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Abstract Interpretation Framework

A powerful framework for designing correct static analysis

@ “framework”: correct static analysis comes out, reusable

o “powerful”: all static analyses are understood in this framework
@ “simple”: prescription is simple
°

“eye-opening”: any static analysis is an abstract interpretation

CCr7 CC79
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Step 1: Define Concrete Semantics

The concrete semantics describes the real executions of the program.
Described by semantic domain and function.
@ A semantic domain D, which is a CPO:

» D is a partially ordered set with a least element L.
» Any increasing chain dg C dy E ... in D has a least upper bound

L,.>0 dn in D.
@ A semantic function F' : D — D, which is continuous: for all chains
doLdi C...

F(| | d) = || F(dn)-

n>0 n>0

Then, the concrete semantics (or collecting semantics) is defined as the
least fixed point of semantic function F' : D — D:

fieF = | | Fi(L).

1EN
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Example: Concrete Semantics

@ Program representation:
» P is represented by control flow graph (C, —, co)
» Each program point ¢ is associated with a command cmd(c)
emd — skip |x:=e
e > nlxz|lete|le—e.
@ Semantics of commands:
@ Concrete memory states: Ml = Var — Z
@ Concrete semantics:
[e] : M—>M
[skip](m) = m
[ :=e](m) = mlz— [e](s)]
[e] : M—Z
[n](m) = n
[] (m) m(x)
[ex + e2](m) [e1](m) + [e2](m)
[er — e2x](m) = [ei](m) + [e2](m)
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Example: Concrete Semantics

@ Program states: State = C x M

o Atrace o € State™ is a (partial) execution sequence of the program:
oo €I N Vk.op ~ 041
where T C State is the initial program states
I = {(co, mp) | mo € M}
and (~) C State x State is the relation for the one-step execution:

(ciysi) ~ (cj,85) <= ¢ = ¢c; N sj = [emd(c;)](s:)
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Example: Concrete Semantics

The collecting semantics of program P is defined as the set of all finite
traces of the program:

[P] = {o € State™ | 69 € I A Vk.op ~ 011}

The semantic domain:
D = p(State™)

The semantic function:
F : p(Statet) — p(State™)
F(YX) = ITU{o:-(ccm)|oceX AN o4~ (c,m)}

Lemma

[P] = fizF. J
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Step 2: Define Abstract Semantics

Define the abstract semantics of the input program.

o Define an abstract semantic domain CPO D.
» Intuition: D is an abstraction of D
e Define an abstract semantic function ' : D — D.

» Intuition: F' is an abstraction of F.
» F' must be monotone:

Vi, g€ D. 2 C§ = F(2) C F(9)
(or extensive: V& € D. x T F(x))
Then, static analysis is to compute an upper bound of:
|| FA(L)
ieN

How can we ensure that the result soundly approximate the concrete
semantics?
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Requirement 1: Galois Connection

D and D must be related with Galois-connection:
Y ~
D % D

That is, we have
e abstraction function: o« € D — D
> represents elements in D as elements of D
@ concretization function: v € D—>D
> gives the meaning of elements of D in terms of D
oeVxeED,E€D.a(zx)C& < = C ()
> « and ~ respect the orderings of D and D
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Galois-Connection

D Y D
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Example: Sign Abstraction

Sign abstraction: Y
P(Z) = {J-a +,0, _T}

where
1L zZz=0
+ VzeZ. z>0
a(Z) = 0 Z=4{0}
— VzeZ.2<0
T otherwise
(L) =0
Y (T) = Z
y+) = {2€Z|z>0}
v(0) = {o}
(=) = {z€Z|z<0}
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Example: Interval Abstraction

p(Z) == {L}U{[a,b] |a € ZU{—o0},b € ZU {+o0}}
(L) = 0
v([a,b]) = {z€Z|a<z<b}
Y([a,+oc]) = {z€Z]|z2>a}
Y([~o0,b]) = {z€Z]|2z<b}
'7([_00’ —I—OO]) = Z
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Requirement 2: Fand F

o F and F must satisfy
aoFC Foa (e, FoyLC~yoF)
@ or, alternatively,

a(z) C& = a(F(z)) C F(2)
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Soundness Guarantee

Theorem (Fixpoint Transfer)

Let D and D be related by Galois-connection D % D. Let F: D — D be

a continuous function and ' : D — D be a monotone function such that
aoF C Foa. Then,

a(ficF) C | | F{(1).

1€N

Theorem (Fixpoint Transfer2)

Let D and D be related by Galois-connection D %} D. let F: D — D be

a continuous function and F' 1? — D be a monotone function such that
a(z) E&2 = a(F(x)) C F(&). Then,

a(ficF) C | | F{(1).

1€N

v
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A Property of Galois-Connection

The functional composition of two Galois-connections is also

Galois-connection:
Lemma

If Dy <Z_—1> D> and D- <%—2> Ds, then
1 2

Y1072
Dy &———= Ds.

Proof.
Exercise Yy
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Example: Partitioning Abstraction

Galois-connection: g(State™) <Z_—11> C — p(M)
a1(X) = defmeM|JoeX A Tio; = (¢c,m)}
Semantic function:
Fy: (C = p(M)) = (C = p(M))

Fi(X) = ax(I) UAc € C. fo( | X())

where fe : (M) — @(M) is a transfer function at program point c:

fe(M) = {m'|meM A m' = [ecmd(c)](m)}

Lemma (Soundness of Partitioning Abstraction)
oy (fixF) C I_lz'eN Ff(L)
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Example: Memory State Abstraction

Galois-connection: ya A
CopM)==C->M
2

az(f) = Ac. am(f(©))
() = Ae. vm(f(e))
where we assume - A
P 2 1

Semantic function F': (C — M) — (C — M):

F(X) = (azoa)(I)UAc e C. fo( | | X(c))

c’—c
where abstract transfer function f. : Ml — M is given such that

Oszfc;chOLm (1)

Theorem (Soundness)

a(fixF) C | ey F(L) where a = az 0 0.
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Example: Sign Analysis
Memory state abstraction: N
anm(M) = Az € Var. a;({m(z) | m € M})
where «; is the sign abstraction:
Yo

The transfer function fc : M — M:

fc(m) = CcC = Sk’l,p

fe(m) = 1z — V(e)(m)] c=xz:=e

V(n)(m) = as({n})

V(x)(m) = m(x) .
V(er+ez) = V(er)(m) + V(ez)(1h)
V(ei1-e2) = V(e1)(m) — V(ez)(mh)

3)

Lemma J

amofc[;.fcoam
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Example: Interval Analysis

Memory state abstraction:
an(M) = Az € Var. a,({m(z) | m € M})
where a, is the interval abstraction:
p(2) = 1
Z={L}Uu{ll,u] |l,u € ZU {—o0, 400} Al < u}
The transfer function f. : M — M:
fiC("h) =
fe() =
V(n)(m) = a,({n})
V@)m) = mz)
V(ei+ez) = V(e1)(m) + V(ez)(m)
V(ei1-e2) = V(e1)(m) — V(ez)(mh)

X c = skip
[t — V(e)(m)] c=x:=e

23

Lemma J

0m 0 fe & feoam
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Computing an upper bound of | |,y Fi(l)

o If the abstract domain D has finite height (i.e., all chains are finite),
we can directly calculate

| | Fi(L).

i€EN

o If the domain D has infinite height, the computation may not
terminate. In this case, we find a finite chain
Xo L X7 C Xo ... such that

]_| F(1) C lim X;
1€EN
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Finite Chain X
Define finite chain X; by an widening operator \VA D x D — D:
Xo = L
Xi = Xi1 if F(X;-1) E X1 (2)
= X;_1v F(X;-1) otherwise
Conditions on v/:
eVa,beD.(aCavwb) A (bC ayb)
e For all increasing chains (x;);, the increasing chain (y;); defined as
Yi = Yi—1 V Tj ife >0

eventually stabilizes (i.e., the chain is finite).
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Then, the limit of the chain is safe analysis result.
Theorem (Widening's Safety)

Let D be a CPO, F : D — D a monotone function, 7 : D x D — D

a widening operator. Then, chain (X;); defined as (2) eventually
stabilizes and

| | F*(1) C lim X..
h i€EN
€N
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Narrowing

@ We can refine the W|den|ng result lim;en X; by a narrowing operator
A:DxD—D.

e Compute chain (Y;);

. lim;en X ifi=0
Y, =1{ o & 3
‘ {Yi_IAF(Y;_l) ifi >0 (3)

e Conditions on A
»Va,beD.aCb = aCaAbLCbH
» For all decreasing chain (x;);, the decreasing chain (y;); defined as

R 7 ifi=0
Yi= yimr Oy ifi>0

eventually stabilizes.
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Theorem (Narrowing's Safety)

Let D be a CPO, F : D — D a monotone function, A : D x D — D
a narrowing operator. Then, chain (Y;); defined as (3) eventually
stabilizes and .

| | F*(1) Clim V..

_ i€EN

1EN
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Widening/Narrowing Example

i=0;
while (i<10)
it++:

3

@ Abstract equation:

X;: = [0,0]

X2 = (Xl L X3] M [—OO, 9]
X3 = X, + [1,1]

X4 = (X1 L X3) M [10, —|—OO]

@ Abstract domain D = Interval X Interval X Interval X Interval

e Semantic function F' : D — D such that

(Xl’X23X3,X4) = F(X17X2aX3a X4)
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Widening/Narrowing Example

X, = [OvO]

Xy = (X1UX3]M[—o0,9]

X3 = X2+ [1,1]

X4 = (Xl L X3) M [10, +OO]

UieNFi(—T—)3
0 1 2 3 4 5 6

X1 | 1] [0,0] | [0,0] | [0,0] |[0,0] | [0,0] | [O,0] [0, 0]
Xz | L| 1 |[o,0]][0,0]][0,1]|[0,1] | [0,2] [0, 9]
Xs | 1] 1 1 [1,1] | [1,1] | [1,2] | [1,2] [1,10]
X, | 1| L i 1 i 1 i [10,10]
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Widening/Narrowing Example

A simple widening operator for the Interval domain:

[a,b] v L = [a, b]
1 v [ed] =][cd]
[a,b] v [c,d] =[(c<a?—o00:a),(b<d?+ oco:b)]

A simple narrowing operator:

[a,b] A L =1
L A [ed =1
[a,b] A [e,d] =[(a=—00?c:a),(b=+occ?d:b)]
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Widening/Narrowing Example

Widening iteration:

0 1 2 3 5 7
X1 | L ][0,0] | [0,0] | [0,0] | [0,0] [0, 0] [0, 0] [0, 0]
Xy | 1| 1 |10,0]][0,0] | [0,400] | [0,+00] | [0,400] | [0,+00]
Xs | 1| 1L 1 @] [, | [@,400] | [1,400] | [1,+00]
X, | 1| 1 1 i 1 i [10, +o0] | [10, 4o0]
Narrowing iteration:
0 1 2 3 4

X1 [07 O] [0’ 0] [Oa 0] [Oa 0] [07 0]

X2 [0, +o0] [0,9] [0, 9] [0, 9] [0, 9]

X3 | [1,400] | [1,400] [1,10] [1,10] | [1,10]

X4 | [10,+00] | [10,+00] | [10,+o0] | [10,10] | [10, 10]
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Worklist Algorithm

W € Worklist = p(C)
TecC—S§
fc € S — S
W :=C
T:=Xe.L
repeat
¢ := choose(W)
W :=W — {c}
Sin = Lo Jor(T(€'))
if $;n £ X ()
if ¢ is a head of a flow cycle
§in = T(C) \V4 §in
X (c) := 8in
W:=WuU{cd|c—c}
until W =0
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Example

1
ENTRY
A 4
2 x=0;y=0
3 \ 4 § :
X < 10 . print x
true
A
4 X = x+1
A 4
3 y = y+1
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