

vs.

our selective analysis

Impact Pre-Analysis

• Fully relational

• Approximated in other precision aspects

78

a b c i
a 0 0 ∞ -1
b 0 0 ∞ -1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

vs.

a b c i
a ★ ★ ⊤ ★
b ★ ★ ⊤ ★
c ⊤ ⊤ ★ ⊤
i ⊤ ⊤ ⊤ ★

impact pre-analysisoctagon analysis

79
24.4%

Context-Insensitve Ours

Pgm LOC #alarms time(s) #alarms time(s)
spell 2K 58 0.6 30 0.9
bc 13K 606 14.0 483 16.2
tar 20K 940 42.1 799 47.2
less 23K 654 123.0 562 166.4
sed 27K 1,325 107.5 1,238 117.6
make 27K 1,500 88.4 1,028 106.2
grep 32K 735 12.1 653 15.9
wget 35K 1,307 69.0 942 82.1
a2ps 65K 3,682 118.1 2,121 177.7
bison 102K 1,894 136.3 1,742 173.4
TOTAL 346K 12,701 707.1 9,598 903.6

Selective Context-Sensitivity

80

Selective Context-Sensitivity

Context-Insensitve Ours

Pgm LOC #alarms time(s) #alarms time(s)
spell 2K 58 0.6 30 0.9
bc 13K 606 14.0 483 16.2
tar 20K 940 42.1 799 47.2
less 23K 654 123.0 562 166.4
sed 27K 1,325 107.5 1,238 117.6
make 27K 1,500 88.4 1,028 106.2
grep 32K 735 12.1 653 15.9
wget 35K 1,307 69.0 942 82.1
a2ps 65K 3,682 118.1 2,121 177.7
bison 102K 1,894 136.3 1,742 173.4
TOTAL 346K 12,701 707.1 9,598 903.6

27.8%
pre-analysis : 14.7%
main analysis: 13.1%

k-CFA did not scale

• 2 or 3-CFA did not scale over 10KLoC
• e.g., for spell (2KLoC):

• 3-CFA reported 30 alarms in 11.9s

• cf) ours: 30 alarms in 0.9s

• 1-CFA did not scale over 40KLoC

81

82

#buffer-overrun queries

Existing Approach
[Miné06] Ours

Pgm LOC #queries proven time(s) proven time(s)
calc 298 10 2 0.3 10 0.2
spell 2,213 16 1 4.8 16 2.4
barcode 4,460 37 16 11.8 37 30.5
httptunnel 6,174 28 16 26.0 26 15.3
bc 13,093 10 2 247.1 9 117.3
tar 20,258 17 7 1043.2 17 661.8
less 23,822 13 0 3031.5 13 2849.4
a2ps 64,590 11 0 29473.3 11 2741.7
TOTAL 135,008 142 44 33840.3 139 6418.6

Selective Octagon Analysis

+95

83

#buffer-overrun queries

Existing Approach
[Miné06] Ours

Pgm LOC #queries proven time(s) proven time(s)
calc 298 10 2 0.3 10 0.2
spell 2,213 16 1 4.8 16 2.4
barcode 4,460 37 16 11.8 37 30.5
httptunnel 6,174 28 16 26.0 26 15.3
bc 13,093 10 2 247.1 9 117.3
tar 20,258 17 7 1043.2 17 661.8
less 23,822 13 0 3031.5 13 2849.4
a2ps 64,590 11 0 29473.3 11 2741.7
TOTAL 135,008 142 44 33840.3 139 6418.6

Selective Octagon Analysis

reduce time by -81%

Learning Automatically

• Develop techniques for automatically finding the
selection strategies

• Use machine learning techniques to learn a good
strategy from freely available data.

84

Static Analyzer

85

F(p, a) ⇒ n

abstraction
(e.g., a set of variables)

number of
proved assertions

86

Overall Approach

• Learn a good parameter W from existing codebase

• For new program P, run static analysis with Sw(P)

P1, P2, …,Pm

Codebase

⇒ W

• Parameterized adaptation strategy

Sw : pgm → 2Var

87

1. Parameterized Strategy

(1) Represent program variables as feature vectors.

(2) Compute the score of each variable.

(3) Choose the top-k variables based on the score.

Sw : pgm → 2Var

88

(1) Features

• Predicates over variables:

f = {f1, f2,…,f5} (fi : Var → {0,1})

• 45 simple syntactic features for variables: e.g,

• local / global variable, passed to / returned from
malloc, incremented by constants, etc

f(x) = ⟨f1(x), f2(x), f3(x),f4(x),f5(x)⟩
• Represent each variable as a feature vector:

89

(2) Scoring

• The parameter w is a real-valued vector: e.g.,

• Compute scores of variables:

w = ⟨0.9, 0.5, -0.6, 0.7, 0.3⟩

score(x) = ⟨1,0,1,0,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.3
score(y) = ⟨1,0,1,0,1⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.6
score(z) = ⟨0,0,1,1,0⟩･⟨0.9, 0.5, -0.6, 0.7, 0.3⟩ = 0.1

90

(3) Choose Top-k Variables

• Choose the top-k variables based on their scores:  
e.g., when k=2,

score(x) = 0.3
score(y) = 0.6
score(z) = 0.1

{x,y}

• In experiments, we chosen 10% of variables with
highest scores.

91

2. Learn a Good Parameter

• Solve the optimization problem:

P1, P2, …,Pm

Codebase

⇒ W

X

Pi

F (Pi, Sw(Pi))Find w that maximizes

Learning via Random
Sampling

92

repeat N times

 pick w ∈ Rn randomly

evaluate

return best w found

X

Pi

F (Pi, Sw(Pi))

Learning via Random
Sampling

93

Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.

Bayesian Optimization

94

• A powerful method for solving difficult black-box
optimization problems.

• Especially powerful when the objective function is
expensive to evaluate.

• Key idea: use a probabilistic model to reduce the number
of objective function evaluations.

Learning via Bayesian Optimization

95

• Probabilistic model: Gaussian processes

• Selection strategy: Expected improvement

repeat N times

 select a promising w using the model

evaluate

return best w found

X

Pi

F (Pi, Sw(Pi))

 update the probabilistic model

96

Training Testing
FI FS partial FS FI FS partial FS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 7,316 7,089 75.7 % 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x
2 5,788 7,422 7,219 87.6 % 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x
3 6,148 7,842 7,595 85.4 % 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x
4 6,138 7,895 7,599 83.2 % 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x
5 7,343 9,150 8,868 84.4 % 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 31,800 39,625 38,370 84.0 % 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x

Table 4. Effectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis (FI: flow-
insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved queries among the queries
that require flow-sensitivity. cost: cost increase compared to the FI analysis.

Training Testing
FICI FSCS partial FSCS FICI FSCS partial FSCS

Trial prove prove prove quality prove sec prove sec cost prove sec quality cost
1 6,383 9,237 8,674 80.3 % 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x
2 5,788 8,287 7,598 72.4 % 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x
3 6,148 8,737 8,123 76.3 % 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x
4 6,138 9,883 8,899 73.7 % 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x
5 7,343 10,082 10,040 98.5 % 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 31,800 46,226 43,334 80.0 % 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x

Table 5. Effectiveness for Flow-sensitivity + Context-sensitivity.

(a) Random sampling (b) Bayesian optimisation

Figure 2. Comparison of Bayesian optimisation with random sampling

programs, which supports the full C language and has been
being developed for the past seven years [19]. This baseline
analyser tracks both numeric and pointer-related informa-
tion simultaneously in its fixpoint computation. For numeric
values, it uses the interval abstract domain, and for pointer
values, it uses an allocation-site-based heap abstraction. The
analysis is field-sensitive (i.e., separates different structure
fields) and flow-sensitive, but it is not context-sensitive. We
applied the sparse analysis technique [20] to improve the
scalability.

By modifying the baseline analyser, we implemented a
partially flow-sensitive analyser, which controls its flow-
sensitivity according to a given set of abstract locations (pro-

gram variables, structure fields and allocation sites) as de-
scribed in Section 6.1. We also implemented our learning
algorithm based on Bayesian optimisation.7 Our implemen-
tations were tested against 30 open source programs from
GNU and Linux packages (Table 6 in Appendix).

The key questions that we would like to answer in our
experiments are whether our learning algorithm produces
a good adaptation strategy and how much it gets benefited
from Bayesian optimisation. To answer the first question,
we followed a standard method in the machine learning lit-
erature, called cross validation. We randomly divide the 30

7 The implementation of our learning algorithm is available at http://
prl.korea.ac.kr/

~

hakjoo/research/oopsla15/.

Learning via Bayesian Optimization

97

Effectiveness

• Implemented in Sparrow, an interval analyzer for C

• Evaluated on open-source benchmarks

FSFI

0 100

SFS

70

Precision

FSFI

1x 18x

SFS

2x

Cost

Learning via White-box
Optimization [APLAS’16]

• The black-box optimization method is too slow when the
codebase is large

• Replace it to an easy-to-solve white-box problem by using
oracle:

• Oracle is obtained from a single run of codebase

• 26x faster to learn a comparable strategy

98

6 Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

3.3 Existing Approach

In [13], a learning algorithm based on Bayesian optimization has been proposed.
To simply put, this algorithm performs a random sampling guided by a proba-
bilistic model:

1: repeat
2: sample w from Rn using probabilistic model M
3: s obj (w)
4: update the model M with (w, s)
5: until timeout
6: return best w found so far

The algorithm uses a probabilistic model M that approximates the objective
function by a probabilistic distribution on function spaces (using the Gaussian
Process [14]). The purpose of the probabilistic model is to pick a next parameter
to evaluate that is predicted to work best according the approximation of the
objective function (line 2). Next, the algorithm evaluates the objective function
with the chosen parameter w (line 3). The model M gets updated with the
current parameter and its evaluation result (line 4). The algorithm repeats this
process until the cost budget is exhausted and returns the best parameter found
so far.

Although this algorithm is significantly more e�cient than the random sam-
pling [13], it still requires a number of iterations of the loop to learn a good
parameter. According to our experience, the algorithm with Bayesian optimiza-
tion typically requires more than 100 iterations to find good parameters (Section
5). Note that even a single iteration of the loop can be very expensive in practice
because it involves running the static analyzer over the entire codebase. When
the codebase is massive and the static analyzer is costly, evaluating the objective
function multiple times is prohibitively expensive.

3.4 Our Oracle-Guided Approach

In this paper, we present a method for learning a good parameter without ana-
lyzing the codebase multiple times. By analyzing each program in the codebase
only once, our method is able to find a parameter that is as good as the param-
eter found by the Bayesian optimization method.

We achieve this by an oracle-guided approach to learning. Our method as-
sumes the presence of an oracle OP for each program P , which maps program
parts in JP to real numbers in R = [�1, 1]:

OP : JP ! R.

For each j 2 JP , the oracle returns a real number that quantifies the relative
contribution of j in achieving the precision of F (P, JP). That is, O(j1) < O(j2)
means that j2 more contributes than j1 to improving the precision during the
analysis of F (P, JP). We assume that the oracle is given together with the adap-
tive static analysis. In Section 4.3, we show that such an oracle easily results
from analyzing the program for interval analysis with widening thresholds.

Learning a Strategy for Choosing Widening Thresholds 7

In the presence of the oracle, we can establish an easy-to-solve optimization
problem which serves as a proxy of the original optimization problem in (2).
For simplicity, assume that the codebase consists of a single program: P = {P}.
Shortly, we extend the method to multiple training programs. Let O be the
oracle for program P . Then, the goal of our method is to learn w such that, for
every j 2 JP , the scoring function in (1) instantiated with w produces a value
that is as close to O(j) as possible. We formalize this optimization problem as
follows:

Find w⇤ that minimizes E(w⇤)

where E(w) is defined to be the mean square error of w:

E(w) =
X

j2JP
(scorewP (j)�O(j))2

=
X

j2JP
(fP (j) ·w �O(j))2

=
X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))2.

Note that the body of the objective function E(w) is a di↵erentiable, closed-
form expression, so we can use the standard gradient decent algorithm to find a
minimum of E. The algorithm is simply stated as follows:

1: sample w from Rn

2: repeat
3: w = w � ↵ ·rE(w)
4: until convergence
5: return w

Starting from a random parameter w (line 1), the algorithm keeps going down
toward the minimum in the direction against the gradient rE(w). The single
step size is determined by the learning rate ↵. The gradient of E is defined as
follows:

rE(w) =
� @

@w1
E(w),

@

@w2
E(w), · · · , @

@wn
E(w)

�

where the partial derivatives are

@

@wk
E(w) = 2

X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))fk

P (j)

Because the optimization problem does not involve the static analyzer and code-
base, learning a parameter w is done quickly regardless of the cost of the analysis
and the size of the codebase, and in the next section, we show that a good-enough
oracle can be obtained by analyzing the codebase only once.

It is easy to extend the method to multiple programs. Let P = {P1, . . . , Pm}
be the codebase. We assume the presence of oracles OP1 , . . . ,OPm for each pro-
gram Pi 2 P. We establish the error function EP over the entire codebase as

Learning a Strategy for Choosing Widening Thresholds 7

In the presence of the oracle, we can establish an easy-to-solve optimization
problem which serves as a proxy of the original optimization problem in (2).
For simplicity, assume that the codebase consists of a single program: P = {P}.
Shortly, we extend the method to multiple training programs. Let O be the
oracle for program P . Then, the goal of our method is to learn w such that, for
every j 2 JP , the scoring function in (1) instantiated with w produces a value
that is as close to O(j) as possible. We formalize this optimization problem as
follows:

Find w⇤ that minimizes E(w⇤)

where E(w) is defined to be the mean square error of w:

E(w) =
X

j2JP
(scorewP (j)�O(j))2

=
X

j2JP
(fP (j) ·w �O(j))2

=
X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))2.

Note that the body of the objective function E(w) is a di↵erentiable, closed-
form expression, so we can use the standard gradient decent algorithm to find a
minimum of E. The algorithm is simply stated as follows:

1: sample w from Rn

2: repeat
3: w = w � ↵ ·rE(w)
4: until convergence
5: return w

Starting from a random parameter w (line 1), the algorithm keeps going down
toward the minimum in the direction against the gradient rE(w). The single
step size is determined by the learning rate ↵. The gradient of E is defined as
follows:

rE(w) =
� @

@w1
E(w),

@

@w2
E(w), · · · , @

@wn
E(w)

�

where the partial derivatives are

@

@wk
E(w) = 2

X

j2JP
(

nX

i=1

f i
P (j)wi �O(j))fk

P (j)

Because the optimization problem does not involve the static analyzer and code-
base, learning a parameter w is done quickly regardless of the cost of the analysis
and the size of the codebase, and in the next section, we show that a good-enough
oracle can be obtained by analyzing the codebase only once.

It is easy to extend the method to multiple programs. Let P = {P1, . . . , Pm}
be the codebase. We assume the presence of oracles OP1 , . . . ,OPm for each pro-
gram Pi 2 P. We establish the error function EP over the entire codebase as

Learning from Automatically
Labelled Data [SAS’16]

• Learning a variable clustering strategy for Octagon is too
difficult to solve with black-box optimization

• Replace it to a (much easier) supervised-learning problem:

• Who label the data? by impact pre-analysis [PLDI’14].

• The ML-guided Octagon analysis is 33x faster than  
the pre-analysis-guided one with 2% decrease in precision.

99

6 Kihong Heo, Hakjoo Oh, and Hongseok Yang

a �a b �b c �c i �i

a F > F > > > F >
�a > F > F > > > >
b F > F > > > F >

�b > F > F > > > >
c > > > > F > > >

�c > > > > > F > >
i > > > > > > F >

�i > F > F > > > F

(3)

Each entry of this matrix stores the pre-analysis’s (highly precise on the positive
side) prediction on whether Octagon would put a finite upper bound at the
corresponding entry of its matrix at the same program point. F means likely,
and > unlikely. For instance, the above matrix containsF for the entries for i�b
and b�a, and this means that Octagon is likely to infer finite (thus informative)
upper bounds of i� b and b� a. In fact, this predication is correct because the
actual upper bounds inferred by Octagon are �1 and 0, as can be seen in (1).

We convert the results of the impact pre-analysis to labeled data as follows.
For every program P in the given codebase, we first collect all queries Q =
{q1, . . . , qk} that express legal array accesses or the success of assert statements
in terms of upper bounds on ±x± y for some variables x, y. Next, we filter out
queries qi 2 Q such that the upper bounds associated with qi are not predicted to
be finite by the pre-analysis. Intuitively, the remaining queries are the ones that
are likely to be proved by Octagon according to the prediction of the pre-analysis.
Then, for all remaining queries q01, . . . , q

0
l, we collect the results m

]
1, . . . ,m

]
l of the

pre-analysis at these queries, and generate the following labeled data:

DP = {(P, (x, y), L) |
L = � () at least one of the entries of some mi for ±x± y has F}.

Notice that we mark (x, y) with � if tracking the relationship between x and y

is useful for some query q

0
i. An obvious alternative is to replace some by all, but

we found that this alternative led to the worse performance in our experiments.4

This generation process is applied for all programs P1, . . . , PN in the codebase,
and results in the following labeled data: D =

S
1iN DPi . In our example

program, if the results of the pre-analysis at both queries are the same matrix in
(3), our approach picks only the first matrix because the pre-analysis predicts a
finite upper bound only for the first query, and it produces the following labeled
data from the first matrix:

{(P, t,�) | t 2 T} [{(P, t,) | t 62 T}

where T = {(a, b), (b, a), (a, i), (i, a), (b, i), (i, b), (a, a), (b, b), (c, c), (i, i)}.
4 Because the pre-analysis uses F cautiously, only a small portion of variable pairs is
marked with � (that is, 5864/258, 165, 546) in our experiments. Replacing “some”
by “all” reduces this portion by half (2230/258, 165, 546) and makes the learning
task more di�cult.

Automatically Generating
Features

(In Progress)

101

Limitation: Feature Engineering
• The success of ML heavily depends on the “features”

• Feature engineering is nontrivial and time-consuming

• Features do not generalize to other domains
A:18 Lee et al.

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Table II: Features for partially flow-sensitive analysis. Features of Type A denote simple syntactic or semantic properties
for abstract locations (that is, program variables, structure fields and allocation sites). Features of Type B are various
combinations of simple features, and express patterns that variables are used in programs.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Adaptive Static Analysis via Learning with Bayesian Optimization A:19

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Table III: Features for partially context-sensitive analysis.

usage patterns of variables in the benchmark programs. For instance, feature 34 was
developed after we observed the following usage pattern of variables:

int x; // local variable

if (x < 10)

... = malloc (x);

It says that x is a local variable, and gets compared with a constant and passed as
an argument to a function that does memory allocation. Note that we included these
Type B features not because they are important for flow-sensitivity. We included them
to increase expressiveness, because our linear learning model with Type A features
only cannot express such usage patterns. Deciding whether they are important for
flow-sensitivity or not is the job of the learning algorithm.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Adaptive Static Analysis via Learning with Bayesian Optimization A:21

Type # Features
A 1 used in array declarations (e.g., a[c])

2 used in memory allocation (e.g., malloc(c))
3 used in the righthand-side of an assignment (e.g., x = c)
4 used with the less-than operator (e.g, x < c)
5 used with the greater-than operator (e.g., x > c)
6 used with (e.g., x c)
7 used with � (e.g., x � c)
8 used with the equality operator (e.g., x == c)
9 used with the not-equality operator (e.g., x ! = c)
10 used within other conditional expressions (e.g., x < c+y)
11 used inside loops
12 used in return statements (e.g., return c)
13 constant zero

B 14 (1 _ 2) ^ 3
15 (1 _ 2) ^ (4 _ 5 _ 6 _ 7)
16 (1 _ 2) ^ (8 _ 9)
17 (1 _ 2) ^ 11
18 (1 _ 2) ^ 12
19 13 ^ 3
20 13 ^ (4 _ 5 _ 6 _ 7)
21 13 ^ (8 _ 9)
22 13 ^ 11
23 13 ^ 12

Table IV: Features for widening-with-thresholds.

With a widening operator
`

, the upper bound A is computed by A = lim

i�0

X

i

, where
chain X

i

is defined as follows:
X

0

= ?
X

i+1

= X

i

F (X

i

) v X

i

= X

i

`
F (X

i

) otherwise

The abstract interpretation framework guarantees that the above chain is always fi-
nite and its limit (i.e., lim

i�0

X

i

) is an upper bound of the least fixed point of F [?]. For
instance, a simple widening operator for the interval domain works as follows: (For
brevity, we do not consider the bottom interval.)

[a, b]

`
[c, d] = [(c < a?�1 : a), (b < d? +1 : b)]

That is, the widening operator extrapolates any unstable bounds simply to infinity. For
instance, [1, 4]

`
[1, 7] = [1,+1].

Widening with Thresholds. The idea of widening-with-thresholds is to bound the ex-
trapolation of the widening using a pre-defined set of thresholds. For instance, suppose
we are given a set T = {8, 9} of thresholds. Then, applying widening [1, 4]

`
T

[1, 7] with
thresholds T = {8, 9} gives interval [1, 8], instead of [1,+1]. Here, threshold 8 is used
because it is the smallest value in T , which is greater than 7. If the result is still un-
stable in the subsequent iteration, the next smallest value in T , i.e., 9, is used to bound
the widening.

Formally, the widening-with-thresholds technique for the interval domain is defined
as follows. We assume that a set T ✓ Z [{�1,+1} of thresholds is given. Without
loss of generality, let us assume that T = {t

1

, t

2

, . . . , t

n

}, t
1

< t

2

< · · · < t

n

, t
1

= �1,
and t

n

= +1. The widening operator parameterized by T is defined as follows:

[a, b]

`
T

[c, d] = ([a, b]

`
[c, d]) u d{[t

l

, t

u

] | t
l

, t

u

2 T ^ t

l

 min(a, c) ^ t

u

� max(b, d)}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

flow-sensitivity context-sensitivity widening thresholds

Automatic Feature Generation

102

Codebase
Hand-crafted

features
Parameter

values
Adaptation

Strategy

Codebase Features
Parameter

values
Adaptation

Strategy

Before

New method

(analogous to representation learning, deep learning, etc in ML)

Example: Flow-Sensitive Analysis

103

• A query-based, partially flow-sensitive interval analysis

• The analysis uses a query-classifier C : Query → {1,0}

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9

provable
unprovable
unprovable

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9

Learning a Query Classifier

104

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9

{(qi, bi)}ni=1 {(vi, bi)}ni=1

(vi 2 Bk)

feature
extraction

Standard binary classification:

• Feature extraction is a key to success

• Raw data should be converted to suitable representations
from which classification algorithms could find useful patterns

standard
learning algorithms

We aim to automatically find the right representation

Feature Extraction

• Features and matching algorithm:

• a set of features:

•

• Transform the query q into the feature vector:

105

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9

match : Query ⇥ Feature ! B

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9

A feature
describes a property

of queries

Generating Features

• A feature is a graph that describes data flows of queries

• What makes good features?

• selective to key aspects for discrimination

• invariant to irrelevant aspects for generalization

• Generating features:

• Generate feature programs by running reducer

• Represent the feature programs by data-flow graphs

• is the set of all data flow graphs generated from the
codebase

106

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9

2.1 Partially Flow-Sensitive Interval Analysis
We consider a query-based, partially flow-sensitive analysis. The
analysis uses a query-classifier C, which takes a query and returns
true or false . The classifier is used to predict whether each query in
the program will be proved with flow-sensitivity. If the prediction is
positive (true), the analysis applies flow-sensitivity to the program
variables that influence the query; we compute the data flow slice
of the query and apply flow-sensitivity to the variables involved in
the slice. For the queries whose prediction is negative, the analysis
applies flow-insensitivity to the variables on which the queries
depend. For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;

2 y = x; y++;

3 assert (y > 0); // Query 1

4 assert (z > 0); // Query 2

5 assert (w == 0); // Query 3

The first query needs flow-sensitivity to prove, the second one
is impossible to prove because the value of z comes from the
external input, and the last one is easily proved even with flow-
insensitivity. Therefore, our partially flow-sensitive analysis aims
to keep separate results only for the variables x and y, on which the
first query depends, and analyzes other variables flow-insensitively.
That is, the analysis computes the following result:

flow-sensitive result flow-insensitive result
line abstract state abstract state
1 {x 7! [0, 0], y 7! [0, 0]}
2 {x 7! [0, 0], y 7! [1, 1]}
3 {x 7! [0, 0], y 7! [1, 1]} {z 7! [0, 0], w 7! [0, 0]}
4 {x 7! [0, 0], y 7! [1, 1]}
5 {x 7! [0, 0], y 7! [1, 1]}

The analysis keeps separate instances for variables x and y at
different program points, but the results for other variables z and
w are kept flow-insensitively over the entire program.

2.2 Learning a Query-Classifier
Note that the precision and cost of the analysis depends on the clas-
sifier C. Our aim is to learn a good query-classifier C automatically
from a given codebase.

We use a standard learning method for binary classification. Let
Q = {q1, . . . , qn} be the queries in the codebase. We first need to
transform these queries into feature vectors, where a feature vector
v 2 Bk is a binary vector whose dimension k denotes the number of
features. Next, we generate the labelled data {(vi, bi)}ni=1, where
vi is the feature vector of query qi and bi is 1 if qi needs flow-
sensitivity to prove and 0 otherwise. We can automatically label
the data by analyzing the codebase and collecting the queries that
are proved by flow-sensitivity but not by flow-insensitivity. From
the labelled data, a classifier C : Bk ! B, which takes a feature
vector of a query and makes a prediction, can be learned via an
off-the-shelf classification algorithm.

The effectiveness of this learning method crucially depends on
the feature extraction phase, which transforms each query into a
feature vector. The feature extractor should be able to convert the
raw data (i.e., queries in the program) into a suitable intermedi-
ate representation (i.e., feature vector) from which the classifica-
tion algorithm could detect useful patterns to classify. In previous
work [2, 5], this feature extraction has been manually done by hu-
mans, which requires considerable domain expertise and engineer-
ing efforts. Our goal is to automate the feature extraction process
for program analysis.

2.3 Automatic Feature Extraction
Our feature extraction algorithm is defined with two components: a
set of features ⇧ = {⇡1, . . . ,⇡k} and a match procedure match. A
feature ⇡i encodes a piece of information that describes a property
of queries. The match procedure takes a query q and a feature ⇡,
and checks if q has the property denoted by the feature ⇡ (if so,
it returns 1 and otherwise 0). With ⇧ and match, we transform a
query q into a feature vector v as follows:

v = hmatch(q,⇡1), . . . ,match(q,⇡k)i.
Now, we explain how to automatically generate the features that

are relevant to a given analysis task (Section 2.3.1) and describe
how match works (Section 2.3.2). Note that the feature generation
is only performed offline but match is used both offline (i.e., when
learning the classifier) and online (i.e., when using the learned
classifier), which imposes a constraint that the matching algorithm
should be efficient enough.

2.3.1 Feature Generation
In machine learning, a good feature should be both selective and
invariant: the feature must be selective to the important aspects
for discrimination but at the same time it must be also invariant
and robust to the irrelevant aspects [3]. Our method generates fea-
tures with these principles in mind. In our case, a good feature
should describe a key property of flow-sensitivity, which distin-
guishes queries provable by flow-sensitivity from unprovable ones,
and should not describe other irrelevant properties to enhance in-
variance. We automatically generate such features by running a
program reducer on the codebase and representing the results by
abstract data flow graphs.

Identifying Key Features via Reducer Our first idea is to use
a generic program reducer to automatically identify key program
features from the codebase. A reducer (such as C-Reduce [7]) takes
a program and a predicate, and iteratively removes parts of the
program as long as the predicate holds. The result is a minimal
program with the desired property. Suppose P is a program in the
codebase and it has a query that is provable by flow-sensitivity but
not by flow-insensitivity. We identify the key reason for why flow-
sensitivity works by reducing P while preserving the precision-
effective condition holds (i.e., flow-sensitivity succeeds but flow-
insensitivity fails). The resulting program contains the key aspects
in the original program.

For example, consider the example program in Figure 1(a). The
assertion at line 6 can be proved by a flow-sensitive interval analy-
sis but not by flow-insensitive one; with flow-sensitivity, the value
of a is restricted to the interval [0, 3] because of the condition at line
5. With flow-insensitivity, a has the interval value [0,+1] over
the entire program. We reduce this program as long as the flow-
sensitive analysis proves the assertion while the flow-insensitive
analysis fails to do so, resulting in the program in Figure 1(b). Note
that the reduced program only contains the key reasons (i.e., con-
ditional statement (a < 3) and loop) why flow-sensitivity works.
Other program features are irrelevant to satisfying the condition;
flow-sensitivity still works without the statements such as if (a >

b). Running the reducer with the condition automatically removes
these irrelevant dependencies in the original program.

In Section 4.2, we describe this feature generation technique
in detail. In particular, because simply using the reducer as an
off-the-shelf tool is unlikely to preserve the original features, we
need techniques to make original features survive after reduction
(Section 4.2.2).

Representing Features by Abstract Data Flow Graphs Our sec-
ond idea is to represent the feature programs by an abstract graph
representation. This graph abstractly describes the data flows of the

2 2016/8/9

Generating Features

• Generic program reducer: e.g., C-Reduce [PLDI’12]

107

1. Goal

We would like to build a decision maker

C : P ! B
which, for a given program P , makes a decision whether to apply
high precision (e.g., flow-sensitivity) or not. In particular, we aim to
learn the decision maker automatically from an existing codebase
P = {P1, P2, . . . , Pn}.

2. C-Like Programs

We represent a program P 2 P by a control-flow graph (C, ,!),
where C is the set of program points and (,!) ✓ C ⇥ C denotes
the control-flow relation between program points. Each program
point is associated with a command, and we consider a simple set
of commands that capture C-like programs as follows:

c ! skip | lv := e | lv := alloc(e) | assume(e < e)
e ! n | e+ e | lv | &lv

lv ! x | ⇤e | e[e]

3. A Generic Feature Language

We define a generic feature language L that describes syntactic
program properties in general. The language is defined as the set
of abstract program paths:

L = ĉ

⇤

where ĉ denotes the following abstract version of the commands:

ĉ ! skip | l̂v := ê | l̂v := alloc(ê) | assume(ê < ê)
ê ! c | ê + ê | l̂v | &l̂v

l̂v ! idn | ⇤ê | ê[ê]
The language is expressive enough to describe all the syntactic

features used in [1]. For example, string
“assume(id1 < c), id2 := alloc(id1)” represents a program
variable that is compared with a constant expression and then used
as an argument of a memory allocation function.

We assume the two feature-manipulating functions are given:
•
extract 2 P ! }(L) takes a program and extracts the set of
features involved in the program.

•
match 2 P ⇥ L ! B takes a pair of a program and a feature,
and determines whether the program has the given feature.

4. Learning a Classifier from a Codebase

Setting

• Each program Pi in the codebase P = {P1, P2, . . . , Pn} has a
single query.

• A set of program features is given: ⇧ = {⇡1,⇡2, . . . ,⇡k} ✓ L

Training Data Generation Training data D ✓ Bk ⇥ B is gener-
ated as follows. For each Pi 2 P,

1. Represent Pi by the feature vector:

⇧(Pi) = hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k)i

2. Analyze Pi with high precision and see if the query in P is
proved.
(a) If proved, put 1 at the end:

hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 1i

(b) Otherwise:

hmatch(Pi,⇡1),match(Pi,⇡2), . . . ,match(Pi,⇡k), 0i

Learning a Classifier From the training data D ✓ Bk ⇥ B learn
a classifier C : P ! B using an off-the-shelf classification algo-
rithm (e.g., SVM).

5. Automatic Feature Construction

The success of our approach crucially depends on the choice of
the set ⇧ of program features. These golden features are usually
hand-crafted by human experts. Our goal is to automate this feature
construction process.

Setting

• A codebase P = {P1, P2, . . . , Pn}, where each program has a
single query.

• A parametric static analyzer F :

F : P⇥ B ! D
The analyzer takes a program and a precision parameter (either
1 or 0). D is the abstract domain of the analysis.

• An assertion checker proven : P ⇥ D ! B. The return value
informs whether the query in the program is proved or not.

• A program reducer:

reduce : P⇥ (P ! B) ! P
The reducer takes a program and a predicate, and removes
parts of the program as much as possible while preserving the
original result of the predicate.

Basic Idea We collect a set of tiny programs that capture the key
situations where the static analysis with high precision succeeds to
prove queries but the analysis with low precision does not.

1. Filter the set of precision-effective programs from the codebase:

P1 = {P | P 2 P ^ �(P) = 1}
where

�(P) = (proven(P, F (P, 0)) = 0 ^ proven(P, F (P, 1)) = 1)

2. Reduce the programs in P1 while preserving �:

P2 = {reduce(P,�) | P 2 P1}

3. Extract features from the reduced programs:

⇧ =
[

P2P2

extract(P)

Improvement However, this basic idea is likely to fail to capture
the key reason in the original program. The reducer is typically so
strong that it removes most of the reasons except for the most trivial
ones. For example, ...

To solve the problem, we apply a precision-decreasing program
transformation before reduction. Consider a program transformer
impair : P ! P such that for all P ,

F (P, 1) v F (impair(P), 1)

We repeatedly apply impair while preserving �, i.e.,

proven(F (impair(P), 0)) = 0 ^ proven(F (impair(p), 1)) = 1

Intuitively, this transformation removes most trivial reasons first, so
that the unique feature of the original program should survive after
the program reduction.

References

[1] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. Learning a strategy
for adapting a program analysis via bayesian optimisation. In OOPSLA,
2015.

1

• Reducing programs while preserving the condition  
 
 
generates feature programs.

reduce(P,�)) P 0

�(P) ⌘ FI(P) = unproven ^ FS(P) = proven

• Feature program P is a minimal program such that

Generating Features

108

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P)).

If the learned strategy is good, running the analysis with S(P)
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).

3 2016/8/9

reduce(P,�)) P 0

)

�(P) ⌘ FI(P) = unproven ^ FS(P) = proven

• Reduce programs while preserving the condition

Generating Features

• Represent the features by abstract data flow graphs

109

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P)).

If the learned strategy is good, running the analysis with S(P)
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).

3 2016/8/9

↵)

• The right level of abstraction is learned from codebase

Matching Algorithm

110

match : Query ⇥ Feature ! B

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P)).

If the learned strategy is good, running the analysis with S(P)
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).

3 2016/8/9

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P)).

If the learned strategy is good, running the analysis with S(P)
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).

3 2016/8/9

?
✓

1 a = 0; b = 0;

2 while (1) {

3 b = unknown();

4 if (a > b)

5 if (a < 3)

6 assert (a < 5);

7 a++;

8 }

1 a = 0;

2 while (1) {

3 if (a < 3)

4 assert (a < 5);

5 a++;

6 }

id := c

id < c

Q(id < c)

id := id+ c

(a) Original program (b) Reduced program (c) Feature

Figure 1. Example program and feature

program. For example, the reduced program in Figure 1(b) is con-
verted to the data flow graph in Figure 1(c). Note that the graph
captures the data flows of the program that influence the query. In
the graph, statements are abstracted to increase the invariance of
the features. For example, both conditions a < 3 and a < 5 in the
program are represented by the single abstract condition id < c,
where variables and integers are abstracted by constants id and c,
respectively.

2.3.2 The Matching Algorithm
By using the approach explained so far, we generate the abstract
data flow graph for each precision-effective query in the given
codebase. The feature set ⇧ = {⇡1, . . . ,⇡k} is the collection of
all such data flow graphs generated from the codebase.

Now, we describe match, which takes a query q and a feature
(i.e., data flow graph) ⇡i 2 ⇧, and checks if ⇡i is a feature of q or
not. Consider the query in the original program in Figure 1(a) and
the feature in Figure 1(c). We would like to check that the feature is
included in the original program. Matching the feature against the
program is done in the following two steps:

1. We represent the query in the target program (Figure 1(a)) by
an abstract data flow graph. The resulting graph is given as
follows:

id := c

id < c

Q(id < c)

id := id+ c

id > id

id := >

Note that the graph is similar to the graph in Figure 1(c) but
it contains all the dependencies in the original program. For
instance, it has the dependence edge from id > id to id < c,
which is absent in the reduced program. The unknown value,
i.e., the return value of unknown(), is represented by >.

2. We check whether the feature is a subgraph of the data flow
graph of the target program. We say a graph G1 is included in
G2 if all vertices in G1 are included in G2 and all arcs in G1 are
represented by a path in G2. In our example, the feature (Figure
1(c)) is a subgraph of the data flow graph above: for instance,
given the arc id:=id+c ! id<c in the feature, we can find a
path id:=id+c ! id>id ! id<c in the target graph.

Note that our definition of subgraph is different from the con-
ventional definition, which is essential to match features against
original programs. Note that the feature is unlikely to match to
the original program if we check the inclusion by the conventional
definition, i.e., G1 = (V1, E1) is included in G2 = (V2, E2) iff
V1 ✓ V2 and E1 ✓ E2. This is because the original program
(without reducing) may contain irrelevant dependences as well. We
cannot use the reducer to remove the independences because doing
so is typically too expensive to perform online. Instead, we take a

(less expensive) transitive closure of the data flow graph to match
in the presence of the noise in the target program.

3. Parametric Static Analysis
Let P 2 P be a program that we would like to analyze. We assume
that a set QP of queries (i.e., assertions) in P is given together
with the program. The goal of the analysis is to prove as many
queries as possible. In this paper, we consider a static analysis that
is parameterized by a set of queries. Thus, the parameter space is
defined by (AP ,v) where AP is the binary vector:

a 2 AP = {0, 1}QP
.

with the pointwise ordering a v a0 () 8j 2 QP . aj a0
j .

We sometimes regard a parameter a 2 AP as a function from AP

to {0, 1}, or the following collection:

a = {j 2 QP | aj = 1}.

In the latter case, we write |a| for the size of the collection. We
define two constants in AP :

0 = �j 2 QP . 0, and 1 = �j 2 QP . 1,

which represent the most imprecise and precise abstractions, re-
spectively. In the rest of this paper, we omit the subscript P when
there is no confusion.

A parameterized static analysis is modeled as a function:

F : P⇥A ! }(Q).

It takes a program to analyze and a parameter, and returns a set of
queries that are proved in this analysis run. Intuitively, the analysis
applies high precision only to the queries specified by the param-
eter; aj = 1 means that the query j 2 Q is analyzed with high
precision. For instance, in our partially flow-sensitive analysis, the
parameter denotes the set of queries and the analysis applies flow-
sensitivity to the program variables on which the queries depend.
In our partially relational octagon analysis, the analysis keeps the
relations between variables involved in the dependency graphs of
the selected queries.

Our goal is to learn a strategy S automatically from an existing
codebase. The resulting adaptation strategy is a function of the
following type:

S : P ! A,

and it is used to analyze new, unseen programs P :

F (P,S(P)).

If the learned strategy is good, running the analysis with S(P)
would give results close to those of the most precise abstraction
(F (P,1)), while incurring the cost at the level of or only slightly
above the least precise and hence cheapest abstraction (F (P,0)).

3 2016/8/9

✓

(N1, E1) ✓ (N2, E2) () N1 ✓ N2 ^ E1 ✓ E⇤
2

Subgraph inclusion:

Performance

• Partially flow-sensitive interval analysis

• Partially relational octagon analysis

111

Query Prediction Analysis
Prove Sec

Trial Precision Recall FI FS SFS FI FS SFS Quality Cost QualityTR
1 92.6 % 77.9 % 5,340 6,053 5,973 38.2 564.0 55.3 88.7 % 1.4x 88.7 %
2 78.8 % 73.3 % 2,972 3,373 3,262 16.3 460.5 25.7 72.3 % 1.5x 72.0 %
3 66.7 % 73.3 % 3,984 4,668 4,559 27.3 1,635.6 176.2 84.0 % 6.4x 82.7 %
4 88.7 % 68.8 % 4,600 5,450 5,307 38.1 688.2 59.6 83.1 % 1.5x 83.5 %
5 89.9 % 79.4 % 2,517 2,971 2,945 10.9 325.9 18.9 94.2 % 1.7x 94.0 %

TOTAL 81.5 % 73.9 % 19,413 22,515 22,046 131.1 3,674.4 336.0 84.8 % 2.5x 84.6 %

Table 1. Effectiveness of partially flow-sensitive interval analysis

Query Prediction Analysis
Prove Sec

Trial Precision Recall ITV IMPCT ML ITV IMPCT ML Quality Cost
1 49.5 % 75.3 % 7128 7192 7181 772 4496.8 1128.9 82.8 % 1.5x
2 56.2 % 86.7 % 6792 6926 6904 376.7 8568.4 1015.3 83.6 % 2.7x
3 64.8 % 92.9 % 1014 1129 1118 324.0 972.3 535.1 90.4 % 1.7x
4 68.7 % 72.7 % 6877 6962 6940 370.5 8838 938.4 74.1 % 2.5x
5 74.3 % 74.3 % 2585 2657 2642 418.1 1392.7 611.7 79.2 % 1.5x

TOTAL 61.0 % 81.6 % 24396 24866 24785 2261.3 24268.2 4229.4 82.8 % 1.9x

Table 2. Effectiveness of partially relational octagon analysis

Manual Ours
Trial Quality Cost Quality Cost

1 85.2 % 1.5x 88.7 % 1.4x
2 41.6 % 1.9x 72.3 % 1.5x
3 89.9 % 3.2x 84.0 % 6.4x
4 60.7 % 1.9x 83.1 % 1.5x
5 47.8 % 2.7x 94.2 % 1.7x

TOTAL 68.4 % 2.1x 84.8 % 2.5x

Table 3. Comparison with the previous work

The results show that our learning method with automat-
ically generated features consistently proves more queries
than the existing learning method with manually crafted fea-
tures (84.8% vs 68.4% on average). It is difficult to make
apples-to-apples comparison, as the learning algorithms of
both methods are different. However, the overall results
show that using automatically generated features is at least
as competitive as using features crafted manually by analysis
designers.

In [33], the learned heuristic proved 84.0% of provable
queries on training programs but 69.6% on test programs,
and we observed similar overfitting with our benchmarks
as well. Learning with manual features is likely to overfit
because feature engineering is expensive and often done by
investigating only a few (e.g., 3 or 4) training programs.
In our approach, features are crafted automatically with a
number of programs, making learned heuristics potentially
generalize well to unseen programs.

7.3 Generated Features
In experiments, our method successfully generated features
appropriate for each instance analysis. In this subsection, we
discuss a number of features that are automatically generated
and identified as important by our approach. The learning
algorithm (i.e., logistic regression) allows us to quantify the
relative importance among features.

Important Features Our method discovered that the fol-
lowing features are most useful for predicting flow-sensitivity
in interval analysis for proving buffer-overrun safety.

• A variable is used as an index for array access inside loop
but it is safely guarded by a constant:

int buffer[10];

for (i = 0; i < 7; i++) {

buffer[i] = 0; // Query

}

• A pointer variable is dereferenced after incremented by
another variable that is safely guarded by a constant in-
side loop:

i = 255;

p = malloc (i);

while (i > 0) {

*(p+i) = 0; // Query

i--;

}

• A variable is initialized by a constant and used as an
index for array access without being updated in-between:

int buffer[10];

i = 0;

12 2016/10/17

Summary

!
General Sparse

Analysis Framework
Selective X-sensitivity
(pre-analysis, ML, etc)

Soundness

Scalability Precision

112

