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Motivating Example: Program-Equivalence Checking

Original Code Optimized Code

if (!a && !b) h();

else if (!a) g();

else f();

if (a) f();

else if (b) g ();

else h();

1 Treat procedures as independent boolean variables.

2 Translate if-then-else into boolean formula:

if x then y else z ≡ (x ∧ y) ∨ (¬x ∧ z)

3 Check equivalence of boolean formulas by a SAT Solver:

(¬a ∧ ¬b) ∧ h ∨ ¬(¬a ∧ ¬b) ∧ (¬a ∧ g ∨ a ∧ f)
⇐⇒ a ∧ f ∨ ¬a ∧ (b ∧ g ∨ ¬b ∧ h)
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Syntax of Propositional Logic

An atom is a truth symbols ⊥,> or propositional variables P,Q, . . . .

A literal is an atom α or its negation ¬α.

A formula is a literal or the application of a logical connectives:

F → ⊥
| >
| P
| ¬F
| F1 ∧ F2

| F1 ∨ F2

| F1 → F2

| F1 ↔ F2
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Semantics of Propositional Logic

An interpretation I assigns to every propositional variable exactly one
truth value: e.g.,

I : {P 7→ true, Q 7→ false, . . .}

We write I � F if F evaluates to true under I.

We write I 2 F if F evaluates to false under I.

Semantics:

I � >, I 2 ⊥,
I � P iff I[P ] = true
I 2 P iff I[P ] = false
I � ¬F iff I 2 F
I � F1 ∧ F2 iff I � F1 and I � F2

I � F1 ∨ F2 iff I � F1 or I � F2

I � F1 → F2 iff I 2 F1 or I � F2

I � F1 ↔ F2 iff (I � F1 and I � F2) or (I 2 F1 and I 2 F2)
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Satisfiability and Validity

A formula F is satisfiable iff there exists an interpretation I such that
I � F .

A formula F is valid iff for all interpretations I, I � F .

Satisfiability and validity are dual concepts:

F is valid iff ¬F is unsatisfiable.

We can check satisfiability by deciding validity, and vice versa.
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Deciding Validity and Satisfiability

Two approaches to show F is valid:

Truth table method performs exhaustive search: e.g.,

F : P ∧Q→ P ∨ ¬Q.

P Q P ∧Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1
1 0 0 1 1 1
1 1 1 0 1 1

Semantic argument method uses deduction:
I Assume F is invalid: I 2 F for some I.
I Apply deduction rules to derive a contradiction.
I If every branch of the proof derives a contradiction, then F is valid.
I If some branch of the proof never derives a contradiction, then F is

invalid.
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Deduction Rules for Propositional Logic

I � ¬F
I 2 F

I 2 ¬F
I � F

I � F ∧G
I � F, I � G

I 2 F ∧G
I 2 F | I 2 G

I � F ∨G
I � F | I � G

I 2 F ∨G
I 2 F, I 2 G

I � F → G
I 2 F | I � G

I 2 F → G
I � F, I 2 G

I � F ↔ G
I � F ∧G | I � ¬F ∧ ¬G

I 2 F ↔ G
I � F ∧ ¬G | I � ¬F ∧G

I � F I 2 F
I � ⊥
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Example 1

To prove that the formula

F : P ∧Q→ P ∨ ¬Q

is valid, assume that it is invalid and derive a contradiction:

1. I 2 P ∧Q→ P ∨ ¬Q assumption
2. I � P ∧Q by 1 and semantics of→
3. I 2 P ∨ ¬Q by 1 and semantics of→
4. I � P by 2 and semantics of ∧
5. I 2 P by 3 and semantics of ∨
6. I � ⊥ 4 and 5 are contradictory
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Example 2

To prove that the formula

F : (P → Q) ∧ (Q→ R)→ (P → R)

is valid, assume that it is invalid and derive a contradiction:

1. I 2 F assumption
2. I � (P → Q) ∧ (Q→ R) by 1 and semantics of→
3. I 2 P → R by 1 and semantics of→
4. I � P by 3 and semantics of→
5. I 2 R by 3 and semantics of→
6. I � P → Q 2 and semantics of ∧
7. I � Q→ R 2 and semantics of ∧

Two cases consider from 6:

1 I 2 P : contradiction with 4.

2 I � Q: two cases to consider from 7:

1 I 2 Q: contradiction
2 I � R: contradiction with 5.
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Equivalence and Implication

Two formulas F1 and F2 are equivalent

F1 ⇐⇒ F2

iff F1 ↔ F2 is valid, i.e., for all interpretations I, I � F1 ↔ F2.

Formula F1 implies formula F2

F1 ⇒ F2

iff F1 → F2 is valid, i.e., for all interpretations I, I � F1 → F2.
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Normal Forms

A normal form of formulae is a syntactic restriction such that for every
formula of the logic, there is an equivalent formula in the normal form.

Negation Normal Form (NNF) requires that ¬,∧, and ∨ be the
only connectives and that negations appear only in literals: e.g.,

¬(F1 ∧ F2) ⇐⇒ ¬F1 ∨ ¬F2

Disjunctive Normal Form (DNF) requires that formulae be a
disjunction of conjunctions of literals:∨

i

∧
j

li,j

Conjunctive Normal Form (CNF) requires that formulae be a
conjunction of clauses (disjunctions of literals):∧

i

∨
j

li,j
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Equisatisfiability

F and F ′ are equisatisfiable when F is satisfiable iff F ′ is satisfiable.
I Equisatisfiability is a weaker notion of equivalence, which is still useful

when deciding satisfiability.

SAT solvers convert a given formula to an equisatisfiable formula in
CNF.

I A formula can be converted to an equisatisfiable formula in CNF with
only a linear increase in size (Tseitin’s transformation).

I Conversion to an equivalent CNF incurs exponential blow-up in
worst-case.
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Decision Procedures

Two approaches for deciding satisfiability:

Search: exhaustively search through all possible assignments:

let rec SAT F =
if F = > then true
else if F = ⊥ then false
else

let P = Choose(vars(F )) in
(SAT F{P 7→ >}) ∨ (SAT F{P 7→ ⊥})

Deduction: iteratively apply proof rules (resolution):

C1[P ] C2[¬P ]

C1[⊥] ∨ C2[⊥]
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The Resolution Procedure

C1[P ] C2[¬P ]

C1[⊥] ∨ C2[⊥]

To satisfy clauses C1[P ] and C2[¬P ], either the rest of C1 or the
rest of C2 must be satisfied. If P is true, then a literal other than
¬P in C2 must be satisfied; while if P is false, then a literal other
than P in C1 must be satisfied.

If ever ⊥ is deduced via resolution, F is unsatisfiable. Otherwise, if
no further resolutions are possible, F is satisfiable.
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Examples

(¬P ∨Q) ∧ P ∧ ¬Q
From resolution

(¬P ∨Q)

Q ,

construct
(¬P ∨Q) ∧ P ∧ ¬Q ∧Q

which derives ⊥.

(¬P ∨Q) ∧ ¬Q)

The resolution procedure yields

(¬P ∨Q) ∧ ¬Q ∧ ¬P

No further resolutions are possible.
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DPLL

The Davis-Putnam-Logemann-Loveland algorithm (DPLL) combines the
enumerative search and a restricted form of resolution, called unit
resolution:

l C[¬l]
C[⊥]

The process of applying this resolution as much as possible is called
Boolean constraint propagation (BCP).

let rec DPLL F =
let F ′ = BCP(F ) in
if F ′ = > then true
else if F ′ = ⊥ then false
else

let P = Choose(vars(F ′)) in
(DPLL F ′{P 7→ >}) ∨ (DPLL F ′{P 7→ ⊥})
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MaxSAT Example: Software Upgradeability Problem1

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} ∅
p3 {p2} {p4}
p4 {p2 ∧ p3} ∅

Encoding dependencies:

I p1 → (p2 ∨ p3) ≡ (¬p1 ∨ p2 ∨ p3)
I p2 → p3 ≡ (¬p2 ∨ p3)
I p3 → p2 ≡ (¬p3 ∨ p2)
I p4 → (p2 ∧ p3) ≡ (¬p4 ∨ p2) ∧ (¬p4 ∨ p3)

Encoding conflicts:

I p1 → ¬p4 ≡ (¬p1 ∨ ¬p4)
I p3 → ¬p4 ≡ (¬p3 ∨ ¬p4)

Encoding installing all packages:

I p1 ∧ p2 ∧ p3 ∧ p4
1Slides from http://www.cs.utexas.edu/~isil/cs389L/ut-maxsat.pdf
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Example

The formula in CNF:

¬p1 ∨ p2 ∨ p3, ¬p2 ∨ p3, ¬p3 ∨ p2, ¬p4 ∨ p2,
¬p4 ∨ p3, ¬p1 ∨ ¬p4, ¬p3 ∨ ¬p4

p1, p2, p3, p4

The formula is unsatisfiable.

How many clauses can we satisfy?
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Maximum Satisfiability (MaxSAT)

MaxSat:
I An optimization extension of SAT.
I All clauses are soft.
I Maximize number of satisfied soft clauses.

Partial MaxSAT:
I Clauses in the formula are soft or hard.
I Hard clauses must be satisfied.
I Maximize number of satisfied soft clauses.

Weighted Partial MaxSAT:

I Clauses are soft or hard.
I Soft clauses are associated with weights.
I Maximize sum of weights of satisfied clauses.

MaxSAT has a variety of applications. Any optimization problem is
likely to be solved by MaxSAT.
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Example: Partial MaxSAT

Dependencies and conflicts are hard constraints:

¬p1 ∨ p2 ∨ p3, ¬p2 ∨ p3, ¬p3 ∨ p2, ¬p4 ∨ p2,
¬p4 ∨ p3, ¬p1 ∨ ¬p4, ¬p3 ∨ ¬p4

Installation of packages are soft constraints:

p1, p2, p3, p4

Goal: maximize the number of installed packages.

Optimal solution:

p1 = >, p2 = >, p3 = >, p4 = ⊥
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First-Order Logic

In FOL, terms evaluate to values other than truth values.

Terms include variables x, y, z, . . . , constants a, b, c, . . . , and
functions f, g, h, . . . .

I An n-ary function f takes n terms as arguments.
E.g., f(a), g(x, b), f(g(x, f(b))).

I A constant can be viewed as a 0-ary function.

Propositional variables are generalized to predicates p, q, r, . . . .
I An n-ary predicate takes n terms as arguments.
I A propositional variable is a 0-ary predicate: P,Q,R, . . . .

An atom is >,⊥, or an n-ary predicate applied to n terms.

A literal is an atom or its negation: e.g., P, p(f(x), g(x, f(x))).
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Syntax of First-Order Logic

F → ⊥
| >
| p(t1, . . . , tn)
| ¬F
| F1 ∧ F2

| F1 ∨ F2

| F1 → F2

| F1 ↔ F2

| ∀x.F [x]
| ∃x.F [x]
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Interpretation

The notion of interpretation is more complicated than PL:

The domain DI of an interpretation is a nonempty set of values or
objects, such as integers, real numbers, people, etc.

The assignment αI of interpretation I maps constant, function, and
predicate symbols to elements, functions, and predicates over DI . It
also maps variables to elements of DI .

I Each variable symbol x is assigned a value xI from DI .
I Each n-ary function symbol f is assigned an n-ary function

fI : Dn
I → DI

I Each n-ary predicate symbol p is assigned an n-ary predicate

pI : Dn
I → {true, false}

An interpretation I : (DI , αI) is a pair of a domain and an
assignment.
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Example

F : x+ y > z → y > z − x

Note +,−, > are just symbols: p(f(x, y), z)→ p(y, g(z, x)).

Domain:
DI = Z = {. . . ,−1, 0, 1, . . .}

Assignment:

αI = {+ 7→ +Z,− 7→ −Z, >7→>Z, x 7→ 13, y 7→ 42, z 7→ 1, . . .}
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Semantics of First-Order Logic

Given an interpretation I : (DI , αI), I � F or I 2 F .

I � >, I 2 ⊥,
I � p(t1, . . . , tn) iff αI [p(t1, . . . , tn)] = true
I � ¬F iff I 2 F
I � F1 ∧ F2 iff I � F1 and I � F2

I � F1 ∨ F2 iff I � F1 or I � F2

I � F1 → F2 iff I 2 F1 or I � F2

I � F1 ↔ F2 iff (I � F1 and I � F2) or (I 2 F1 and I 2 F2)
I � ∀x.F iff for all v ∈ DI , I � {x 7→ v} � F
I � ∃x.F iff there exists v ∈ DI , I � {x 7→ v} � F

where I � {x 7→ v} denotes an x-variant of I.
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Example

F : ∃x.f(x) = g(x)

Consider the interpretation I : (D : {v1, v2}, αI):

αI : {f(v1) 7→ v1, f(v2) 7→ v2, g(v1) 7→ v2, g(v2) 7→ v1}

Compute the truth value of F under I as follows:

1. I � {x 7→ v} 2 f(x) = g(x) for v ∈ D
2. I 2 ∃x.f(x) = g(x) since v ∈ D is arbitrary
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Satisfiability and Validity

A formula F is satisfiable iff there exists an interpretation I such that
I � F .

A formula F is valid iff for all interpretations I, I � F .

Satisfiability and validity only apply to closed FOL formulas.
I If we say that a formula F such that free(F ) 6= is valid, we mean that

its universal closure ∀ ∗ .F is valid.
I If we say that F is satisfiable, we mean that its existential closure
∃ ∗ .F is satisfiable.

Duality still holds:

∀ ∗ .F is valid ⇐⇒ ∃ ∗ .¬F is unsatisfiable.
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First-Order Theories

While validity in FOL is undecidable, validity in particular theories or
fragments of theories is sometimes decidable.
A first-order theory T is defined by signatures and axioms:

I Its signature Σ is a set of constant, function, and predicate symbols.
I Its set of axioms A is a set of closed FOL formulas in which only

constant, function, and predicate symbols of Σ appear.

A Σ-formula F is valid in the theory T , or T -valid, if every
interpretation I that satisfies the axioms of T ,

I � A for every A ∈ A (I is a T -interpretation)

also satisfies F : I � F . We write T � F for T -validity of F .

The theory T consists of all (closed) formulas that are T -valid.

A Σ-formula F is satisfiable in T , or T -satisfiable, if there is a
T -interpretation I that satisfies F .

The quantifier-free fragment of a theory T is the set of formulas
without quantifiers that are valid in T .
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The Theory of Equality

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}
Axioms A:

1 ∀x.x = x
2 ∀x, y.x = y → y = x
3 ∀x, y, z.x = y ∧ y = z → x = z
4 for each positive integer n and n-ary function symbol f ,

∀x̄, ȳ.
( n∧
i=1

xi = yi
)
→ f(x̄) = f(ȳ)

5 for each positive integer n and n-ary predicate symbol p,

∀x̄, ȳ.
( n∧
i=1

xi = yi
)
→ (p(x̄)↔ p(ȳ))

TE is undecidable, but the quantifier-free fragment of TE is decidable.
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Example

F : a = b ∧ b = c→ g(f(a), b) = g(f(c), a)

Is F TE-valid?
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Useful First-Order Theories

In practice, we want to check for satisfiability span multiple theories,
e.g., verifying programs that manipulate integers and a list of reals.

Nelson-Oppen combination of decision procedures.
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Program Verification

Three foundational methods underlying all verification and program
analysis techniques:

Specification (program annotation) is the precise statement of
properties that a program should exhibit.

Inductive assertion method is for proving partial correctness
properties.

Ranking function method is for proving total correctness properties.
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Example: Linear Search

bool LinearSearch (int a[], int l, int u, int e) {
int i := l;
while (i ≤ u) {

if (a[i] = e) return true
i := i+ 1;

}
return false

}
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Specification (Program Annotations)

An annotation is a FOL formula F whose free variables include only
the program variables of the function in which the annotation occurs.

An annotation F at location L asserts that F is true whenever
program control reaches L.

Types of annotations:
I Function specification: precondition + postcondition.
I Loop invariant
I Assertion
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Function Specifications

Formulas whose free variables include only the formal parameters and
return variables.

Precondition: Specification about what should be true upon entering
the function.

Postcondition: Specification about the expected output of the
function.
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Function Specifications

The behavior of LinearSearch:

It returns true iff the array a contains the value e in the range [l, u].

It behaves correctly only when l ≥ 0 and u < |a|.

Function specification formalizes these statements:

@pre : 0 ≤ l ∧ u < |a|
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {

int i := l;
while (i ≤ u) {

if (a[i] = e) return true
i := i+ 1;

}
return false

}

Our goal is to prove the partial correctness property: if the function precondition
holds and the function halts, then the function postcondition holds upon return.
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Loop Invariants

For proving partial correctness, each loop must be annotated with a loop
invariant F :

while
@F
(〈condition〉) {
〈body〉

}

F holds at the beginning of every iteration.

F ∧ 〈condition〉 holds in the body.

F ∧ ¬〈condition〉 holds when exiting the loop.
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Loop Invariants

In LinearSearch, whenever control reaches the loop entry (L), the loop
index is at least l and that a[j] 6= e for previously examined indices j:

@pre : 0 ≤ l ∧ u < |a|
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {

int i := l;
while
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
(i ≤ u) {

if (a[i] = e) return true
i := i+ 1;

}
return false

}
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cf) Inference of Preconditions and Loop Invariants

Automatic inference of preconditions and loop invariants is an active
research area: e.g.,

Data-driven precondition inference with learned features. PLDI 2016.

Learning invariants using decision trees and implication
counterexamples. POPL 2016.

A data-driven approach for algebraic loop invariants. ESOP 2013.

Inductive invariant generation via abductive inference. OOPSLA 2013.

. . .

Abstract interpretation can be viewed as a method for automatically
inferring loop invariants.
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Assertions

Programmers’s formal comments on the program behavior:

@pre : 0 ≤ l ∧ u < |a|
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {

int i := l;
while
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
(i ≤ u) {
@0 ≤ i < |a|

if (a[i] = e) return true
i := i+ 1;

}
return false

}
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Partial Correctness

A function is partially correct if when the function’s precondition is
satisfied on entry, its postcondition is satisfied when the function
returns (if it ever does).

Inductive assertion method:
I Derive verification conditions (VCs) from a function.
I Check the validity of VCs by an SMT solver.
I If all of VCs are valid, the function obeys its specification.
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Deriving VCs

Done in two steps:

The function is broken down into a finite set of basic paths.

Each basic path generates a verification condition.

Loops complicate proofs as they create unbounded number of paths.
For loops, loop invariants cut the paths into a finite set of basic paths.
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Basic Paths

A basic path is a sequence of atomic statements that begins at the
function precondition or a loop invariant and ends at a loop invariant
or the function postcondition.

Moreover, a loop invariant can only occur at the beginning or the
ending of a basic path (Basic paths do not cross loops).
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Program Basic Paths

@pre : 0 ≤ l ∧ u < |a|
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e
bool LinearSearch (int a[], int l, int u, int e) {

int i := l;
while
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
(i ≤ u) {

if (a[i] = e) return true
i := i + 1;

}
return false

}

(1)
@pre : 0 ≤ l ∧ u < |a|
i := l;
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)

(2)
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
assume i ≤ u;
assume a[i] = e;
rv := true
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e

(3)
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
assume i ≤ u;
assume a[i] 6= e
i := i + 1;
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)

(4)
@L : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
assume i > u;
rv := false
@post : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e
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Weakest Precondition Transformer

The reduction from basic paths to verification conditions requires the
weakest precondition transformer:

wp : FOL× stmts→ FOL

The weakest precondition wp(F, S) has the defining characteristic that
every state s on which executing statement S leads to a state s′ in the F
region must be in the wp(F, S) region:

For F to hold after executing S, wp(F, S) must hold before executing S.
Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 47 / 56



Weakest Precondition Transformer

Weakest precondition wp(F, S) for statements S of basic paths:

Assumption: What must hold before statement assume c is executed
to ensure that F holds afterwards? If c→ F holds before, then
satisfying c guarantees that F holds afterwards:

wp(F, assume c)⇔ c→ F.

Assignment: What must hold before statement v := e is executed to
ensure that F [v] holds afterward? If F [e] holds before, then
assigning e to v makes F [v] holds afterward:

wp(F, v := e)⇔ F [e]

For a sequence of statements S1; . . . ;Sn, define

wp(F, S1; . . . , Sn)⇔ wp(wp(F, Sn), S1; . . . , Sn−1).
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Verification Conditions

The verification condition of basic path

@F
S1;
...
Sn;
@G

is
F → wp(G,S1; . . . ;Sn)

The verification condition is sometimes denoted by the Hoare triple

{F}S1; . . . ;Sn{G}.
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Example

@L : F : l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
S1 : assume i ≤ u;
S2 : assume a[i] = e;
S3 : rv := true
@postG : rv ↔ ∃i.l ≤ i ≤ u ∧ a[i] = e

The VC is

l ≤ i ∧ (∀j. l ≤ j < i→ a[j] 6= e)
→ (i ≤ u→ (a[i] = e→ ∃j.l ≤ j ≤ u ∧ a[j] = e))
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Total Correctness

Total correctness of a function asserts that if the precondition holds on
entry, then the function eventually halts and the postcondition holds.
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Well-Founded Relation

A binary relation ≺ over a set S is well-founded iff there does not exist an
infinite sequence s1, s2, . . . of elements of S such that

s1 ≺ s2 ≺ · · · .

For example, the relation < is well-founded over the natural numbers,
because any sequence of natural numbers decreasing according to < is
finite: e.g.,

1023 > 39 > 30 > 29 > 8 > 3 > 0.

However, the relation < is not well-founded over the rationals or reals.
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Proving Termination

Define a set S with a well-founded relation ≺.
I We usually choose as S the set of n-tuples of natural numbers and as
≺n the lexicographic extension2 of ≺, where n varies according to the
application.

Find a ranking function δ mapping program states to S such that δ
decreases according to ≺ along every basic path.

Then, since ≺ is well-founded, there cannot exist an infinite sequence
of program states.

2When n = 2, (a, b) ≺2 (a′, b′) ⇐⇒ a ≺ a′ ∨ (a = a′ ∧ b ≺ b′)
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Example
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Verification Conditions

The verification condition of basic path

@F
↓ δ[x̄]
S1;
...
Sn;
↓ κ[x̄]

is
F → wp(κ ≺ δ[x̄0], S1; . . . ;Sn){x̄0 7→ x̄}

Hakjoo Oh AAA616 2016 Fall, Lecture 10 November 29, 2016 55 / 56



Example

The verification condition for the basic path

@L1 : i+ 1 ≥ 0
↓ L1 : (i+ 1, i+ 1)
assume i > 0;
j := 0;
↓ L2 : (i+ 1, i− j)

is
i+ 1 ≥ 0 ∧ i > 0→ (i+ 1, i− 0) <2 (i+ 1, i+ 1).
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