
AAA616: Program Analysis

Lecture 4 — Abstract Interpretation Framework

Hakjoo Oh
2016 Fall

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 1 / 29

Abstract Interpretation Framework

A powerful framework for designing correct static analysis

“framework”: correct static analysis comes out, reusable

“powerful”: all static analyses are understood in this framework

“simple”: prescription is simple

“eye-opening”: any static analysis is an abstract interpretation

CC77 CC79

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 2 / 29

Step 1: Define Concrete Semantics

The concrete semantics describes the real executions of the program.
Described by semantic domain and function.

A semantic domain D, which is a CPO:
I D is a partially ordered set with a least element ⊥.
I Any increasing chain d0 v d1 v . . . in D has a least upper bound⊔

n≥0 dn in D.

A semantic function F : D → D, which is continuous: for all chains
d0 v d1 v . . . ,

F (
⊔
n≥0

di) =
⊔
n≥0

F (dn).

Then, the concrete semantics (or collecting semantics) is defined as the
least fixed point of semantic function F : D → D:

fixF =
⊔
i∈N

F i(⊥).

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 3 / 29

Example: Concrete Semantics

Program representation:
I P is represented by control flow graph (C,→, c0)
I Each program point c is associated with a command cmd(c)

cmd → skip | x := e
e → n | x | e+ e | e− e.

Semantics of commands:
Concrete memory states: M = Var→ Z
Concrete semantics:

[[c]] : M→ M

[[skip]](m) = m
[[x := e]](m) = m[x 7→ [[e]](s)]

[[e]] : M→ Z

[[n]](m) = n
[[x]](m) = m(x)

[[e1 + e2]](m) = [[e1]](m) + [[e2]](m)
[[e1 − e2]](m) = [[e1]](m) + [[e2]](m)

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 4 / 29

Example: Concrete Semantics

Program states: State = C×M
A trace σ ∈ State+ is a (partial) execution sequence of the program:

σ0 ∈ I ∧ ∀k.σk ; σk+1

where I ⊆ State is the initial program states

I = {(c0,m0) | m0 ∈ M}

and (;) ⊆ State× State is the relation for the one-step execution:

(ci, si) ; (cj, sj) ⇐⇒ ci → cj ∧ sj = [[cmd(cj)]](si)

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 5 / 29

Example: Concrete Semantics

The collecting semantics of program P is defined as the set of all finite
traces of the program:

[[P]] = {σ ∈ State+ | σ0 ∈ I ∧ ∀k.σk ; σk+1}

The semantic domain:
D = ℘(State+)

The semantic function:

F : ℘(State+)→ ℘(State+)

F (Σ) = I ∪ {σ · (c,m) | σ ∈ Σ ∧ σa ; (c,m)}

Lemma

[[P]] = fixF .

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 6 / 29

Step 2: Define Abstract Semantics

Define the abstract semantics of the input program.

Define an abstract semantic domain CPO D̂.
I Intuition: D̂ is an abstraction of D

Define an abstract semantic function F̂ : D̂ → D̂.
I Intuition: F̂ is an abstraction of F .
I F̂ must be monotone:

∀x̂, ŷ ∈ D̂. x̂ v ŷ =⇒ F̂ (x̂) v F̂ (ŷ)

(or extensive: ∀x ∈ D̂. x v F̂ (x))

Then, static analysis is to compute an upper bound of:⊔
i∈N

F̂ i(⊥)

How can we ensure that the result soundly approximate the concrete
semantics?

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 7 / 29

Requirement 1: Galois Connection

D and D̂ must be related with Galois-connection:

D −−→←−−α
γ

D̂

That is, we have

abstraction function: α ∈ D → D̂
I represents elements in D as elements of D̂

concretization function: γ ∈ D̂ → D
I gives the meaning of elements of D̂ in terms of D

∀x ∈ D, x̂ ∈ D̂. α(x) v x̂ ⇐⇒ x v γ(x̂)
I α and γ respect the orderings of D and D̂

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 8 / 29

Galois-Connection

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 9 / 29

Example: Sign Abstraction

Sign abstraction:

℘(Z) −−→←−−α
γ
{⊥,+, 0,−>}

where

α(Z) =


⊥ Z = ∅
+ ∀z ∈ Z. z > 0
0 Z = {0}
− ∀z ∈ Z. z < 0
> otherwise

γ(⊥) = ∅
γ(>) = Z
γ(+) = {z ∈ Z | z > 0}
γ(0) = {0}
γ(−) = {z ∈ Z | z < 0}

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 10 / 29

Example: Interval Abstraction

℘(Z) −−→←−−α
γ
{⊥} ∪ {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}}

γ(⊥) = ∅
γ([a, b]) = {z ∈ Z | a ≤ z ≤ b}

γ([a,+∞]) = {z ∈ Z | z ≥ a}
γ([−∞, b]) = {z ∈ Z | z ≤ b}

γ([−∞,+∞]) = Z

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 11 / 29

Requirement 2: F̂ and F

F̂ and F must satisfy

α ◦ F v F̂ ◦ α (i.e., F ◦ γ v γ ◦ F̂)

or, alternatively,

α(x) v x̂ =⇒ α(F (x)) v F̂ (x̂)

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 12 / 29

Soundness Guarantee

Theorem (Fixpoint Transfer)

Let D and D̂ be related by Galois-connection D −−→←−−α
γ

D̂. Let F : D → D be

a continuous function and F̂ : D̂ → D̂ be a monotone function such that
α ◦ F v F̂ ◦ α. Then,

α(fixF) v
⊔
i∈N

F̂ i(⊥̂).

Theorem (Fixpoint Transfer2)

Let D and D̂ be related by Galois-connection D −−→←−−α
γ

D̂. Let F : D → D be

a continuous function and F̂ : D̂ → D̂ be a monotone function such that
α(x) v x̂ =⇒ α(F (x)) v F̂ (x̂). Then,

α(fixF) v
⊔
i∈N

F̂ i(⊥̂).

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 13 / 29

A Property of Galois-Connection

The functional composition of two Galois-connections is also
Galois-connection:

Lemma

If D1 −−−→←−−−α1

γ1
D2 and D2 −−−→←−−−α2

γ2
D3, then

D1 −−−−−→←−−−−−
α2◦α1

γ1◦γ2
D3.

Proof.

Exercise

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 14 / 29

Example: Partitioning Abstraction

Galois-connection: ℘(State+) −−−→←−−−α1

γ1
C→ ℘(M)

α1(Σ) = λc.{m ∈ M | ∃σ ∈ Σ ∧ ∃i.σi = (c,m)}

Semantic function:

F̂1 : (C→ ℘(M))→ (C→ ℘(M))

F̂1(X) = α1(I) t λc ∈ C. fc(
⋃
c′→c

X(c′))

where fc : ℘(M)→ ℘(M) is a transfer function at program point c:

fc(M) = {m′ | m ∈M ∧ m′ = [[cmd(c)]](m)}

Lemma (Soundness of Partitioning Abstraction)

α1(fixF) v
⊔
i∈N F̂

i
1(⊥).

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 15 / 29

Example: Memory State Abstraction

Galois-connection:
C→ ℘(M) −−−→←−−−α2

γ2

C→ M̂

α2(f) = λc. αm(f(c))

γ1(f̂) = λc. γm(f̂(c))

where we assume
℘(M) −−−−→←−−−−

αm

γm

M̂

Semantic function F̂ : (C→ M̂)→ (C→ M̂):

F̂ (X) = (α2 ◦ α1)(I) t λc ∈ C. f̂c(
⊔
c′→c

X(c′))

where abstract transfer function f̂c : M̂→ M̂ is given such that

αm ◦ fc v f̂c ◦ αm (1)

Theorem (Soundness)

α(fixF) v
⊔
i∈N F̂

i(⊥) where α = α2 ◦ α1.

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 16 / 29

Example: Sign Analysis

Memory state abstraction:

℘(M) −−−−→←−−−−
αm

γm

M̂

αm(M) = λx ∈ Var. αs({m(x) | m ∈M})
where αs is the sign abstraction:

℘(Z) −−−→←−−−αs

γs

Ẑ

The transfer function f̂c : M̂→ M̂:

f̂c(m̂) = m̂ c = skip

f̂c(m̂) = m̂[x 7→ V̂(e)(m̂)] c = x := e

V̂(n)(m̂) = αs({n})
V̂(x)(m̂) = m̂(x)

V̂(e1 + e2) = V̂(e1)(m̂) +̂ V̂(e2)(m̂)

V̂(e1 - e2) = V̂(e1)(m̂) −̂ V̂(e2)(m̂)

Lemma

αm ◦ fc v f̂c ◦ αm
Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 17 / 29

Example: Interval Analysis

Memory state abstraction:

αm(M) = λx ∈ Var. αn({m(x) | m ∈M})
where αn is the interval abstraction:

℘(Z) −−−→←−−−
αn

γn

Ẑ

Ẑ = {⊥} ∪ {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}
The transfer function f̂c : M̂→ M̂:

f̂c(m̂) = m̂ c = skip

f̂c(m̂) = m̂[x 7→ V̂(e)(m̂)] c = x := e

V̂(n)(m̂) = αs({n})
V̂(x)(m̂) = m̂(x)

V̂(e1 + e2) = V̂(e1)(m̂) +̂ V̂(e2)(m̂)

V̂(e1 - e2) = V̂(e1)(m̂) −̂ V̂(e2)(m̂)

Lemma

αm ◦ fc v f̂c ◦ αm
Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 18 / 29

Computing an upper bound of
⊔
i∈N F̂

i(⊥̂)

If the abstract domain D̂ has finite height (i.e., all chains are finite),
we can directly calculate ⊔

i∈N
F̂ i(⊥̂).

If the domain D̂ has infinite height, the computation may not
terminate. In this case, we find a finite chain
X̂0 v X̂1 v X̂2 v . . . such that⊔

i∈N
F̂ i(⊥̂) v lim

i∈N
X̂i

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 19 / 29

Finite Chain X̂i

Define finite chain X̂i by an widening operator 5 : D̂ × D̂ → D̂:

X̂0 = ⊥
X̂i = X̂i−1 if F̂ (X̂i−1) v X̂i−1

= X̂i−15 F̂ (X̂i−1) otherwise

(2)

Conditions on 5:

∀a, b ∈ D̂. (a v a5 b) ∧ (b v a5 b)

For all increasing chains (xi)i, the increasing chain (yi)i defined as

yi =

{
x0 if i = 0
yi−15 xi if i > 0

eventually stabilizes (i.e., the chain is finite).

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 20 / 29

Then, the limit of the chain is safe analysis result.

Theorem (Widening’s Safety)

Let D̂ be a CPO, F̂ : D̂ → D̂ a monotone function, 5 : D̂ × D̂ → D̂
a widening operator. Then, chain (X̂i)i defined as (2) eventually
stabilizes and ⊔

i∈N
F̂ i(⊥̂) v lim

i∈N
X̂i.

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 21 / 29

Narrowing

We can refine the widening result limi∈N X̂i by a narrowing operator
4 : D̂ × D̂ → D̂.

Compute chain (Ŷi)i

Ŷi =

{
limi∈N X̂i if i = 0

Ŷi−14 F̂ (Ŷi−1) if i > 0
(3)

Conditions on 4
I ∀a, b ∈ D̂. a v b =⇒ a v a4 b v b
I For all decreasing chain (xi)i, the decreasing chain (yi)i defined as

yi =

{
xi if i = 0
yi−14 xi if i > 0

eventually stabilizes.

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 22 / 29

Theorem (Narrowing’s Safety)

Let D̂ be a CPO, F̂ : D̂ → D̂ a monotone function, 4 : D̂ × D̂ → D̂
a narrowing operator. Then, chain (Ŷi)i defined as (3) eventually
stabilizes and ⊔

i∈N
F̂ i(⊥̂) v lim

i∈N
Ŷi.

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 23 / 29

Widening/Narrowing Example

1 i = 0;

2 while (i<10)

3 i++;

Abstract equation:

X1 = [0, 0]
X2 = (X1 tX3] u [−∞, 9]

X3 = X2 +̂ [1, 1]
X4 = (X1 tX3) u [10,+∞]

Abstract domain D̂ = Interval× Interval× Interval× Interval

Semantic function F̂ : D̂ → D̂ such that

(X1, X2, X3, X4) = F̂ (X1, X2, X3, X4)

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 24 / 29

Widening/Narrowing Example

X1 = [0, 0]
X2 = (X1 tX3] u [−∞, 9]

X3 = X2 +̂ [1, 1]
X4 = (X1 tX3) u [10,+∞]⊔

i∈N F̂
i(⊥̂):

0 1 2 3 4 5 6 . . .

X1 ⊥̂ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

X2 ⊥̂ ⊥̂ [0, 0] [0, 0] [0, 1] [0, 1] [0, 2] [0, 9]

X3 ⊥̂ ⊥̂ ⊥̂ [1, 1] [1, 1] [1, 2] [1, 2] [1, 10]

X4 ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ [10, 10]

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 25 / 29

Widening/Narrowing Example

A simple widening operator for the Interval domain:

[a, b] 5 ⊥ = [a, b]
⊥ 5 [c, d] = [c, d]

[a, b] 5 [c, d] = [(c < a?−∞ : a), (b < d? +∞ : b)]

A simple narrowing operator:

[a, b] 4 ⊥ = ⊥
⊥ 4 [c, d] = ⊥

[a, b] 4 [c, d] = [(a = −∞?c : a), (b = +∞?d : b)]

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 26 / 29

Widening/Narrowing Example
Widening iteration:

0 1 2 3 4 5 6 7

X1 ⊥̂ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

X2 ⊥̂ ⊥̂ [0, 0] [0, 0] [0,+∞] [0,+∞] [0,+∞] [0,+∞]

X3 ⊥̂ ⊥̂ ⊥̂ [1, 1] [1, 1] [1,+∞] [1,+∞] [1,+∞]

X4 ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ ⊥̂ [10,+∞] [10,+∞]

Narrowing iteration:

0 1 2 3 4
X1 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
X2 [0,+∞] [0, 9] [0, 9] [0, 9] [0, 9]
X3 [1,+∞] [1,+∞] [1, 10] [1, 10] [1, 10]
X4 [10,+∞] [10,+∞] [10,+∞] [10, 10] [10, 10]

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 27 / 29

Worklist Algorithm

W ∈Worklist = ℘(C)

T ∈ C→ Ŝ
f̂c ∈ Ŝ→ Ŝ

W := C
T := λc.⊥
repeat
c := choose(W)
W := W − {c}
ŝin :=

⊔
c′→c f̂c′(T (c′))

if ŝin 6v X̂(c)
if c is a head of a flow cycle
ŝin := T (c)5 ŝin

X̂(c) := ŝin
W := W ∪ {c′ | c→ c′}

until W = ∅
Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 28 / 29

Example

Hakjoo Oh AAA616 2016 Fall, Lecture 4 October 11, 2016 29 / 29

