AAA616: Program Analysis

Lecture 10 — Logical Reasoning of Programs

Hakjoo Oh
2016 Fall

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 1/56

Reference

@ The Calculus of Computation (Aaron Bradley and Zohar Manna)

The Calculus
of Computation

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 2 /56

Contents

@ Propositional Logic (Chap 1)
@ First-Order Logic (Chap 2, 3)
@ Program Verification (Chap 5)

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 3 /56

Motivating Example: Program-Equivalence Checking

Original Code

Optimized Code

if (ta && !'b) h();
else if ('a) gQO;
else £();

Hakjoo Oh AAA616 2016 Fall, Lecture 10

if (a) £0);
else if (b) g O;
else h(Q);

November 29, 2016

4/56

Motivating Example: Program-Equivalence Checking

Original Code

Optimized Code

if (ta && !'b) h();
else if ('a) gQ);
else £();

if (a) £0O;
else if (b) g O;
else h();

© Treat procedures as independent boolean variables.

@ Translate if-then-else into boolean formula:

ifxthenyelsez=(xAy)V (nxAz)

© Check equivalence of boolean formulas by a SAT Solver:

(—|a/\—nb)/\hV—|(—|a/\—|b)/\(—|a/\gVa/\f)
< aANfV-aANn(bAgV-bAh)

Hakjoo Oh AAA616 2016 Fall, Lecture 10

November 29, 2016

4/56

Syntax of Propositional Logic

@ An atom is a truth symbols L, T or propositional variables P, Q,

o A literal is an atom « or its negation —ax.

@ A formula is a literal or the application of a logical connectives:

F —

L

T

P

-F

Fy A\ Fy
Vv Fy
P, — Fs
P < Fy

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016

5/ 56

Semantics of Propositional Logic

@ An interpretation I assigns to every propositional variable exactly one
truth value: e.g.,

I:{P > true,Q > false,...}

@ We write I = F' if F evaluates to true under I.
o We write I ¥ F' if F evaluates to false under I.
@ Semantics:

IET, IT#¥1,

IEP iff I[P] = true
I#¥P iff I[P] = false
IE-F iff T#F
I':Fl/\Fz |ffI|=FlandI|=F2
IEF,V F, iff IEFyorlFE Fy

I':Fl—)Fz |ffI}’fF10rIi=F2
IR < F iff (I EFyandIFE Fy)or(IF FyandlIF F)

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 6 /56

Satisfiability and Validity

o A formula F' is satisfiable iff there exists an interpretation I such that
IEF.

o A formula F' is valid iff for all interpretations I, I E F'.

o Satisfiability and validity are dual concepts:
F is valid iff = F' is unsatisfiable.

@ We can check satisfiability by deciding validity, and vice versa.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 7 /56

Deciding Validity and Satisfiability

Two approaches to show F' is valid:

@ Truth table method performs exhaustive search: e.g.,

F:PANQ— PV Q.

PlQIPANQ|-Q|PV-Q|F
0|0 0 1 1 1
0|1 0 0 0 1
10 0 1 1 1
1|1 1 0 1 1

@ Semantic argument method uses deduction:

» Assume F' is invalid: T ¥ F for some I.

» Apply deduction rules to derive a contradiction.

> If every branch of the proof derives a contradiction, then F' is valid.

» If some branch of the proof never derives a contradiction, then F is
invalid.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 8 /56

Deduction Rules for Propositional Logic

IEF IFEF

I~#F IEF
IEFANG I#FAG
IFFIFG IFF|IFEG
IFFVG I#FVG

IEF|IEG I F,I1FG

IFF -G I¥F —G
I¥FF|IEG IEFF,IFG

IFF & G IFF G
IEFEFANG|IEF—-FA-G IEFA-G|IE-FAG

IEF IFF
ITE L

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 9 /56

Example 1

To prove that the formula
F:PA Q — PV —|Q

is valid, assume that it is invalid and derive a contradiction:

1. TEPAQ — PV —Q assumption

2. TEPAQ by 1 and semantics of —
3. TEPV-Q by 1 and semantics of —
4. IF P by 2 and semantics of A
5 IEZP by 3 and semantics of V
6. I'F_L1 4 and 5 are contradictory

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 10 / 56

Example 2

To prove that the formula
F:(P—-Q)AN(Q—R)— (P—R)

is valid, assume that it is invalid and derive a contradiction:

1. T F assumption

2. TE(P—Q)A(Q — R) byl and semantics of —
3. T¥P— R by 1 and semantics of —
4. TP by 3 and semantics of —
5. T¥R by 3 and semantics of —
6. IFP—Q 2 and semantics of A

7. IFQ—> R 2 and semantics of A

Two cases consider from 6:
@ I ¥ P: contradiction with 4.

@ I E Q: two cases to consider from 7:

@ I ¥ Q: contradiction
@ I E R: contradiction with 5.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 11 / 56

Equivalence and Implication

@ Two formulas Fy and F5 are equivalent
P <— F,

iff F1 <> F5 is valid, i.e., for all interpretations I, I E Fy <> F5.

@ Formula F; implies formula F5
= Fy

iff F; — F5 is valid, i.e., for all interpretations I, I E F, — F5.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 12 / 56

Normal Forms

A normal form of formulae is a syntactic restriction such that for every
formula of the logic, there is an equivalent formula in the normal form.

e Negation Normal Form (NNF) requires that =, A, and V be the
only connectives and that negations appear only in literals: e.g.,

—|(F1 AN Fz) <~ —F V Iy

e Disjunctive Normal Form (DNF) requires that formulae be a
disjunction of conjunctions of literals:

V Al
i J

e Conjunctive Normal Form (CNF) requires that formulae be a
conjunction of clauses (disjunctions of literals):

AV i
i g

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 13 / 56

Equisatisfiability

e F and F” are equisatisfiable when F' is satisfiable iff F’ is satisfiable.
» Equisatisfiability is a weaker notion of equivalence, which is still useful
when deciding satisfiability.
@ SAT solvers convert a given formula to an equisatisfiable formula in
CNF.
» A formula can be converted to an equisatisfiable formula in CNF with
only a linear increase in size (Tseitin's transformation).
» Conversion to an equivalent CNF incurs exponential blow-up in
worst-case.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 14 / 56

Decision Procedures

Two approaches for deciding satisfiability:

@ Search: exhaustively search through all possible assignments:

let rec SAT F =
if ' = T then true
else if FF = L then false
else
let P = Choose(vars(F')) in
(SAT F{P — T})V (SAT F{P — 1})

e Deduction: iteratively apply proof rules (resolution):

Ci1[P] C3[-P]
Cl[J_] Vv Cz[J_]

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 15 / 56

The Resolution Procedure

C1[P] C3[—P]
Ci[l] Vv C2[1]

e To satisfy clauses C1[P] and C2[—P], either the rest of Cy or the
rest of Cy must be satisfied. If P is true, then a literal other than
=P in Cy must be satisfied; while if P is false, then a literal other
than P in C7 must be satisfied.

o If ever L is deduced via resolution, F' is unsatisfiable. Otherwise, if
no further resolutions are possible, F is satisfiable.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 16 / 56

Examples

e ("PVQ)ANPAN-Q

From resolution

(P Vv Q)
Q ;

construct
(-PVQ)APA-QAQ

which derives _L.

° (ﬁPVQ) /\ﬁQ)

The resolution procedure yields
(~PVQ)AN-QAN-P

No further resolutions are possible.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 17 / 56

DPLL

The Davis-Putnam-Logemann-Loveland algorithm (DPLL) combines the
enumerative search and a restricted form of resolution, called unit
resolution:

l C[—l]
C[1]

The process of applying this resolution as much as possible is called
Boolean constraint propagation (BCP).

let rec DPLL F =
let F/ = BCP(F) in
if F/ = T then true
else if F/ = L then false
else
let P = Choose(vars(F")) in
(DPLL F'{P — T}) V (DPLL F/{P — 1})

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 18 / 56

MaxSAT Example: Software Upgradeability Problem?

Package

Dependencies Conflicts

D1
D2
D3
y

@ Encoding dependencies:

{p2Vp3} {pa}
{ps} 0
{pr2} {pa}
{p2 N p3} 0

» p1 — (p2 Vp3) = (—p1V p2 V ps)

> p2 — p3 = (—p2 V p3)

> p3 — p2 = (—p3 V p2)

» pas — (P2 Aps) = (mpa V p2) A (—paV p3)

@ Encoding conflicts:

> p1 — —Ppa = (-p1 V pa)
> p3 — —pa = (—Pps V —p4)

@ Encoding installing all packages:

> p1 Ap2 Ap3 A Dy

!Slides from http://www.cs.utexas.edu/~isil/cs389L/ut-maxsat.pdf

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016

19 / 56

http://www.cs.utexas.edu/~isil/cs389L/ut-maxsat.pdf

Example
The formula in CNF:

—p1Vp2Vps, “Pp2VPp3, p3Vp2, “TPgV P2,
P4V Pp3, TP1V Pg, TP3V Py
P1s, D2y P3, D4

@ The formula is unsatisfiable.

@ How many clauses can we satisfy?

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 20 / 56

Maximum Satisfiability (MaxSAT)

@ MaxSat:

» An optimization extension of SAT.

» All clauses are soft.

» Maximize number of satisfied soft clauses.
o Partial MaxSAT:

» Clauses in the formula are soft or hard.

» Hard clauses must be satisfied.

» Maximize number of satisfied soft clauses.

@ Weighted Partial MaxSAT:

» Clauses are soft or hard.
» Soft clauses are associated with weights.
» Maximize sum of weights of satisfied clauses.

@ MaxSAT has a variety of applications. Any optimization problem is
likely to be solved by MaxSAT.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 21 / 56

Example: Partial MaxSAT

@ Dependencies and conflicts are hard constraints:

—p1Vp2Vp3s, —Pp2Vp3, p3Vp2, TPpsV P2,
P4V P3, P11V Pg, TP3V Py

@ Installation of packages are soft constraints:

Pi1, P2y P3, D4

@ Goal: maximize the number of installed packages.

@ Optimal solution:

p1=T,p2=T,p3=T,ps =L

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 22 / 56

First-Order Logic

In FOL, terms evaluate to values other than truth values.

@ Terms include variables «, vy, z, ..., constants a, b, c, ..., and
functions f,g,h,....

» An m-ary function f takes m terms as arguments.

E.g. f(a),g(z,b), f(g(x, f(b))).

» A constant can be viewed as a 0-ary function.

Propositional variables are generalized to predicates p, q, 7,

» An n-ary predicate takes n terms as arguments.
» A propositional variable is a 0-ary predicate: P,Q, R,

An atom is T, L, or an n-ary predicate applied to n terms.

A literal is an atom or its negation: e.g., P, p(f(x),g(x, f(x))).

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 23 / 56

Syntax of First-Order Logic

F 1

T

p(tla LARN tn)
-F

i N\ Fy

F, Vv F,

F1 — Fz
<~ Fs
Va.F|z]

-
|
|
|
|
|
|
| Fz.F|x]

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 24 / 56

Interpretation

The notion of interpretation is more complicated than PL:
@ The domain Dy of an interpretation is a nonempty set of values or
objects, such as integers, real numbers, people, etc.

@ The assignment «y of interpretation I maps constant, function, and
predicate symbols to elements, functions, and predicates over Dy. It
also maps variables to elements of Dj.

» Each variable symbol « is assigned a value xy from Dj.
» Each n-ary function symbol f is assigned an mn-ary function

fI : D? — Dy
» Each n-ary predicate symbol p is assigned an n-ary predicate
pr : D} — {true, false}

@ An interpretation I : (Dy, ay) is a pair of a domain and an
assignment.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 25 / 56

Example

F:z4+y>z—o>y>z—=x

e Note +, —, > are just symbols: p(f(x,v),2) — p(y,9(z,x)).

e Domain:
Dr=72Z={...,-1,0,1,...}

@ Assignment:

ar={+— +z,— = —z,>—>>z,x— 13,y — 42,z — 1,...}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 26 / 56

Semantics of First-Order Logic
Given an interpretation I : (Dr,ap), I F ForI ¥ F.

TET, T#1,
ITEp(tiy...,tn) iff ar[p(ti,...,tn)] = true

IE-F iff T¥F

IEF ANFy iff TEFyand IF Fp

I':Fl\/Fz IffI':F10FI|:F2

IEF, — Fy |fFIJrZ‘F10rI|=F2

I':Fl(—)Fz iff (IIZFlandI|=F2)or(IJF5F1andIJ?ng)
IEVe.F iff for allv € Dy, I < {x — v} F F
IE3x.F iff there exists v € Dy, I < {x — v} F F

where I < {x — v} denotes an x-variant of I.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 27 / 56

Example

F:3z.f(x) = g(x)
Consider the interpretation I : (D : {v1,v2}, ag):

ay : {f(v1) = v1, f(v2) = v2,g(v1) = v2,g(v2) — v1}
Compute the truth value of F' under I as follows:

1. I<{x— v} FE f(x)=g(x) forve D
2. I ¥ Fz.f(x) = g(x) since v € D is arbitrary

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 28 / 56

Satisfiability and Validity

o A formula F' is satisfiable iff there exists an interpretation I such that
IEF.

o A formula F' is valid iff for all interpretations I, I E F'.

@ Satisfiability and validity only apply to closed FOL formulas.

» If we say that a formula F such that free(F") # is valid, we mean that
its universal closure V * . F' is valid.

> If we say that F' is satisfiable, we mean that its existential closure
3 % . F is satisfiable.

@ Duality still holds:

V % .F is valid <= 3 *x .= F is unsatisfiable.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 29 / 56

First-Order Theories

@ While validity in FOL is undecidable, validity in particular theories or
fragments of theories is sometimes decidable.
@ A first-order theory T is defined by signatures and axioms:
> Its signature X is a set of constant, function, and predicate symbols.
» lIts set of axioms A is a set of closed FOL formulas in which only
constant, function, and predicate symbols of 3 appear.
@ A X-formula F is valid in the theory T', or T-valid, if every
interpretation I that satisfies the axioms of T,

IE A forevery A € A (Iisa T-interpretation)

also satisfies F' : I F F. We write T F F for T-validity of F'.
@ The theory T consists of all (closed) formulas that are T-valid.

o A X-formula F is satisfiable in T, or T-satisfiable, if there is a
T-interpretation I that satisfies F.

@ The quantifier-free fragment of a theory T' is the set of formulas
without quantifiers that are valid in T'.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 30 / 56

The Theory of Equality

o Z].E : {:’a’b?c7'"7f7g’h?""p’q?r7"'}
@ Axioms A:
Q Ve.x ==z
Q Ve, yx=y—>y==
Q Ve,y,zx=yAy=z—->x==2
@ for each positive integer n and n-ary function symbol f,

vz, 5.(N\ zi =) = £(&) = (@)

@ for each positive integer n and n-ary predicate symbol p,

n

vz, 5.\ @i = yi) = (p(Z) > p(7))

=1

TE is undecidable, but the quantifier-free fragment of T is decidable.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 31 /56

Example

F:a=bAb=c— g(f(a),b) =g(f(c),a)
Is F Tg-valid?

Hakjoo Oh AAA616 2016 Fall, Lecture 10

Useful First-Order Theories

|Theory|Description [Full|QFF]
Te equality no| yes
Tea Peano arithmetic no no
Tn Presburger arithmetic yes| yes
Ty linear integers yes| yes
Tr reals (with -) yes| yes
To rationals (without -) yes| yes
Tros recursive data structures no| yes
TR+Ds acyclic recursive data structures| yes| yes
Ta arrays no| yes
Tx arrays with extensionality no| yes

@ In practice, we want to check for satisfiability span multiple theories,
e.g., verifying programs that manipulate integers and a list of reals.

@ Nelson-Oppen combination of decision procedures.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 33 /56

Program Verification

Three foundational methods underlying all verification and program
analysis techniques:

e Specification (program annotation) is the precise statement of
properties that a program should exhibit.

@ Inductive assertion method is for proving partial correctness
properties.

@ Ranking function method is for proving total correctness properties.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 34 / 56

Example: Linear Search

bool LinearSearch (int a[], int I, int u, int e) {
int ¢ :=1,
while (2 < u) {
if (a[?] = e) return true
1: =1+ 1;
}

return false

}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 35/ 56

Specification (Program Annotations)

@ An annotation is a FOL formula F' whose free variables include only
the program variables of the function in which the annotation occurs.

@ An annotation F' at location L asserts that F' is true whenever
program control reaches L.
@ Types of annotations:

» Function specification: precondition + postcondition.
» Loop invariant
» Assertion

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 36 / 56

Function Specifications
Formulas whose free variables include only the formal parameters and
return variables.

@ Precondition: Specification about what should be true upon entering
the function.

@ Postcondition: Specification about the expected output of the
function.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 37 / 56

Function Specifications

The behavior of LinearSearch:
@ It returns true iff the array a contains the value e in the range [I, u].
@ |t behaves correctly only when 1 > 0 and u < |a|.

Function specification formalizes these statements:

@pre: 0 <IlAu<]|al
@post : v <> il < i <uAafi] =e
bool LinearSearch (int a], int I, int u, int e) {
inte :=1;
while (¢ < u) {
if (a[i] = e) return true
1:=1+ 1;
}

return false

}

Our goal is to prove the partial correctness property: if the function precondition
holds and the function halts, then the function postcondition holds upon return.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 38 / 56

Loop Invariants

For proving partial correctness, each loop must be annotated with a loop

invariant F':
while

QF
((condition)) {
(body)

}

@ F holds at the beginning of every iteration.
o F A (condition) holds in the body.

e F' A —({condition) holds when exiting the loop.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 39 / 56

Loop Invariants

In LinearSearch, whenever control reaches the loop entry (L), the loop
index is at least I and that a[j] # e for previously examined indices j:

@pre: 0 <IlAu<|al
@post: v > I <i<uAalfi] =e
bool LinearSearch (int a[], int I, int u, int e) {
intt:=1;
while
@QL:1<iA(Vj.l<j<i— alj]#e)
(i <u){
if (a[¢] = e) return true
1: =1+ 1;
}

return false

}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 40 / 56

cf) Inference of Preconditions and Loop Invariants

Automatic inference of preconditions and loop invariants is an active
research area: e.g.,
@ Data-driven precondition inference with learned features. PLDI 2016.
@ Learning invariants using decision trees and implication
counterexamples. POPL 2016.
@ A data-driven approach for algebraic loop invariants. ESOP 2013.
@ Inductive invariant generation via abductive inference. OOPSLA 2013.

° ...
Abstract interpretation can be viewed as a method for automatically
inferring loop invariants.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 41 / 56

Assertions

Programmers's formal comments on the program behavior:

@pre: 0 <IAu<|al
@post: v > I <i<uAali] =e
bool LinearSearch (int a[], int I, int u, int e) {
intt:=1;
while
@QL:1<iA(Vj.l<j<i—alj]#e)
(i <w){
@0 < i < |a|
if (a[i] = e) return true
1: =1+ 1;
}

return false

}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 42 / 56

Partial Correctness

@ A function is partially correct if when the function's precondition is

satisfied on entry, its postcondition is satisfied when the function
returns (if it ever does).

@ Inductive assertion method:

» Derive verification conditions (VCs) from a function.
> Check the validity of VCs by an SMT solver.
» If all of VCs are valid, the function obeys its specification.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 43 / 56

Deriving VCs

Done in two steps:
@ The function is broken down into a finite set of basic paths.
@ Each basic path generates a verification condition.

@ Loops complicate proofs as they create unbounded number of paths.
For loops, loop invariants cut the paths into a finite set of basic paths.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 44 / 56

Basic Paths

@ A basic path is a sequence of atomic statements that begins at the
function precondition or a loop invariant and ends at a loop invariant
or the function postcondition.

@ Moreover, a loop invariant can only occur at the beginning or the
ending of a basic path (Basic paths do not cross loops).

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 45 / 56

Program

Basic Paths

@pre: 0 < I Au<|al
@post : v > Tl <i<uAafi] =e
bool LinearSearch (int a[], int I, int u, int e) {
intz:=1,
while
QL:1<iANVj. 1< j<i—alj]#e)
(i <u){
if (a[i] = e) return true
1:=1+1;

return false

}

Hakjoo Oh AAA616 2016 Fall, Lecture 10

(1)

@pre: 0 <l Au<]|al

1:=1
QL:I<iA(Vj.l<j<i—aljl#e)
(2)

QL:1<iNVj. 1< j<i—alj] #e)
assume © < u;

assume afi] = e;

rv 1= true

@post : rv > Fl < i< uAafi] =e

(3)
QL:1<iAn(Vj.1<j<i—alj]#e)
assume ¢ < u;

assume ali] # e

1: =1+ 1;
QL:1<iN(Vj. 1< j<i—al[j]#e)
(4)

QL:1<iNnMVj. 1< j<i— al[j] #e)
assume 1 > u;

rv := false

Qpost : rv <> I < i< uAafi] =e

November 29, 2016 46 / 56

Weakest Precondition Transformer

The reduction from basic paths to verification conditions requires the
weakest precondition transformer:

wp : FOL x stmts — FOL

The weakest precondition wp(F, S) has the defining characteristic that
every state s on which executing statement S leads to a state s’ in the F
region must be in the wp(F, S) region:

For F to hold after executing S, wp(F, S) must hold before executing S.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 47 / 56

Weakest Precondition Transformer

Weakest precondition wp(F, S) for statements S of basic paths:

@ Assumption: What must hold before statement assume c is executed
to ensure that F' holds afterwards? If ¢ — F' holds before, then
satisfying ¢ guarantees that F' holds afterwards:

wp(F, assume ¢) < ¢ — F.

@ Assignment: What must hold before statement v := e is executed to
ensure that F'[v] holds afterward? If F[e] holds before, then
assigning e to v makes F'[v] holds afterward:

wp(F,v :=e) < Fle]
For a sequence of statements S1;...; Sy, define

Wp(F, S15... aSn) < Wp(Wp(F, Sn)’ S15..0, Sn—l)-

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 48 / 56

Verification Conditions

The verification condition of basic path
QF
S13
Sn;
QG

F — wp(G, S1;...58n)

The verification condition is sometimes denoted by the Hoare triple

{F}S1;...58.{G}.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 49 / 56

Example

QL:F:l1<iANMj.l<j<i—alj]#e)
S1 :assume ¢ < u;

Sa : assume ali] = e;

Ss3 : rv = true

@postG :rv > Fil <i<uAali] =e

The VC is
I<iA(Vj. 1< j<i—alj]#e)
= (@ <u—(afi] =e— 5l < j <uAalj] =e))

wp(G, Si;S2;83)

< wp(wp(rv « Jj. £<j<u A al[j]=e, rv:= true), Si1;52)
& wp(true « Fj. 0<j<u A a[j]=e, S1;52)

& wp(Ij. £<j<u A a[j]=e, S1;82)

< wp(wp(Fj. £ <j<u A alj] =e, assume afi] =e), S1)

< wp(afil=e — Fj.€<j<u A afj]=e, S1)

< wp(afil=e — Fj. €< j<u A a[j] =e, assume i < u)
@iﬁu—> (alil]=e — Fj. £<j<u A a|j]=¢)

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 50 / 56

Total Correctness

Total correctness of a function asserts that if the precondition holds on
entry, then the function eventually halts and the postcondition holds.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 51 / 56

Well-Founded Relation

A binary relation < over a set S is well-founded iff there does not exist an
infinite sequence s1, S2,... of elements of S such that

$1 <83 < e

For example, the relation < is well-founded over the natural numbers,
because any sequence of natural numbers decreasing according to < is
finite: e.g.,

1023 > 39 >30>29 >8> 3 > 0.

However, the relation < is not well-founded over the rationals or reals.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 52 / 56

Proving Termination

o Define a set S with a well-founded relation <.

» We usually choose as S the set of n-tuples of natural numbers and as
~<n the lexicographic extension? of <, where n varies according to the
application.

e Find a ranking function 6 mapping program states to S such that é
decreases according to < along every basic path.

@ Then, since < is well-founded, there cannot exist an infinite sequence
of program states.

*When n = 2, (a,b) <2 (a’,b') <= a<a’'V(a=a Ab=<?d)

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 53 / 56

Example

Q@pre T
@post T
int[] BubbleSort(int[] ao) {
int[] @ = ao;
for
@QLy: i+1>0
1 G+1, i+1)
(int ¢ :=la|—1; ¢ >0; s :=4—1) {
for
@QLy: i+1>0ANi—3j>0
L G+1, i—j)
(int j = 0; j < ji=j+1){
it (alj] > alj+1]) {
int ¢t := a[j];
alj] = alj + 1)
alj+1]:=1¢
}
}
}

return a;

}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 54 / 56

Verification Conditions

The verification condition of basic path

QF
1 o[z]
S13

S
4 k3]

F — Wp(K, = 5[9_30]’ S15.003 Sn){il_fo — :I_Z}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 55 / 56

Example

The verification condition for the basic path
QL;:4+1>0
$Li:(i4+1,i4+1)
assume ¢ > 0;
J =05
$La:(t4+1,i—3)

i+1>0Ai>0— (i+1,i—0) <y (i+1,i+1).

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 56 / 56

