
AAA616: Program Analysis

Lecture 10 — Logical Reasoning of Programs

Hakjoo Oh
2016 Fall

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 1 / 56

Reference

The Calculus of Computation (Aaron Bradley and Zohar Manna)

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 2 / 56

Contents

Propositional Logic (Chap 1)

First-Order Logic (Chap 2, 3)

Program Verification (Chap 5)

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 3 / 56

Motivating Example: Program-Equivalence Checking

Original Code Optimized Code

if (!a && !b) h();

else if (!a) g();

else f();

if (a) f();

else if (b) g ();

else h();

1 Treat procedures as independent boolean variables.

2 Translate if-then-else into boolean formula:

if x then y else z ≡ (x ∧ y) ∨ (¬x ∧ z)

3 Check equivalence of boolean formulas by a SAT Solver:

(¬a ∧ ¬b) ∧ h ∨ ¬(¬a ∧ ¬b) ∧ (¬a ∧ g ∨ a ∧ f)
⇐⇒ a ∧ f ∨ ¬a ∧ (b ∧ g ∨ ¬b ∧ h)

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 4 / 56

Motivating Example: Program-Equivalence Checking

Original Code Optimized Code

if (!a && !b) h();

else if (!a) g();

else f();

if (a) f();

else if (b) g ();

else h();

1 Treat procedures as independent boolean variables.

2 Translate if-then-else into boolean formula:

if x then y else z ≡ (x ∧ y) ∨ (¬x ∧ z)

3 Check equivalence of boolean formulas by a SAT Solver:

(¬a ∧ ¬b) ∧ h ∨ ¬(¬a ∧ ¬b) ∧ (¬a ∧ g ∨ a ∧ f)
⇐⇒ a ∧ f ∨ ¬a ∧ (b ∧ g ∨ ¬b ∧ h)

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 4 / 56

Syntax of Propositional Logic

An atom is a truth symbols ⊥,> or propositional variables P,Q,

A literal is an atom α or its negation ¬α.

A formula is a literal or the application of a logical connectives:

F → ⊥
| >
| P
| ¬F
| F1 ∧ F2

| F1 ∨ F2

| F1 → F2

| F1 ↔ F2

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 5 / 56

Semantics of Propositional Logic

An interpretation I assigns to every propositional variable exactly one
truth value: e.g.,

I : {P 7→ true, Q 7→ false, . . .}

We write I � F if F evaluates to true under I.

We write I 2 F if F evaluates to false under I.

Semantics:

I � >, I 2 ⊥,
I � P iff I[P] = true
I 2 P iff I[P] = false
I � ¬F iff I 2 F
I � F1 ∧ F2 iff I � F1 and I � F2

I � F1 ∨ F2 iff I � F1 or I � F2

I � F1 → F2 iff I 2 F1 or I � F2

I � F1 ↔ F2 iff (I � F1 and I � F2) or (I 2 F1 and I 2 F2)

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 6 / 56

Satisfiability and Validity

A formula F is satisfiable iff there exists an interpretation I such that
I � F .

A formula F is valid iff for all interpretations I, I � F .

Satisfiability and validity are dual concepts:

F is valid iff ¬F is unsatisfiable.

We can check satisfiability by deciding validity, and vice versa.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 7 / 56

Deciding Validity and Satisfiability

Two approaches to show F is valid:

Truth table method performs exhaustive search: e.g.,

F : P ∧Q→ P ∨ ¬Q.

P Q P ∧Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1
1 0 0 1 1 1
1 1 1 0 1 1

Semantic argument method uses deduction:
I Assume F is invalid: I 2 F for some I.
I Apply deduction rules to derive a contradiction.
I If every branch of the proof derives a contradiction, then F is valid.
I If some branch of the proof never derives a contradiction, then F is

invalid.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 8 / 56

Deduction Rules for Propositional Logic

I � ¬F
I 2 F

I 2 ¬F
I � F

I � F ∧G
I � F, I � G

I 2 F ∧G
I 2 F | I 2 G

I � F ∨G
I � F | I � G

I 2 F ∨G
I 2 F, I 2 G

I � F → G
I 2 F | I � G

I 2 F → G
I � F, I 2 G

I � F ↔ G
I � F ∧G | I � ¬F ∧ ¬G

I 2 F ↔ G
I � F ∧ ¬G | I � ¬F ∧G

I � F I 2 F
I � ⊥

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 9 / 56

Example 1

To prove that the formula

F : P ∧Q→ P ∨ ¬Q

is valid, assume that it is invalid and derive a contradiction:

1. I 2 P ∧Q→ P ∨ ¬Q assumption
2. I � P ∧Q by 1 and semantics of→
3. I 2 P ∨ ¬Q by 1 and semantics of→
4. I � P by 2 and semantics of ∧
5. I 2 P by 3 and semantics of ∨
6. I � ⊥ 4 and 5 are contradictory

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 10 / 56

Example 2

To prove that the formula

F : (P → Q) ∧ (Q→ R)→ (P → R)

is valid, assume that it is invalid and derive a contradiction:

1. I 2 F assumption
2. I � (P → Q) ∧ (Q→ R) by 1 and semantics of→
3. I 2 P → R by 1 and semantics of→
4. I � P by 3 and semantics of→
5. I 2 R by 3 and semantics of→
6. I � P → Q 2 and semantics of ∧
7. I � Q→ R 2 and semantics of ∧

Two cases consider from 6:

1 I 2 P : contradiction with 4.

2 I � Q: two cases to consider from 7:

1 I 2 Q: contradiction
2 I � R: contradiction with 5.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 11 / 56

Equivalence and Implication

Two formulas F1 and F2 are equivalent

F1 ⇐⇒ F2

iff F1 ↔ F2 is valid, i.e., for all interpretations I, I � F1 ↔ F2.

Formula F1 implies formula F2

F1 ⇒ F2

iff F1 → F2 is valid, i.e., for all interpretations I, I � F1 → F2.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 12 / 56

Normal Forms

A normal form of formulae is a syntactic restriction such that for every
formula of the logic, there is an equivalent formula in the normal form.

Negation Normal Form (NNF) requires that ¬,∧, and ∨ be the
only connectives and that negations appear only in literals: e.g.,

¬(F1 ∧ F2) ⇐⇒ ¬F1 ∨ ¬F2

Disjunctive Normal Form (DNF) requires that formulae be a
disjunction of conjunctions of literals:∨

i

∧
j

li,j

Conjunctive Normal Form (CNF) requires that formulae be a
conjunction of clauses (disjunctions of literals):∧

i

∨
j

li,j

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 13 / 56

Equisatisfiability

F and F ′ are equisatisfiable when F is satisfiable iff F ′ is satisfiable.
I Equisatisfiability is a weaker notion of equivalence, which is still useful

when deciding satisfiability.

SAT solvers convert a given formula to an equisatisfiable formula in
CNF.

I A formula can be converted to an equisatisfiable formula in CNF with
only a linear increase in size (Tseitin’s transformation).

I Conversion to an equivalent CNF incurs exponential blow-up in
worst-case.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 14 / 56

Decision Procedures

Two approaches for deciding satisfiability:

Search: exhaustively search through all possible assignments:

let rec SAT F =
if F = > then true
else if F = ⊥ then false
else

let P = Choose(vars(F)) in
(SAT F{P 7→ >}) ∨ (SAT F{P 7→ ⊥})

Deduction: iteratively apply proof rules (resolution):

C1[P] C2[¬P]

C1[⊥] ∨ C2[⊥]

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 15 / 56

The Resolution Procedure

C1[P] C2[¬P]

C1[⊥] ∨ C2[⊥]

To satisfy clauses C1[P] and C2[¬P], either the rest of C1 or the
rest of C2 must be satisfied. If P is true, then a literal other than
¬P in C2 must be satisfied; while if P is false, then a literal other
than P in C1 must be satisfied.

If ever ⊥ is deduced via resolution, F is unsatisfiable. Otherwise, if
no further resolutions are possible, F is satisfiable.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 16 / 56

Examples

(¬P ∨Q) ∧ P ∧ ¬Q
From resolution

(¬P ∨Q)

Q ,

construct
(¬P ∨Q) ∧ P ∧ ¬Q ∧Q

which derives ⊥.

(¬P ∨Q) ∧ ¬Q)

The resolution procedure yields

(¬P ∨Q) ∧ ¬Q ∧ ¬P

No further resolutions are possible.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 17 / 56

DPLL

The Davis-Putnam-Logemann-Loveland algorithm (DPLL) combines the
enumerative search and a restricted form of resolution, called unit
resolution:

l C[¬l]
C[⊥]

The process of applying this resolution as much as possible is called
Boolean constraint propagation (BCP).

let rec DPLL F =
let F ′ = BCP(F) in
if F ′ = > then true
else if F ′ = ⊥ then false
else

let P = Choose(vars(F ′)) in
(DPLL F ′{P 7→ >}) ∨ (DPLL F ′{P 7→ ⊥})

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 18 / 56

MaxSAT Example: Software Upgradeability Problem1

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} ∅
p3 {p2} {p4}
p4 {p2 ∧ p3} ∅

Encoding dependencies:

I p1 → (p2 ∨ p3) ≡ (¬p1 ∨ p2 ∨ p3)
I p2 → p3 ≡ (¬p2 ∨ p3)
I p3 → p2 ≡ (¬p3 ∨ p2)
I p4 → (p2 ∧ p3) ≡ (¬p4 ∨ p2) ∧ (¬p4 ∨ p3)

Encoding conflicts:

I p1 → ¬p4 ≡ (¬p1 ∨ ¬p4)
I p3 → ¬p4 ≡ (¬p3 ∨ ¬p4)

Encoding installing all packages:

I p1 ∧ p2 ∧ p3 ∧ p4
1Slides from http://www.cs.utexas.edu/~isil/cs389L/ut-maxsat.pdf

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 19 / 56

http://www.cs.utexas.edu/~isil/cs389L/ut-maxsat.pdf

Example

The formula in CNF:

¬p1 ∨ p2 ∨ p3, ¬p2 ∨ p3, ¬p3 ∨ p2, ¬p4 ∨ p2,
¬p4 ∨ p3, ¬p1 ∨ ¬p4, ¬p3 ∨ ¬p4

p1, p2, p3, p4

The formula is unsatisfiable.

How many clauses can we satisfy?

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 20 / 56

Maximum Satisfiability (MaxSAT)

MaxSat:
I An optimization extension of SAT.
I All clauses are soft.
I Maximize number of satisfied soft clauses.

Partial MaxSAT:
I Clauses in the formula are soft or hard.
I Hard clauses must be satisfied.
I Maximize number of satisfied soft clauses.

Weighted Partial MaxSAT:

I Clauses are soft or hard.
I Soft clauses are associated with weights.
I Maximize sum of weights of satisfied clauses.

MaxSAT has a variety of applications. Any optimization problem is
likely to be solved by MaxSAT.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 21 / 56

Example: Partial MaxSAT

Dependencies and conflicts are hard constraints:

¬p1 ∨ p2 ∨ p3, ¬p2 ∨ p3, ¬p3 ∨ p2, ¬p4 ∨ p2,
¬p4 ∨ p3, ¬p1 ∨ ¬p4, ¬p3 ∨ ¬p4

Installation of packages are soft constraints:

p1, p2, p3, p4

Goal: maximize the number of installed packages.

Optimal solution:

p1 = >, p2 = >, p3 = >, p4 = ⊥

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 22 / 56

First-Order Logic

In FOL, terms evaluate to values other than truth values.

Terms include variables x, y, z, . . . , constants a, b, c, . . . , and
functions f, g, h,

I An n-ary function f takes n terms as arguments.
E.g., f(a), g(x, b), f(g(x, f(b))).

I A constant can be viewed as a 0-ary function.

Propositional variables are generalized to predicates p, q, r,
I An n-ary predicate takes n terms as arguments.
I A propositional variable is a 0-ary predicate: P,Q,R,

An atom is >,⊥, or an n-ary predicate applied to n terms.

A literal is an atom or its negation: e.g., P, p(f(x), g(x, f(x))).

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 23 / 56

Syntax of First-Order Logic

F → ⊥
| >
| p(t1, . . . , tn)
| ¬F
| F1 ∧ F2

| F1 ∨ F2

| F1 → F2

| F1 ↔ F2

| ∀x.F [x]
| ∃x.F [x]

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 24 / 56

Interpretation

The notion of interpretation is more complicated than PL:

The domain DI of an interpretation is a nonempty set of values or
objects, such as integers, real numbers, people, etc.

The assignment αI of interpretation I maps constant, function, and
predicate symbols to elements, functions, and predicates over DI . It
also maps variables to elements of DI .

I Each variable symbol x is assigned a value xI from DI .
I Each n-ary function symbol f is assigned an n-ary function

fI : Dn
I → DI

I Each n-ary predicate symbol p is assigned an n-ary predicate

pI : Dn
I → {true, false}

An interpretation I : (DI , αI) is a pair of a domain and an
assignment.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 25 / 56

Example

F : x+ y > z → y > z − x

Note +,−, > are just symbols: p(f(x, y), z)→ p(y, g(z, x)).

Domain:
DI = Z = {. . . ,−1, 0, 1, . . .}

Assignment:

αI = {+ 7→ +Z,− 7→ −Z, >7→>Z, x 7→ 13, y 7→ 42, z 7→ 1, . . .}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 26 / 56

Semantics of First-Order Logic

Given an interpretation I : (DI , αI), I � F or I 2 F .

I � >, I 2 ⊥,
I � p(t1, . . . , tn) iff αI [p(t1, . . . , tn)] = true
I � ¬F iff I 2 F
I � F1 ∧ F2 iff I � F1 and I � F2

I � F1 ∨ F2 iff I � F1 or I � F2

I � F1 → F2 iff I 2 F1 or I � F2

I � F1 ↔ F2 iff (I � F1 and I � F2) or (I 2 F1 and I 2 F2)
I � ∀x.F iff for all v ∈ DI , I � {x 7→ v} � F
I � ∃x.F iff there exists v ∈ DI , I � {x 7→ v} � F

where I � {x 7→ v} denotes an x-variant of I.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 27 / 56

Example

F : ∃x.f(x) = g(x)

Consider the interpretation I : (D : {v1, v2}, αI):

αI : {f(v1) 7→ v1, f(v2) 7→ v2, g(v1) 7→ v2, g(v2) 7→ v1}

Compute the truth value of F under I as follows:

1. I � {x 7→ v} 2 f(x) = g(x) for v ∈ D
2. I 2 ∃x.f(x) = g(x) since v ∈ D is arbitrary

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 28 / 56

Satisfiability and Validity

A formula F is satisfiable iff there exists an interpretation I such that
I � F .

A formula F is valid iff for all interpretations I, I � F .

Satisfiability and validity only apply to closed FOL formulas.
I If we say that a formula F such that free(F) 6= is valid, we mean that

its universal closure ∀ ∗ .F is valid.
I If we say that F is satisfiable, we mean that its existential closure
∃ ∗ .F is satisfiable.

Duality still holds:

∀ ∗ .F is valid ⇐⇒ ∃ ∗ .¬F is unsatisfiable.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 29 / 56

First-Order Theories

While validity in FOL is undecidable, validity in particular theories or
fragments of theories is sometimes decidable.
A first-order theory T is defined by signatures and axioms:

I Its signature Σ is a set of constant, function, and predicate symbols.
I Its set of axioms A is a set of closed FOL formulas in which only

constant, function, and predicate symbols of Σ appear.

A Σ-formula F is valid in the theory T , or T -valid, if every
interpretation I that satisfies the axioms of T ,

I � A for every A ∈ A (I is a T -interpretation)

also satisfies F : I � F . We write T � F for T -validity of F .

The theory T consists of all (closed) formulas that are T -valid.

A Σ-formula F is satisfiable in T , or T -satisfiable, if there is a
T -interpretation I that satisfies F .

The quantifier-free fragment of a theory T is the set of formulas
without quantifiers that are valid in T .

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 30 / 56

The Theory of Equality

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}
Axioms A:

1 ∀x.x = x
2 ∀x, y.x = y → y = x
3 ∀x, y, z.x = y ∧ y = z → x = z
4 for each positive integer n and n-ary function symbol f ,

∀x̄, ȳ.
(n∧
i=1

xi = yi
)
→ f(x̄) = f(ȳ)

5 for each positive integer n and n-ary predicate symbol p,

∀x̄, ȳ.
(n∧
i=1

xi = yi
)
→ (p(x̄)↔ p(ȳ))

TE is undecidable, but the quantifier-free fragment of TE is decidable.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 31 / 56

Example

F : a = b ∧ b = c→ g(f(a), b) = g(f(c), a)

Is F TE-valid?

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 32 / 56

Useful First-Order Theories

In practice, we want to check for satisfiability span multiple theories,
e.g., verifying programs that manipulate integers and a list of reals.

Nelson-Oppen combination of decision procedures.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 33 / 56

Program Verification

Three foundational methods underlying all verification and program
analysis techniques:

Specification (program annotation) is the precise statement of
properties that a program should exhibit.

Inductive assertion method is for proving partial correctness
properties.

Ranking function method is for proving total correctness properties.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 34 / 56

Example: Linear Search

bool LinearSearch (int a[], int l, int u, int e) {
int i := l;
while (i ≤ u) {

if (a[i] = e) return true
i := i+ 1;

}
return false

}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 35 / 56

Specification (Program Annotations)

An annotation is a FOL formula F whose free variables include only
the program variables of the function in which the annotation occurs.

An annotation F at location L asserts that F is true whenever
program control reaches L.

Types of annotations:
I Function specification: precondition + postcondition.
I Loop invariant
I Assertion

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 36 / 56

Function Specifications

Formulas whose free variables include only the formal parameters and
return variables.

Precondition: Specification about what should be true upon entering
the function.

Postcondition: Specification about the expected output of the
function.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 37 / 56

Function Specifications

The behavior of LinearSearch:

It returns true iff the array a contains the value e in the range [l, u].

It behaves correctly only when l ≥ 0 and u < |a|.

Function specification formalizes these statements:

@pre : 0 ≤ l ∧ u < |a|
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {

int i := l;
while (i ≤ u) {

if (a[i] = e) return true
i := i+ 1;

}
return false

}

Our goal is to prove the partial correctness property: if the function precondition
holds and the function halts, then the function postcondition holds upon return.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 38 / 56

Loop Invariants

For proving partial correctness, each loop must be annotated with a loop
invariant F :

while
@F
(〈condition〉) {
〈body〉

}

F holds at the beginning of every iteration.

F ∧ 〈condition〉 holds in the body.

F ∧ ¬〈condition〉 holds when exiting the loop.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 39 / 56

Loop Invariants

In LinearSearch, whenever control reaches the loop entry (L), the loop
index is at least l and that a[j] 6= e for previously examined indices j:

@pre : 0 ≤ l ∧ u < |a|
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {

int i := l;
while
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
(i ≤ u) {

if (a[i] = e) return true
i := i+ 1;

}
return false

}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 40 / 56

cf) Inference of Preconditions and Loop Invariants

Automatic inference of preconditions and loop invariants is an active
research area: e.g.,

Data-driven precondition inference with learned features. PLDI 2016.

Learning invariants using decision trees and implication
counterexamples. POPL 2016.

A data-driven approach for algebraic loop invariants. ESOP 2013.

Inductive invariant generation via abductive inference. OOPSLA 2013.

. . .

Abstract interpretation can be viewed as a method for automatically
inferring loop invariants.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 41 / 56

Assertions

Programmers’s formal comments on the program behavior:

@pre : 0 ≤ l ∧ u < |a|
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {

int i := l;
while
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
(i ≤ u) {
@0 ≤ i < |a|

if (a[i] = e) return true
i := i+ 1;

}
return false

}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 42 / 56

Partial Correctness

A function is partially correct if when the function’s precondition is
satisfied on entry, its postcondition is satisfied when the function
returns (if it ever does).

Inductive assertion method:
I Derive verification conditions (VCs) from a function.
I Check the validity of VCs by an SMT solver.
I If all of VCs are valid, the function obeys its specification.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 43 / 56

Deriving VCs

Done in two steps:

The function is broken down into a finite set of basic paths.

Each basic path generates a verification condition.

Loops complicate proofs as they create unbounded number of paths.
For loops, loop invariants cut the paths into a finite set of basic paths.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 44 / 56

Basic Paths

A basic path is a sequence of atomic statements that begins at the
function precondition or a loop invariant and ends at a loop invariant
or the function postcondition.

Moreover, a loop invariant can only occur at the beginning or the
ending of a basic path (Basic paths do not cross loops).

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 45 / 56

Program Basic Paths

@pre : 0 ≤ l ∧ u < |a|
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {

int i := l;
while
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
(i ≤ u) {

if (a[i] = e) return true
i := i + 1;

}
return false

}

(1)
@pre : 0 ≤ l ∧ u < |a|
i := l;
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)

(2)
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
assume i ≤ u;
assume a[i] = e;
rv := true
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e

(3)
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
assume i ≤ u;
assume a[i] 6= e
i := i + 1;
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)

(4)
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
assume i > u;
rv := false
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 46 / 56

Weakest Precondition Transformer

The reduction from basic paths to verification conditions requires the
weakest precondition transformer:

wp : FOL× stmts→ FOL

The weakest precondition wp(F, S) has the defining characteristic that
every state s on which executing statement S leads to a state s′ in the F
region must be in the wp(F, S) region:

For F to hold after executing S, wp(F, S) must hold before executing S.
Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 47 / 56

Weakest Precondition Transformer

Weakest precondition wp(F, S) for statements S of basic paths:

Assumption: What must hold before statement assume c is executed
to ensure that F holds afterwards? If c→ F holds before, then
satisfying c guarantees that F holds afterwards:

wp(F, assume c)⇔ c→ F.

Assignment: What must hold before statement v := e is executed to
ensure that F [v] holds afterward? If F [e] holds before, then
assigning e to v makes F [v] holds afterward:

wp(F, v := e)⇔ F [e]

For a sequence of statements S1; . . . ;Sn, define

wp(F, S1; . . . , Sn)⇔ wp(wp(F, Sn), S1; . . . , Sn−1).

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 48 / 56

Verification Conditions

The verification condition of basic path

@F
S1;
...
Sn;
@G

is
F → wp(G,S1; . . . ;Sn)

The verification condition is sometimes denoted by the Hoare triple

{F}S1; . . . ;Sn{G}.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 49 / 56

Example

@L : F : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
S1 : assume i ≤ u;
S2 : assume a[i] = e;
S3 : rv := true
@postG : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e

The VC is

l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
→ (i ≤ u→ (a[i] = e→ ∃j.l ≤ j ≤ u ∧ a[j] = e))

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 50 / 56

Total Correctness

Total correctness of a function asserts that if the precondition holds on
entry, then the function eventually halts and the postcondition holds.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 51 / 56

Well-Founded Relation

A binary relation ≺ over a set S is well-founded iff there does not exist an
infinite sequence s1, s2, . . . of elements of S such that

s1 ≺ s2 ≺ · · · .

For example, the relation < is well-founded over the natural numbers,
because any sequence of natural numbers decreasing according to < is
finite: e.g.,

1023 > 39 > 30 > 29 > 8 > 3 > 0.

However, the relation < is not well-founded over the rationals or reals.

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 52 / 56

Proving Termination

Define a set S with a well-founded relation ≺.
I We usually choose as S the set of n-tuples of natural numbers and as
≺n the lexicographic extension2 of ≺, where n varies according to the
application.

Find a ranking function δ mapping program states to S such that δ
decreases according to ≺ along every basic path.

Then, since ≺ is well-founded, there cannot exist an infinite sequence
of program states.

2When n = 2, (a, b) ≺2 (a′, b′) ⇐⇒ a ≺ a′ ∨ (a = a′ ∧ b ≺ b′)
Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 53 / 56

Example

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 54 / 56

Verification Conditions

The verification condition of basic path

@F
↓ δ[x̄]
S1;
...
Sn;
↓ κ[x̄]

is
F → wp(κ ≺ δ[x̄0], S1; . . . ;Sn){x̄0 7→ x̄}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 55 / 56

Example

The verification condition for the basic path

@L1 : i+ 1 ≥ 0
↓ L1 : (i+ 1, i+ 1)
assume i > 0;
j := 0;
↓ L2 : (i+ 1, i− j)

is
i+ 1 ≥ 0 ∧ i > 0→ (i+ 1, i− 0) <2 (i+ 1, i+ 1).

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 56 / 56

