AAA616: Program Analysis Lecture 10 — Logical Reasoning of Programs

Hakjoo Oh 2016 Fall

Reference

• The Calculus of Computation (Aaron Bradley and Zohar Manna)



Contents

- Propositional Logic (Chap 1)
- First-Order Logic (Chap 2, 3)
- Program Verification (Chap 5)

Original Code	Optimized Code
if (!a && !b) h(); else if (!a) g();	if (a) f(); else if (b) g ();
else f();	else h();

Motivating Example: Program-Equivalence Checking

Motivating	Example:	Program-Equivalence	Checking
------------	----------	---------------------	----------

Original Code	Optimized Code	
<pre>if (!a && !b) h(); else if (!a) g(); else f();</pre>	<pre>if (a) f(); else if (b) g (); else h();</pre>	

Treat procedures as independent boolean variables.

Iranslate if-then-else into boolean formula:

if
$$x$$
 then y else $z \equiv (x \wedge y) \lor (\neg x \wedge z)$

Scheck equivalence of boolean formulas by a SAT Solver:

$$egin{aligned} (
ega & \wedge
eg b) \wedge h \lor
egg(
ega & \wedge
ega & \wedge f) \land (
ega & \wedge g \lor a \land f) \ & \Longleftrightarrow \ a \wedge f \lor
ega & \wedge (b \wedge g \lor
ega & \wedge h) \end{aligned}$$

Syntax of Propositional Logic

- An atom is a truth symbols \bot, op or propositional variables P, Q, \ldots .
- A *literal* is an atom α or its negation $\neg \alpha$.
- A formula is a literal or the application of a logical connectives:

$$egin{array}{ccccc} F &
ightarrow & ot & & \ ert & & ert & F \ ert & & P \ ert & &
onumber & ert & P \ ert & &
onumber & ert & F_1 \wedge F_2 \ ert & & F_1 \wedge F_2 \ ert & & F_1 \wedge F_2 \ ert & & F_1 \to F_2 \end{array}$$

Semantics of Propositional Logic

• An *interpretation* **I** assigns to every propositional variable exactly one truth value: e.g.,

 $I: \{P \mapsto \mathsf{true}, Q \mapsto \mathsf{false}, \ldots\}$

- We write $I \vDash F$ if F evaluates to **true** under I.
- We write $I \nvDash F$ if F evaluates to **false** under I.
- Semantics:

$$\begin{array}{lll} I \vDash \top, & I \nvDash \bot, \\ I \vDash P & \text{iff } I[P] = \mathsf{true} \\ I \nvDash P & \text{iff } I[P] = \mathsf{false} \\ I \vDash \neg F & \text{iff } I \nvDash F \\ I \vDash F_1 \land F_2 & \text{iff } I \vDash F_1 \text{ and } I \vDash F_2 \\ I \vDash F_1 \lor F_2 & \text{iff } I \vDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \to F_2 & \text{iff } I \nvDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \to F_2 & \text{iff } I \nvDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \leftrightarrow F_2 & \text{iff } I \nvDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \leftrightarrow F_2 & \text{iff } (I \vDash F_1 \text{ and } I \vDash F_2) \text{ or } (I \nvDash F_1 \text{ and } I \nvDash F_2) \end{array}$$

Satisfiability and Validity

- A formula F is *satisfiable* iff there exists an interpretation I such that $I \models F$.
- A formula F is *valid* iff for all interpretations I, $I \vDash F$.
- Satisfiability and validity are dual concepts:

F is valid iff $\neg F$ is unsatisfiable.

• We can check satisfiability by deciding validity, and vice versa.

Deciding Validity and Satisfiability

Two approaches to show $oldsymbol{F}$ is valid:

• Truth table method performs exhaustive search: e.g.,

P	${old Q}$	$P \wedge Q$	$\neg Q$	$P \lor \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

 $F: P \land Q \to P \lor \neg Q.$

- Semantic argument method uses deduction:
 - Assume F is invalid: $I \nvDash F$ for some I.
 - Apply deduction rules to derive a contradiction.
 - ▶ If every branch of the proof derives a contradiction, then *F* is valid.
 - If some branch of the proof never derives a contradiction, then F is invalid.

Deduction Rules for Propositional Logic

$$\begin{array}{ccc} I \vDash \neg F & I \nvDash \neg F \\ I \nvDash F & I \vDash \neg F \\ \hline I \vDash F, I \vDash G & I \nvDash F \land G \\ \hline I \vDash F, I \vDash G & I \nvDash F \land G \\ \hline I \vDash F \lor G & I \nvDash F \lor G \\ \hline I \vDash F \mid I \vDash G & I \nvDash F \lor G \\ \hline I \vDash F \mid I \vDash G & I \nvDash F \lor G \\ \hline I \nvDash F \mid I \vDash G & I \nvDash F \land G \\ \hline I \vDash F \land G & I \nvDash F \land G \\ \hline I \vDash F \land G \mid I \vDash \neg F \land \neg G & I \nvDash F \Leftrightarrow G \\ \hline I \vDash F \land G \mid I \vDash \neg F \land \neg G & I \nvDash F \land \neg G \mid I \vDash \neg F \land G \\ \hline I \vDash F \land I \nvDash F \\ \hline I \vDash I \vDash F \\ \end{array}$$

Example 1

To prove that the formula

$$F: P \wedge Q
ightarrow P ee
eg
abla Q$$

is valid, assume that it is invalid and derive a contradiction:

1.
$$I \nvDash P \land Q \rightarrow P \lor \neg Q$$
assumption2. $I \vDash P \land Q$ by 1 and semantics of \rightarrow 3. $I \nvDash P \lor \neg Q$ by 1 and semantics of \rightarrow 4. $I \vDash P$ by 2 and semantics of \land 5. $I \nvDash P$ by 3 and semantics of \lor 6. $I \vDash \bot$ 4 and 5 are contradictory

Example 2

To prove that the formula

$$F:(P
ightarrow Q)\wedge (Q
ightarrow R)
ightarrow (P
ightarrow R)$$

is valid, assume that it is invalid and derive a contradiction:

1.
$$I \nvDash F$$
assumption2. $I \vDash (P \rightarrow Q) \land (Q \rightarrow R)$ by 1 and semantics of \rightarrow 3. $I \nvDash P \rightarrow R$ by 1 and semantics of \rightarrow 4. $I \vDash P$ by 3 and semantics of \rightarrow 5. $I \nvDash R$ by 3 and semantics of \rightarrow 6. $I \vDash P \rightarrow Q$ 2 and semantics of \land 7. $I \vDash Q \rightarrow R$ 2 and semantics of \land

Two cases consider from 6:

- **1** \nvDash *I* **\nvDash ***P*: contradiction with 4.
- **2** $I \vDash Q$: two cases to consider from 7:
 - $I \nvDash Q$: contradiction
 - **2** $I \vDash R$: contradiction with 5.

Equivalence and Implication

• Two formulas F_1 and F_2 are equivalent

$$F_1 \iff F_2$$

iff $F_1 \leftrightarrow F_2$ is valid, i.e., for all interpretations $I, I \vDash F_1 \leftrightarrow F_2$. • Formula F_1 implies formula F_2

$$F_1 \Rightarrow F_2$$

iff $F_1
ightarrow F_2$ is valid, i.e., for all interpretations I, $I \vDash F_1
ightarrow F_2$.

Normal Forms

A normal form of formulae is a syntactic restriction such that for every formula of the logic, there is an equivalent formula in the normal form.

 Negation Normal Form (NNF) requires that ¬, ∧, and ∨ be the only connectives and that negations appear only in literals: e.g.,

$$eg (F_1 \wedge F_2) \iff \neg F_1 \lor \neg F_2$$

• **Disjunctive Normal Form (DNF)** requires that formulae be a disjunction of conjunctions of literals:

$$\bigvee_i \bigwedge_j l_{i,j}$$

• **Conjunctive Normal Form (CNF)** requires that formulae be a conjunction of clauses (disjunctions of literals):

$$\bigwedge_i \bigvee_j l_{i,j}$$

Equisatisfiability

- F and F' are equisatisfiable when F is satisfiable iff F' is satisfiable.
 - Equisatisfiability is a weaker notion of equivalence, which is still useful when deciding satisfiability.
- SAT solvers convert a given formula to an equisatisfiable formula in CNF.
 - ► A formula can be converted to an equisatisfiable formula in CNF with only a linear increase in size (Tseitin's transformation).
 - Conversion to an equivalent CNF incurs exponential blow-up in worst-case.

Decision Procedures

Two approaches for deciding satisfiability:

• Search: exhaustively search through all possible assignments:

```
let rec SAT F =

if F = \top then true

else if F = \bot then false

else

let P = \text{Choose}(\text{vars}(F)) in

(SAT F\{P \mapsto \top\}) \lor (\text{SAT } F\{P \mapsto \bot\})
```

• **Deduction**: iteratively apply proof rules (resolution):

$$\frac{C_1[P] \quad C_2[\neg P]}{C_1[\bot] \lor C_2[\bot]}$$

The Resolution Procedure

 $\frac{C_1[P] \quad C_2[\neg P]}{C_1[\bot] \lor C_2[\bot]}$

- To satisfy clauses $C_1[P]$ and $C_2[\neg P]$, either the rest of C_1 or the rest of C_2 must be satisfied. If P is true, then a literal other than $\neg P$ in C_2 must be satisfied; while if P is false, then a literal other than P in C_1 must be satisfied.
- If ever \perp is deduced via resolution, F is unsatisfiable. Otherwise, if no further resolutions are possible, F is satisfiable.

Examples

•
$$(\neg P \lor Q) \land P \land \neg Q$$

From resolution

$$rac{(
eg P \lor Q)}{Q},$$

construct

$$(
eg P \lor Q) \land P \land
eg Q \land Q$$

which derives \perp .

• $(\neg P \lor Q) \land \neg Q)$

The resolution procedure yields

$$(\neg P \lor Q) \land \neg Q \land \neg P$$

No further resolutions are possible.

DPLL

The Davis-Putnam-Logemann-Loveland algorithm (DPLL) combines the enumerative search and a restricted form of resolution, called unit resolution: $\frac{l - C[\neg l]}{C[\bot]}$

The process of applying this resolution as much as possible is called Boolean constraint propagation (BCP).

```
let rec DPLL F =

let F' = BCP(F) in

if F' = \top then true

else if F' = \bot then false

else

let P = Choose(vars(F')) in

(DPLL F'\{P \mapsto \top\}) \lor (DPLL F'\{P \mapsto \bot\})
```

MaxSAT Example: Software Upgradeability Problem¹

Package	Dependencies	Conflicts
p_1	$\{p_2 \lor p_3\}$	$\{p_4\}$
p_2	$\{p_3\}$	Ø
p_3	$\{p_2\}$	$\{p_4\}$
p_4	$\{p_2 \wedge p_3\}$	Ø

• Encoding dependencies:

$$\begin{array}{l} \flat \quad p_1 \rightarrow (p_2 \lor p_3) \equiv (\neg p_1 \lor p_2 \lor p_3) \\ \flat \quad p_2 \rightarrow p_3 \equiv (\neg p_2 \lor p_3) \\ \flat \quad p_3 \rightarrow p_2 \equiv (\neg p_3 \lor p_2) \\ \flat \quad p_4 \rightarrow (p_2 \land p_3) \equiv (\neg p_4 \lor p_2) \land (\neg p_4 \lor p_3) \end{array}$$

Encoding conflicts:

$$\blacktriangleright p_1 \to \neg p_4 \equiv (\neg p_1 \lor \neg p_4)$$

- $\blacktriangleright p_3 \to \neg p_4 \equiv (\neg p_3 \lor \neg p_4)$
- Encoding installing all packages:
 - $\blacktriangleright \ p_1 \wedge p_2 \wedge p_3 \wedge p_4$

¹Slides from http://www.cs.utexas.edu/~isil/cs389L/ut-maxsat.pdf

Example

The formula in CNF:

$$egg_1 ee p_2 ee p_3, \
egg_2 ee p_3, \
egg_3 ee p_2, \
egg_4 ee p_2, \
egg_4 ee p_3, \
egg_1 ee \neg p_4, \
egg_3 ee \neg p_4 ee p_2, \
egg_4 ee p_1, \
egg_2, \
egg_4 ee p_4, \
egg_4 ee p_4,$$

- The formula is unsatisfiable.
- How many clauses can we satisfy?

Maximum Satisfiability (MaxSAT)

- MaxSat:
 - An optimization extension of SAT.
 - All clauses are soft.
 - Maximize number of satisfied soft clauses.
- Partial MaxSAT:
 - Clauses in the formula are soft or hard.
 - Hard clauses must be satisfied.
 - Maximize number of satisfied soft clauses.
- Weighted Partial MaxSAT:
 - Clauses are soft or hard.
 - Soft clauses are associated with weights.
 - Maximize sum of weights of satisfied clauses.
- MaxSAT has a variety of applications. Any optimization problem is likely to be solved by MaxSAT.

Example: Partial MaxSAT

• Dependencies and conflicts are hard constraints:

$$egin{aligned}
egin{aligned}
egin{aligned}$$

• Installation of packages are soft constraints:

$$p_1, p_2, p_3, p_4$$

- Goal: maximize the number of installed packages.
- Optimal solution:

$$p_1 = \top, p_2 = \top, p_3 = \top, p_4 = \bot$$

First-Order Logic

- In FOL, terms evaluate to values other than truth values.
- Terms include variables x, y, z, \ldots , constants a, b, c, \ldots , and functions f, g, h, \ldots .
 - An *n*-ary function f takes n terms as arguments. E.g., f(a), g(x, b), f(g(x, f(b))).
 - A constant can be viewed as a 0-ary function.
- Propositional variables are generalized to predicates p, q, r, \ldots
 - An *n*-ary predicate takes *n* terms as arguments.
 - A propositional variable is a 0-ary predicate: P,Q,R,\ldots
- An atom is \top, \bot , or an *n*-ary predicate applied to *n* terms.
- A literal is an atom or its negation: e.g., P, p(f(x), g(x, f(x))).

Syntax of First-Order Logic

$$egin{array}{ccccccc} F &
ightarrow & ot & & \ ert & & ert & & \ ert & & \ p(t_1,\ldots,t_n) & & \ ert & & \ ert & & \ ert & F_1 \wedge F_2 & & \ ert & & F_1 \vee F_2 & & \ ert & & F_1
ightarrow F_2 & & \ ert & & F_1 \leftrightarrow F_2 & & \ ert & & ert &$$

Interpretation

The notion of interpretation is more complicated than PL:

- The domain D_I of an interpretation is a nonempty set of values or objects, such as integers, real numbers, people, etc.
- The assignment α_I of interpretation I maps constant, function, and predicate symbols to elements, functions, and predicates over D_I . It also maps variables to elements of D_I .
 - Each variable symbol x is assigned a value x_I from D_I .
 - ► Each *n*-ary function symbol *f* is assigned an *n*-ary function

$$f_I: D_I^n \to D_I$$

► Each *n*-ary predicate symbol *p* is assigned an *n*-ary predicate

$$p_I:D_I^n o \{ ext{true}, ext{false}\}$$

• An interpretation $I:(D_I, \alpha_I)$ is a pair of a domain and an assignment.

Example

$$F: x + y > z \to y > z - x$$

• Note +, -, > are just symbols: $p(f(x, y), z) \rightarrow p(y, g(z, x))$. • Domain:

$$D_I=\mathbb{Z}=\{\ldots,-1,0,1,\ldots\}$$

• Assignment:

 $lpha_I = \{+ \mapsto +_{\mathbb{Z}}, - \mapsto -_{\mathbb{Z}}, > \mapsto >_{\mathbb{Z}}, x \mapsto 13, y \mapsto 42, z \mapsto 1, \ldots \}$

Semantics of First-Order Logic

Given an interpretation $I : (D_I, \alpha_I)$, $I \vDash F$ or $I \nvDash F$.

$$\begin{array}{ll} I \vDash \top, \quad I \nvDash \bot, \\ I \vDash p(t_1, \dots, t_n) & \text{iff } \alpha_I[p(t_1, \dots, t_n)] = \mathsf{true} \\ I \vDash \neg F & \text{iff } I \nvDash F \\ I \vDash F_1 \land F_2 & \text{iff } I \vDash F_1 \text{ and } I \vDash F_2 \\ I \vDash F_1 \lor F_2 & \text{iff } I \vDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \to F_2 & \text{iff } I \nvDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \leftrightarrow F_2 & \text{iff } I \nvDash F_1 \text{ or } I \vDash F_2 \\ I \vDash F_1 \leftrightarrow F_2 & \text{iff } (I \vDash F_1 \text{ and } I \vDash F_2) \text{ or } (I \nvDash F_1 \text{ and } I \nvDash F_2) \\ I \vDash \forall x.F & \text{iff for all } v \in D_I, I \lhd \{x \mapsto v\} \vDash F \\ I \vDash \exists x.F & \text{iff there exists } v \in D_I, I \lhd \{x \mapsto v\} \vDash F \end{array}$$

where $I \lhd \{x \mapsto v\}$ denotes an x-variant of I.

Example

$$F:\exists x.f(x)=g(x)$$

Consider the interpretation $I:(D:\{v_1,v_2\},lpha_I)$:

$$lpha_I: \{f(v_1)\mapsto v_1, f(v_2)\mapsto v_2, g(v_1)\mapsto v_2, g(v_2)\mapsto v_1\}$$

Compute the truth value of F under I as follows:

1.
$$I \lhd \{x \mapsto v\} \nvDash f(x) = g(x)$$
 for $v \in D$
2. $I \nvDash \exists x.f(x) = g(x)$ since $v \in D$ is arbitrary

Satisfiability and Validity

- A formula F is *satisfiable* iff there exists an interpretation I such that $I \models F$.
- A formula F is *valid* iff for all interpretations I, $I \vDash F$.
- Satisfiability and validity only apply to closed FOL formulas.
 - If we say that a formula F such that free(F) ≠ is valid, we mean that its universal closure ∀ * .F is valid.
 - If we say that F is satisfiable, we mean that its existential closure ∃ * .F is satisfiable.
- Duality still holds:

 $\forall *.F$ is valid $\iff \exists *.\neg F$ is unsatisfiable.

First-Order Theories

- While validity in FOL is undecidable, validity in particular theories or fragments of theories is sometimes decidable.
- A first-order theory T is defined by signatures and axioms:
 - \blacktriangleright Its signature Σ is a set of constant, function, and predicate symbols.
 - Its set of axioms A is a set of closed FOL formulas in which only constant, function, and predicate symbols of Σ appear.
- A Σ -formula F is valid in the theory T, or T-valid, if every interpretation I that satisfies the axioms of T,

 $I \vDash A$ for every $A \in \mathcal{A}$ (I is a T-interpretation)

also satisfies $F : I \vDash F$. We write $T \vDash F$ for T-validity of F.

- The theory T consists of all (closed) formulas that are T-valid.
- A Σ -formula F is satisfiable in T, or T-satisfiable, if there is a T-interpretation I that satisfies F.
- The quantifier-free fragment of a theory *T* is the set of formulas without quantifiers that are valid in *T*.

The Theory of Equality

•
$$\Sigma_E: \{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$$

• Axioms *A*:

$$\begin{array}{l} \bullet \quad \forall x.x = x \\ \bullet \quad \forall x, y.x = y \rightarrow y = x \\ \bullet \quad \forall x, y, z.x = y \land y = z \rightarrow x = z \\ \bullet \quad \text{for each positive integer } n \text{ and } n \text{-ary function symbol } f, \end{array}$$

$$orall ar x,ar y.ig(igwedge _{i=1}^n x_i=y_iig) o f(ar x)=f(ar y)$$

() for each positive integer n and n-ary predicate symbol p,

$$orall ar{x}, ar{y}.ig(igwedge_{i=1}^n x_i = y_iig)
ightarrow (p(ar{x}) \leftrightarrow p(ar{y}))$$

 T_E is undecidable, but the quantifier-free fragment of T_E is decidable.

Example

$$F:a=b\wedge b=c
ightarrow g(f(a),b)=g(f(c),a)$$

Is $F T_E$ -valid?

Useful First-Order Theories

Theory	Description	Full	QFF
T_{E}	equality	no	yes
T_{PA}	Peano arithmetic	no	no
$T_{\mathbb{N}}$	Presburger arithmetic	yes	yes
$T_{\mathbb{Z}}$	linear integers	yes	yes
$T_{\mathbb{R}}$	reals (with \cdot)	yes	yes
$T_{\mathbb{Q}}$	rationals (without \cdot)	yes	yes
T_{RDS}	recursive data structures	no	yes
$T_{\rm RDS}^+$	acyclic recursive data structures	yes	yes
T_{A}	arrays	no	yes
$T_{A}^{=}$	arrays with extensionality	no	yes

- In practice, we want to check for satisfiability span multiple theories, e.g., verifying programs that manipulate integers and a list of reals.
- Nelson-Oppen combination of decision procedures.

Program Verification

Three foundational methods underlying all verification and program analysis techniques:

- **Specification** (program annotation) is the precise statement of properties that a program should exhibit.
- **Inductive assertion method** is for proving partial correctness properties.
- Ranking function method is for proving total correctness properties.

Example: Linear Search

```
bool LinearSearch (int a[], int l, int u, int e) {
int i := l;
while (i \le u) {
if (a[i] = e) return true
i := i + 1;
}
return false
}
```

Specification (Program Annotations)

- An annotation is a FOL formula *F* whose free variables include only the program variables of the function in which the annotation occurs.
- An annotation F at location L asserts that F is true whenever program control reaches L.
- Types of annotations:
 - **Function specification**: precondition + postcondition.
 - Loop invariant
 - Assertion

Function Specifications

Formulas whose free variables include only the formal parameters and return variables.

- Precondition: Specification about what should be true upon entering the function.
- Postcondition: Specification about the expected output of the function.

Function Specifications

The behavior of LinearSearch:

- It returns true iff the array a contains the value e in the range [l, u].
- It behaves correctly only when $l \geq 0$ and u < |a|.

Function specification formalizes these statements:

```
@pre: 0 ≤ l ∧ u < |a|
@post: rv \leftrightarrow \exists i.l \le i \le u \land a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {
    int i := l;
    while (i ≤ u) {
        if (a[i] = e) return true
        i := i + 1;
    }
    return false
}
```

Our goal is to prove the *partial correctness* property: if the function precondition holds and the function halts, then the function postcondition holds upon return.

Loop Invariants

For proving partial correctness, each loop must be annotated with a loop invariant F:

```
while

@F

(\langle condition \rangle) \{

\langle body \rangle

}
```

- F holds at the beginning of every iteration.
- $F \wedge \langle condition
 angle$ holds in the body.
- $F \wedge \neg \langle condition
 angle$ holds when exiting the loop.

Loop Invariants

In LinearSearch, whenever control reaches the loop entry (L), the loop index is at least l and that $a[j] \neq e$ for previously examined indices j:

```
@pre : 0 \leq l \wedge u \leq |a|
@post : rv \leftrightarrow \exists i.l \leq i \leq u \land a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {
  int i := l:
  while
   @L: l \leq i \land (\forall j, l \leq j < i \rightarrow a[j] \neq e)
   (i < u) {
     if (a[i] = e) return true
     i := i + 1:
   }
   return false
 }
```

cf) Inference of Preconditions and Loop Invariants

Automatic inference of preconditions and loop invariants is an active research area: e.g.,

- Data-driven precondition inference with learned features. PLDI 2016.
- Learning invariants using decision trees and implication counterexamples. POPL 2016.
- A data-driven approach for algebraic loop invariants. ESOP 2013.
- Inductive invariant generation via abductive inference. OOPSLA 2013.

• . . .

Abstract interpretation can be viewed as a method for automatically inferring loop invariants.

Assertions

Programmers's formal comments on the program behavior:

@pre : $0 \leq l \wedge u \leq |a|$ @post : $rv \leftrightarrow \exists i.l \leq i \leq u \land a[i] = e$ bool LinearSearch (int a[], int l, int u, int e) { int i := l: while $@L: l \leq i \land (\forall j, l \leq j < i \rightarrow a[j] \neq e)$ (i < u) { $@0 \le i \le |a|$ if (a[i] = e) return true i := i + 1: } return false

Partial Correctness

- A function is partially correct if when the function's precondition is satisfied on entry, its postcondition is satisfied when the function returns (if it ever does).
- Inductive assertion method:
 - Derive verification conditions (VCs) from a function.
 - Check the validity of VCs by an SMT solver.
 - If all of VCs are valid, the function obeys its specification.

Deriving VCs

Done in two steps:

- The function is broken down into a finite set of *basic paths*.
- Each basic path generates a verification condition.
- Loops complicate proofs as they create unbounded number of paths. For loops, loop invariants cut the paths into a finite set of basic paths.

Basic Paths

- A basic path is a sequence of atomic statements that begins at the function precondition or a loop invariant and ends at a loop invariant or the function postcondition.
- Moreover, a loop invariant can only occur at the beginning or the ending of a basic path (Basic paths do not cross loops).

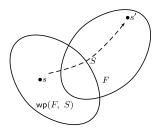
Program		Basic Paths		
<pre>@pre : 0 ≤ $l \land u < a$ @post : $rv \leftrightarrow \exists i.l \le i \le u$ bool LinearSearch (int $a[]$, int int $i := l$; while @$L : l \le i \land (\forall j. l \le j < (i \le u) \{$ if $(a[i] = e)$ return true i := i + 1; } return false }</pre>	: l , int u , int e) {	$i := l;$ $@L : l \leq i$ (2) $@L : l \leq i$ assume $i \leq a$ assume $a[i]$ $rv := true$ $@post : rv$ (3) $@L : l \leq i$ assume $a[i]$ $i := i + 1;$ $@L : l \leq i$ (4) $@L : l \leq i$ assume $i > rv$ $rv := false$	$egin{aligned} \exists i = e; \ i &\leftrightarrow \exists i.l \leq i \leq u \wedge a[i] \ i &< i \leq i \leq u \wedge a[i] \ i &< i \leq i \leq i > a \ u; \ i &\in a \ i &\land (\forall j. \ l \leq j < i \rightarrow a) \ i &< i \leq u; \end{aligned}$	$[j] \neq e)$] = e $[j] \neq e)$ $[j] \neq e)$ $[j] \neq e)$] = e
Hakjoo Oh	AAA616 2016 Fall	, Lecture 10	November 29, 2016	46 / 56

Weakest Precondition Transformer

The reduction from basic paths to verification conditions requires the weakest precondition transformer:

$\mathsf{wp}:\mathsf{FOL}\times\mathsf{stmts}\to\mathsf{FOL}$

The weakest precondition wp(F, S) has the defining characteristic that every state s on which executing statement S leads to a state s' in the Fregion must be in the wp(F, S) region:



For F to hold after executing S, $\mathsf{wp}(F,S)$ must hold before executing S.

Hakjoo Oh

Weakest Precondition Transformer

Weakest precondition wp(F, S) for statements S of basic paths:

• Assumption: What must hold before statement **assume** c is executed to ensure that F holds afterwards? If $c \rightarrow F$ holds before, then satisfying c guarantees that F holds afterwards:

$$wp(F, assume \ c) \Leftrightarrow c \to F.$$

• Assignment: What must hold before statement v := e is executed to ensure that F[v] holds afterward? If F[e] holds before, then assigning e to v makes F[v] holds afterward:

$$\mathsf{wp}(F,v:=e) \Leftrightarrow F[e]$$

For a sequence of statements $S_1;\ldots;S_n$, define

$$\mathsf{wp}(F, S_1; \ldots, S_n) \Leftrightarrow \mathsf{wp}(\mathsf{wp}(F, S_n), S_1; \ldots, S_{n-1}).$$

Verification Conditions

The verification condition of basic path

 $@F S_1; \\ \vdots \\ S_n; \\ @G$

is

$$F o \mathsf{wp}(G, S_1; \ldots; S_n)$$

The verification condition is sometimes denoted by the Hoare triple

$$\{F\}S_1;\ldots;S_n\{G\}.$$

Example

 $\begin{array}{l} @L:F:l \leq i \land (\forall j. \ l \leq j < i \rightarrow a[j] \neq e) \\ S_1: \text{assume } i \leq u; \\ S_2: \text{assume } a[i] = e; \\ S_3:rv:= \text{true} \\ @\text{post}G:rv \leftrightarrow \exists i.l \leq i \leq u \land a[i] = e \end{array}$

The VC is

$$\begin{array}{l} l \leq i \land (\forall j. \ l \leq j < i \rightarrow a[j] \neq e) \\ \rightarrow (i \leq u \rightarrow (a[i] = e \rightarrow \exists j. l \leq j \leq u \land a[j] = e)) \end{array}$$

$$\begin{array}{l} \mathsf{wp}(G, \ S_1; S_2; S_3) \\ \Leftrightarrow \ \mathsf{wp}(\mathsf{wp}(rv \ \leftrightarrow \ \exists j. \ \ell \leq j \leq u \ \land \ a[j] = e, \ rv := \mathsf{true}), \ S_1; S_2) \\ \Leftrightarrow \ \mathsf{wp}(\mathsf{true} \ \leftrightarrow \ \exists j. \ \ell \leq j \leq u \ \land \ a[j] = e, \ S_1; S_2) \\ \Leftrightarrow \ \mathsf{wp}(\exists j. \ \ell \leq j \leq u \ \land \ a[j] = e, \ S_1; S_2) \\ \Leftrightarrow \ \mathsf{wp}(\mathsf{wp}(\exists j. \ \ell \leq j \leq u \ \land \ a[j] = e, \ S_1; S_2) \\ \Leftrightarrow \ \mathsf{wp}(\mathsf{wp}(\exists j. \ \ell \leq j \leq u \ \land \ a[j] = e, \ \mathsf{assume} \ a[i] = e), \ S_1) \\ \Leftrightarrow \ \mathsf{wp}(a[i] = e \ \to \ \exists j. \ \ell \leq j \leq u \ \land \ a[j] = e, \ \mathsf{assume} \ i \leq u) \\ \Leftrightarrow \ i \leq u \ \to \ (a[i] = e \ \to \ \exists j. \ \ell \leq j \leq u \ \land \ a[j] = e) \end{array}$$

Total Correctness

Total correctness of a function asserts that if the precondition holds on entry, then the function eventually halts and the postcondition holds.

Well-Founded Relation

A binary relation \prec over a set S is well-founded iff there does not exist an infinite sequence s_1, s_2, \ldots of elements of S such that

 $s_1 \prec s_2 \prec \cdots$.

For example, the relation < is well-founded over the natural numbers, because any sequence of natural numbers decreasing according to < is finite: e.g.,

1023 > 39 > 30 > 29 > 8 > 3 > 0.

However, the relation < is not well-founded over the rationals or reals.

Proving Termination

- Define a set S with a well-founded relation \prec .
 - We usually choose as S the set of n-tuples of natural numbers and as ≺n the lexicographic extension² of ≺, where n varies according to the application.
- Find a ranking function δ mapping program states to S such that δ decreases according to \prec along every basic path.
- Then, since ≺ is well-founded, there cannot exist an infinite sequence of program states.

²When n = 2, $(a, b) \prec_2 (a', b') \iff a \prec a' \lor (a = a' \land b \prec b')$

Example

```
@pre ⊤
@post ⊤
int[] BubbleSort(int[] a_0) 
  int[] a := a_0;
  for
    @L_1: i+1 \ge 0
    \downarrow (i+1, i+1)
    (int i := |a| - 1; i > 0; i := i - 1)
    for
       @L_2: i+1 \ge 0 \land i-j \ge 0
       \downarrow (i+1, i-j)
       (int \ j := 0; \ j < i; \ j := j+1) {
       if (a[j] > a[j+1]) {
         int t := a[j];
         a[j] := a[j+1];
         a[j+1] := t;
      }
  }
  return a;
}
```

Verification Conditions

The verification condition of basic path

is

$$F o \mathsf{wp}(\kappa \prec \delta[\bar{x}_0], S_1; \ldots; S_n) \{ \bar{x}_0 \mapsto \bar{x} \}$$

Example

The verification condition for the basic path

$$i+1 \geq 0 \wedge i > 0 o (i+1,i-0) <_2 (i+1,i+1).$$