## AAA616: Program Analysis

# Lecture 4 - Abstract Interpretation Framework 

Hakjoo Oh<br>2016 Fall

## Abstract Interpretation Framework

A powerful framework for designing correct static analysis

- "framework": correct static analysis comes out, reusable
- "powerful": all static analyses are understood in this framework
- "simple": prescription is simple
- "eye-opening": any static analysis is an abstract interpretation



## Step 1: Define Concrete Semantics

The concrete semantics describes the real executions of the program. Described by semantic domain and function.

- A semantic domain $\boldsymbol{D}$, which is a CPO:
- $\boldsymbol{D}$ is a partially ordered set with a least element $\perp$.
- Any increasing chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in $D$ has a least upper bound $\bigsqcup_{n \geq 0} d_{n}$ in $D$.
- A semantic function $\boldsymbol{F}: \boldsymbol{D} \rightarrow \boldsymbol{D}$, which is continuous: for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$,

$$
F\left(\bigsqcup_{n \geq 0} d_{i}\right)=\bigsqcup_{n \geq 0} F\left(d_{n}\right)
$$

Then, the concrete semantics (or collecting semantics) is defined as the least fixed point of semantic function $\boldsymbol{F}: \boldsymbol{D} \rightarrow \boldsymbol{D}$ :

$$
f i x F=\bigsqcup_{i \in N} F^{i}(\perp)
$$

## Example: Concrete Semantics

- Program representation:
- $\boldsymbol{P}$ is represented by control flow graph $\left(\mathbb{C}, \rightarrow, c_{0}\right)$
- Each program point $\boldsymbol{c}$ is associated with a command $\mathbf{c m d}(\boldsymbol{c})$

$$
\begin{aligned}
\text { cmd } & \rightarrow \text { skip } x:=e \\
e & \rightarrow n|x| e+e \mid e-e
\end{aligned}
$$

- Semantics of commands:
- Concrete memory states: $\mathbb{M}=\operatorname{Var} \rightarrow \mathbb{Z}$
- Concrete semantics:

$$
\begin{aligned}
\llbracket c \rrbracket & : \mathbb{M} \rightarrow \mathbb{M} \\
\llbracket s k i p \rrbracket(m) & =m \\
\llbracket x:=e \rrbracket(m) & =m[x \mapsto \llbracket e \rrbracket(s) \rrbracket \\
\llbracket e \rrbracket & : \quad \mathbb{M} \rightarrow \mathbb{Z} \\
\llbracket n \rrbracket(m) & =n \\
\llbracket x \rrbracket(m) & =m(x) \\
\llbracket e_{1}+e_{2} \rrbracket(m) & =\llbracket e_{1} \rrbracket(m)+\llbracket e_{2} \rrbracket(m) \\
\llbracket e_{1}-e_{2} \rrbracket(m) & =\llbracket e_{1} \rrbracket(m)+\llbracket e_{2} \rrbracket(m)
\end{aligned}
$$

## Example: Concrete Semantics

- Program states: State $=\mathbb{C} \times \mathbb{M}$
- A trace $\boldsymbol{\sigma} \in$ State $^{+}$is a (partial) execution sequence of the program:

$$
\sigma_{0} \in I \wedge \forall k \cdot \sigma_{k} \leadsto \sigma_{k+1}
$$

where $I \subseteq$ State is the initial program states

$$
I=\left\{\left(c_{0}, m_{0}\right) \mid m_{0} \in \mathbb{M}\right\}
$$

and $(\sim) \subseteq$ State $\times$ State is the relation for the one-step execution:

$$
\left(c_{i}, s_{i}\right) \sim\left(c_{j}, s_{j}\right) \Longleftrightarrow c_{i} \rightarrow c_{j} \wedge s_{j}=\llbracket \mathrm{cmd}\left(c_{j}\right) \rrbracket\left(s_{i}\right)
$$

## Example: Concrete Semantics

The collecting semantics of program $\boldsymbol{P}$ is defined as the set of all finite traces of the program:

$$
\llbracket P \rrbracket=\left\{\sigma \in \text { State }^{+} \mid \sigma_{0} \in I \wedge \forall k . \sigma_{k} \leadsto \sigma_{k+1}\right\}
$$

The semantic domain:

$$
D=\wp\left(\text { State }^{+}\right)
$$

The semantic function:

$$
\begin{aligned}
\boldsymbol{F} & : \wp\left(\text { State }^{+}\right) \rightarrow \wp\left(\text { State }^{+}\right) \\
\boldsymbol{F}(\Sigma) & =I \cup\left\{\sigma \cdot(\boldsymbol{c}, \boldsymbol{m}) \mid \sigma \in \Sigma \wedge \sigma_{\dashv} \leadsto(\boldsymbol{c}, \boldsymbol{m})\right\}
\end{aligned}
$$

Lemma
$\llbracket P \rrbracket=f i x F$.

## Step 2: Define Abstract Semantics

Define the abstract semantics of the input program.

- Define an abstract semantic domain CPO $\hat{\boldsymbol{D}}$.
- Intuition: $\hat{\boldsymbol{D}}$ is an abstraction of $\boldsymbol{D}$
- Define an abstract semantic function $\hat{\boldsymbol{F}}: \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$.
- Intuition: $\hat{\boldsymbol{F}}$ is an abstraction of $\boldsymbol{F}$.
- $\hat{\boldsymbol{F}}$ must be monotone:

$$
\begin{aligned}
& \qquad \forall \hat{x}, \hat{\boldsymbol{y}} \in \hat{D} . \hat{\boldsymbol{x}} \sqsubseteq \hat{\boldsymbol{y}} \Longrightarrow \hat{\boldsymbol{F}}(\hat{\boldsymbol{x}}) \sqsubseteq \hat{\boldsymbol{F}}(\hat{\boldsymbol{y}}) \\
& \text { (or extensive: } \forall x \in \hat{D} . x \sqsubseteq \hat{\boldsymbol{F}}(x) \text { ) }
\end{aligned}
$$

Then, static analysis is to compute an upper bound of:

$$
\bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\perp)
$$

How can we ensure that the result soundly approximate the concrete semantics?

## Requirement 1: Galois Connection

$\boldsymbol{D}$ and $\hat{\boldsymbol{D}}$ must be related with Galois-connection:

$$
D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} \hat{D}
$$

That is, we have

- abstraction function: $\alpha \in \boldsymbol{D} \rightarrow \hat{\boldsymbol{D}}$
- represents elements in $\boldsymbol{D}$ as elements of $\hat{D}$
- concretization function: $\gamma \in \hat{D} \rightarrow \boldsymbol{D}$
- gives the meaning of elements of $\hat{D}$ in terms of $\boldsymbol{D}$
- $\forall x \in D, \hat{\boldsymbol{x}} \in \hat{\boldsymbol{D}} . \boldsymbol{\alpha}(\boldsymbol{x}) \sqsubseteq \hat{\boldsymbol{x}} \Longleftrightarrow \boldsymbol{x} \sqsubseteq \gamma(\hat{\boldsymbol{x}})$
- $\alpha$ and $\gamma$ respect the orderings of $\boldsymbol{D}$ and $\hat{\boldsymbol{D}}$


## Galois-Connection



## Example: Sign Abstraction

Sign abstraction:

$$
\wp(\mathbb{Z}) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}\{\perp,+, 0,-\top\}
$$

where

$$
\begin{aligned}
\alpha(Z) & = \begin{cases}\perp & Z=\emptyset \\
+ & \forall z \in Z . z>0 \\
0 & Z=\{0\} \\
- & \forall z \in Z . z<0 \\
\top & \text { otherwise }\end{cases} \\
\gamma(\perp) & =\emptyset \\
\gamma(\top) & =\mathbb{Z} \\
\gamma(+) & =\{z \in \mathbb{Z} \mid z>0\} \\
\gamma(0) & =\{0\} \\
\gamma(-) & =\{z \in \mathbb{Z} \mid z<0\}
\end{aligned}
$$

## Example: Interval Abstraction

$$
\begin{aligned}
\wp(\mathbb{Z}) \stackrel{\gamma}{\stackrel{\gamma}{\hookrightarrow}}\{\perp\} \cup\{[a, b] \mid & \mid a \in \mathbb{Z} \cup\{-\infty\}, b \in \mathbb{Z} \cup\{+\infty\}\} \\
\gamma(\perp) & =\emptyset \\
\gamma([a, b]) & =\{z \in \mathbb{Z} \mid a \leq z \leq b\} \\
\gamma([a,+\infty]) & =\{z \in \mathbb{Z} \mid z \geq a\} \\
\gamma([-\infty, b]) & =\{z \in \mathbb{Z} \mid z \leq b\} \\
\gamma([-\infty,+\infty]) & =\mathbb{Z}
\end{aligned}
$$

## Requirement 2: $\hat{\boldsymbol{F}}$ and $\boldsymbol{F}$

- $\hat{\boldsymbol{F}}$ and $\boldsymbol{F}$ must satisfy

$$
\alpha \circ \boldsymbol{F} \sqsubseteq \hat{\boldsymbol{F}} \circ \alpha \quad \text { (i.e., } \boldsymbol{F} \circ \gamma \sqsubseteq \gamma \circ \hat{\boldsymbol{F}})
$$

- or, alternatively,

$$
\alpha(x) \sqsubseteq \hat{x} \Longrightarrow \alpha(F(x)) \sqsubseteq \hat{F}(\hat{x})
$$

## Soundness Guarantee

## Theorem (Fixpoint Transfer)

Let $D$ and $\hat{D}$ be related by Galois-connection $D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} \hat{D}$. Let $\boldsymbol{F}: D \rightarrow D$ be a continuous function and $\hat{\boldsymbol{F}}: \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$ be a monotone function such that $\boldsymbol{\alpha} \circ \boldsymbol{F} \sqsubseteq \hat{\boldsymbol{F}} \circ \boldsymbol{\alpha}$. Then,

$$
\alpha(f i x F) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\perp}) .
$$

## Theorem (Fixpoint Transfer2)

Let $\boldsymbol{D}$ and $\hat{\boldsymbol{D}}$ be related by Galois-connection $\boldsymbol{D} \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} \hat{D}$. Let $\boldsymbol{F}: D \rightarrow D$ be a continuous function and $\hat{\boldsymbol{F}}: \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$ be a monotone function such that $\alpha(x) \sqsubseteq \hat{x} \Longrightarrow \alpha(F(x)) \sqsubseteq \hat{F}(\hat{x})$. Then,

$$
\alpha(f i x F) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\perp}) .
$$

## A Property of Galois-Connection

The functional composition of two Galois-connections is also Galois-connection:

Lemma
If $D_{1} \underset{\alpha_{1}}{\stackrel{\gamma_{1}}{\leftrightarrows}} D_{2}$ and $D_{2} \underset{\alpha_{2}}{\stackrel{\gamma_{2}}{\leftrightarrows}} D_{3}$, then

$$
D_{1} \underset{\alpha_{2} \circ \alpha_{1}}{\stackrel{\gamma_{1} \circ \gamma_{2}}{\leftrightarrows}} D_{3}
$$

## Proof.

Exercise

## Example: Partitioning Abstraction

 Galois-connection: $\wp\left(\right.$ State $\left.^{+}\right) \underset{\alpha_{1}}{\stackrel{\gamma_{1}}{\leftrightarrows}} \mathbb{C} \rightarrow \wp(\mathbb{M})$$$
\alpha_{1}(\Sigma)=\lambda c .\left\{m \in \mathbb{M} \mid \exists \sigma \in \Sigma \wedge \exists i . \sigma_{i}=(c, m)\right\}
$$

Semantic function:

$$
\begin{gathered}
\hat{F}_{1}:(\mathbb{C} \rightarrow \wp(\mathbb{M})) \rightarrow(\mathbb{C} \rightarrow \wp(\mathbb{M})) \\
\hat{F}_{1}(X)=\alpha_{1}(I) \sqcup \lambda c \in \mathbb{C} . f_{c}\left(\bigcup_{c^{\prime} \rightarrow c} X\left(c^{\prime}\right)\right)
\end{gathered}
$$

where $f_{c}: \wp(\mathbb{M}) \rightarrow \wp(\mathbb{M})$ is a transfer function at program point $c$ :

$$
f_{c}(M)=\left\{m^{\prime} \mid m \in M \wedge m^{\prime}=\llbracket \operatorname{cmd}(c) \rrbracket(m)\right\}
$$

## Lemma (Soundness of Partitioning Abstraction)

 $\alpha_{1}(f i x F) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{F}_{1}^{i}(\perp)$.
## Example: Memory State Abstraction

Galois-connection:

$$
\begin{gathered}
\mathbb{C} \rightarrow \wp(\mathbb{M}) \underset{\alpha_{2}}{\stackrel{\gamma_{2}}{\leftrightarrows}} \mathbb{C} \rightarrow \hat{\mathbb{M}} \\
\alpha_{2}(f)=\lambda c \cdot \alpha_{m}(f(c)) \\
\gamma_{1}(\hat{f})=\lambda c \cdot \gamma_{m}(\hat{f}(c))
\end{gathered}
$$

where we assume

$$
\wp(\mathbb{M}) \underset{\alpha_{m}}{\stackrel{\gamma_{m}}{\leftrightarrows}} \hat{\mathbb{M}}
$$

Semantic function $\hat{\boldsymbol{F}}:(\mathbb{C} \rightarrow \hat{\mathbb{M}}) \rightarrow(\mathbb{C} \rightarrow \hat{\mathbb{M}})$ :

$$
\hat{F}(X)=\left(\alpha_{2} \circ \alpha_{1}\right)(I) \sqcup \lambda c \in \mathbb{C} . \hat{f}_{c}\left(\bigsqcup_{c^{\prime} \rightarrow c} X\left(c^{\prime}\right)\right)
$$

where abstract transfer function $\hat{f}_{c}: \hat{\mathbb{M}} \rightarrow \hat{\mathbb{M}}$ is given such that

$$
\begin{equation*}
\alpha_{m} \circ f_{c} \sqsubseteq \hat{f}_{c} \circ \alpha_{m} \tag{1}
\end{equation*}
$$

Theorem (Soundness)
$\alpha(f i x F) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\perp)$ where $\alpha=\alpha_{\mathbf{2}} \circ \boldsymbol{\alpha}_{\mathbf{1}}$.

## Example: Sign Analysis

Memory state abstraction:

$$
\begin{gathered}
\wp(\mathbb{M}) \stackrel{\gamma_{m}}{\stackrel{\alpha_{m}}{\leftrightarrows}} \hat{\mathbb{M}} \\
\alpha_{m}(M)=\lambda x \in \operatorname{Var} . \alpha_{s}(\{m(x) \mid m \in M\})
\end{gathered}
$$

where $\boldsymbol{\alpha}_{\boldsymbol{s}}$ is the sign abstraction:

$$
\wp(\mathbb{Z}) \underset{\alpha_{s}}{\stackrel{\gamma_{s}}{\leftrightarrows}} \hat{\mathbb{Z}}
$$

The transfer function $\hat{f_{c}}: \hat{\mathbb{M}} \rightarrow \hat{\mathbb{M}}$ :

$$
\begin{array}{rll}
\hat{f}_{c}(\hat{m})=\hat{m} & c=\text { skip } \\
\hat{f}_{c}(\hat{m})=\hat{m}[x \mapsto \hat{\mathcal{V}}(e)(\hat{m})] & c=x:=e \\
\hat{\mathcal{V}}(n)(\hat{m}) & =\alpha_{s}(\{n\}) \\
\hat{\mathcal{V}}(x)(\hat{m}) & =\hat{m}(x) \\
\hat{\mathcal{V}}\left(e_{1}+e_{2}\right) & =\hat{\mathcal{V}}\left(e_{1}\right)(\hat{m}) \hat{\hat{V}} \hat{\mathcal{V}}\left(e_{2}\right)(\hat{m}) \\
\hat{\mathcal{V}}\left(e_{1}-e_{2}\right) & =\hat{\mathcal{V}}\left(e_{1}\right)(\hat{m}) \hat{\mathcal{V}}\left(e_{2}\right)(\hat{m})
\end{array}
$$

## Lemma

$\alpha_{m} \circ f_{c} \sqsubseteq \hat{f}_{c} \circ \boldsymbol{\alpha}_{m}$

## Example: Interval Analysis

Memory state abstraction:

$$
\alpha_{m}(M)=\lambda x \in \operatorname{Var} . \alpha_{n}(\{m(x) \mid m \in M\})
$$

where $\boldsymbol{\alpha}_{\boldsymbol{n}}$ is the interval abstraction:

$$
\begin{gathered}
\wp(\mathbb{Z}) \underset{\alpha_{n}}{\stackrel{\gamma_{n}}{\leftrightarrows}} \hat{\mathbb{Z}} \\
\hat{\mathbb{Z}}=\{\perp\} \cup\{[l, u] \mid l, u \in \mathbb{Z} \cup\{-\infty,+\infty\} \wedge l \leq u\}
\end{gathered}
$$

The transfer function $\hat{\boldsymbol{f}_{c}}: \hat{\mathbb{M}} \rightarrow \hat{\mathbb{M}}$ :

$$
\begin{array}{rll}
\hat{f}_{c}(\hat{m})=\hat{m} & c=\text { skip } \\
\hat{f}_{c}(\hat{m})=\hat{m}[x \mapsto \hat{\mathcal{V}}(e)(\hat{m})] & c=x:=e
\end{array}
$$

## Lemma

$\boldsymbol{\alpha}_{m} \circ \boldsymbol{f}_{c} \sqsubseteq \hat{f}_{c} \circ \boldsymbol{\alpha}_{m}$

## Computing an upper bound of $\bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\hat{\perp})$

- If the abstract domain $\hat{D}$ has finite height (i.e., all chains are finite), we can directly calculate

$$
\bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\perp}) .
$$

- If the domain $\hat{\boldsymbol{D}}$ has infinite height, the computation may not terminate. In this case, we find a finite chain $\hat{X}_{\mathbf{0}} \sqsubseteq \hat{\boldsymbol{X}}_{\mathbf{1}} \sqsubseteq \hat{\boldsymbol{X}}_{\mathbf{2}} \sqsubseteq \ldots$ such that

$$
\bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\perp}) \sqsubseteq \lim _{i \in \mathbb{N}} \hat{X}_{i}
$$

## Finite Chain $\hat{\boldsymbol{X}}_{i}$

Define finite chain $\hat{X}_{i}$ by an widening operator $\nabla: \hat{\boldsymbol{D}} \times \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$ :

$$
\begin{align*}
\hat{X}_{0} & =\perp & & \\
\hat{X}_{i} & =\hat{X}_{i-1} & & \text { if } \hat{F}\left(\hat{X}_{i-1}\right.  \tag{2}\\
& =\hat{X}_{i-1} \nabla \hat{F}\left(\hat{X}_{i-1}\right) & & \text { otherwise }
\end{align*}
$$

Conditions on $\nabla$ :

- $\forall a, b \in \hat{D} .(a \sqsubseteq a \nabla b) \wedge(b \sqsubseteq a \nabla b)$
- For all increasing chains $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)_{i}$, the increasing chain $\left(\boldsymbol{y}_{\boldsymbol{i}}\right)_{i}$ defined as

$$
\boldsymbol{y}_{i}= \begin{cases}\boldsymbol{x}_{0} & \text { if } \boldsymbol{i}=\mathbf{0} \\ \boldsymbol{y}_{i-1} \nabla \boldsymbol{x}_{i} & \text { if } \boldsymbol{i}>\mathbf{0}\end{cases}
$$

eventually stabilizes (i.e., the chain is finite).

Then, the limit of the chain is safe analysis result.
Theorem (Widening's Safety)
Let $\hat{D}$ be a $C P O, \hat{F}: \hat{D} \rightarrow \hat{D}$ a monotone function, $\nabla: \hat{D} \times \hat{D} \rightarrow \hat{D}$ a widening operator. Then, chain $\left(\hat{X}_{i}\right)_{i}$ defined as (2) eventually stabilizes and

$$
\bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\hat{\perp}) \sqsubseteq \lim _{i \in \mathbb{N}} \hat{\boldsymbol{X}}_{i} .
$$

## Narrowing

- We can refine the widening result $\lim _{i \in \mathbb{N}} \hat{X}_{i}$ by a narrowing operator $\triangle: \hat{D} \times \hat{D} \rightarrow \hat{D}$.
- Compute chain $\left(\hat{Y}_{i}\right)_{i}$

$$
\hat{Y}_{i}= \begin{cases}\lim _{i \in \mathbb{N}} \hat{X}_{i} & \text { if } i=0  \tag{3}\\ \hat{Y}_{i-1} \triangle \hat{\boldsymbol{F}}\left(\hat{Y}_{i-1}\right) & \text { if } i>0\end{cases}
$$

- Conditions on $\triangle$
- $\forall a, b \in \hat{D} . a \sqsubseteq b \Longrightarrow a \sqsubseteq a \triangle b \sqsubseteq b$
- For all decreasing chain $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)_{i}$, the decreasing chain $\left(\boldsymbol{y}_{\boldsymbol{i}}\right)_{i}$ defined as

$$
\boldsymbol{y}_{i}= \begin{cases}x_{i} & \text { if } \mathrm{i}=0 \\ \boldsymbol{y}_{i-1} \triangle x_{i} & \text { if } i>\mathbf{0}\end{cases}
$$

eventually stabilizes.

## Theorem (Narrowing's Safety)

Let $\hat{D}$ be a $C P O, \hat{F}: \hat{D} \rightarrow \hat{D}$ a monotone function, $\triangle: \hat{D} \times \hat{D} \rightarrow \hat{D}$ a narrowing operator. Then, chain $\left(\hat{\boldsymbol{Y}}_{\boldsymbol{i}}\right)_{i}$ defined as (3) eventually stabilizes and

$$
\bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\hat{\perp}) \sqsubseteq \lim _{i \in \mathbb{N}} \hat{Y}_{i} .
$$

## Widening/Narrowing Example

```
i = 0;
while (i<10)
    i++;
```

- Abstract equation:

$$
\begin{aligned}
& \boldsymbol{X}_{1}=[0,0] \\
& \boldsymbol{X}_{2}=\left(\boldsymbol{X}_{1} \sqcup \boldsymbol{X}_{3}\right] \sqcap[-\infty, \mathbf{9}] \\
& \boldsymbol{X}_{\mathbf{3}}=\boldsymbol{X}_{\mathbf{2}} \hat{+}[\mathbf{1}, \mathbf{1}] \\
& \boldsymbol{X}_{4}=\left(\boldsymbol{X}_{\mathbf{1}} \sqcup \boldsymbol{X}_{\mathbf{3}}\right) \sqcap[\mathbf{1 0},+\infty]
\end{aligned}
$$

- Abstract domain $\hat{\boldsymbol{D}}=$ Interval $\times$ Interval $\times$ Interval $\times$ Interval
- Semantic function $\hat{\boldsymbol{F}}: \hat{\boldsymbol{D}} \rightarrow \hat{\boldsymbol{D}}$ such that

$$
\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\hat{F}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)
$$

## Widening/Narrowing Example

$$
\begin{aligned}
& \boldsymbol{X}_{1}=[\mathbf{0}, \mathbf{0}] \\
& \boldsymbol{X}_{2}=\left(\boldsymbol{X}_{1} \sqcup \boldsymbol{X}_{3}\right] \sqcap[-\infty, \mathbf{9}] \\
& \boldsymbol{X}_{\mathbf{3}}=\boldsymbol{X}_{\mathbf{2}} \hat{+}[\mathbf{1}, \mathbf{1}] \\
& \boldsymbol{X}_{4}=\left(\boldsymbol{X}_{1} \sqcup \boldsymbol{X}_{\mathbf{3}}\right) \sqcap[\mathbf{1 0},+\infty]
\end{aligned}
$$

$\bigsqcup_{i \in \mathbb{N}} \hat{\boldsymbol{F}}^{i}(\hat{\perp}):$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | ... |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{X}_{1}$ | ค | [0, 0] | [0, 0] | [0, 0] | [0, 0] | [0, 0] | [0, 0] |  | [0, 0] |
| $\boldsymbol{X}_{2}$ | $\hat{\perp}$ | $\hat{\perp}$ | [0, 0] | [0, 0] | [0, 1] | $[0,1]$ | $[0,2]$ |  | [0,9] |
| $\boldsymbol{X}_{3}$ | $\hat{\perp}$ | Î | $\hat{\perp}$ | $[1,1]$ | [1, 1] | [1, 2] | [1, 2] |  | [1, 10] |
| $\boldsymbol{X}_{4}$ | $\hat{\perp}$ | ^̂ | ^ | ค | ค | ค | ค |  | $[10,10]$ |

## Widening/Narrowing Example

A simple widening operator for the Interval domain:

$$
\begin{array}{rccl}
{[a, b]} & \nabla & \perp & =[a, b] \\
\perp & \nabla & {[c, d]} & =[c, d] \\
{[a, b]} & \nabla & {[c, d]} & =[(c<a ?-\infty: a),(b<d ?+\infty: b)]
\end{array}
$$

A simple narrowing operator:

$$
\begin{array}{rlll}
{[a, b]} & \triangle & \perp & =\perp \\
\perp & \triangle & {[c, d]} & =\perp \\
{[a, b]} & \triangle & {[c, d]} & =[(a=-\infty ? c: a),(b=+\infty ? d: b)]
\end{array}
$$

## Widening／Narrowing Example

Widening iteration：

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{X}_{1}$ | へ̂ | ［0，0］ | ［0，0］ | ［0，0］ | ［0，0］ | ［0，0］ | ［0，0］ | ［0，0］ |
| $\boldsymbol{X}_{2}$ | へ̂ | $\hat{\text { I }}$ | ［0，0］ | ［0，0］ | $[0,+\infty]$ | $[0,+\infty]$ | $[0,+\infty]$ | $[0,+\infty]$ |
| $\boldsymbol{X}_{3}$ | $\hat{\perp}$ | ค̂ | ค | $[1,1]$ | ［1，1］ | $[1,+\infty]$ | $[1,+\infty]$ | $[1,+\infty]$ |
| $\boldsymbol{X}_{4}$ | $\hat{\perp}$ | Î | Î | I | I | 」 | $[10,+\infty]$ | $[10,+\infty]$ |

Narrowing iteration：

|  | 0 | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $X_{1}$ | $[0,0]$ | $[0,0]$ | $[0,0]$ | $[0,0]$ | $[0,0]$ |
| $X_{2}$ | $[0,+\infty]$ | $[0,9]$ | $[0,9]$ | $[0,9]$ | $[0,9]$ |
| $X_{3}$ | $[1,+\infty]$ | $[1,+\infty]$ | $[1,10]$ | $[1,10]$ | $[1,10]$ |
| $X_{4}$ | $[10,+\infty]$ | $[10,+\infty]$ | $[10,+\infty]$ | $[10,10]$ | $[\mathbf{1 0}, 10]$ |

## Worklist Algorithm

```
\(W \in\) Worklist \(=\wp(\mathbb{C})\)
\(T \in \mathbb{C} \rightarrow \hat{\mathbb{S}}\)
\(\hat{f}_{c} \in \hat{\mathbb{S}} \rightarrow \hat{\mathbb{S}}\)
\(\boldsymbol{W}:=\mathbb{C}\)
\(T:=\lambda c . \perp\)
repeat
    \(c:=\) choose \((\boldsymbol{W})\)
    \(W:=W-\{c\}\)
    \(\hat{s}_{i n}:=\bigsqcup_{c^{\prime} \rightarrow c} \hat{f}_{c^{\prime}}\left(T\left(c^{\prime}\right)\right)\)
    if \(\hat{s}_{i n} \mathbb{X}(c)\)
        if \(c\) is a head of a flow cycle
        \(\hat{s}_{i n}:=\boldsymbol{T}(c) \nabla \hat{s}_{i n}\)
        \(\hat{X}(c):=\hat{s}_{i n}\)
        \(W:=W \cup\left\{c^{\prime} \mid c \rightarrow c^{\prime}\right\}\)
until \(\boldsymbol{W}=\emptyset\)
```


## Example



