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Syntax of While
• Notations for syntactic categories:

1.2 The Example Language While 7

– It will develop each of the approaches for a simple language While of while-
programs.

– It will illustrate the power and weakness of each of the approaches by ex-
tending While with other programming constructs.

– It will prove the relationship between the approaches for While.

– It will give examples of applications of the semantic descriptions in order to
illustrate their merits.

1.2 The Example Language While

This book illustrates the various forms of semantics on a very simple imperative
programming language called While. As a first step, we must specify its syntax.

The syntactic notation we use is based on BNF. First we list the various
syntactic categories and give a meta-variable that will be used to range over
constructs of each category. For our language, the meta-variables and categories
are as follows:

n will range over numerals, Num,

x will range over variables, Var,

a will range over arithmetic expressions, Aexp,

b will range over boolean expressions, Bexp, and

S will range over statements, Stm.

The meta-variables can be primed or subscripted. So, for example, n, n ′, n1,
and n2 all stand for numerals.

We assume that the structure of numerals and variables is given elsewhere;
for example, numerals might be strings of digits, and variables might be strings
of letters and digits starting with a letter. The structure of the other constructs
is:

a ::= n | x | a1 + a2 | a1 ⋆ a2 | a1 − a2

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

S ::= x := a | skip | S 1 ; S 2 | if b then S 1 else S 2

| while b do S

Thus, a boolean expression b can only have one of six forms. It is called a basis
element if it is true or false or has the form a1 = a2 or a1 ≤ a2, where a1

and a2 are arithmetic expressions. It is called a composite element if it has the
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Figure 1.1 Abstract syntax trees for z:=x; x:=y; y:=z

form ¬b, where b is a boolean expression, or the form b1 ∧ b2, where b1 and b2

are boolean expressions. Similar remarks apply to arithmetic expressions and
statements.

The specification above defines the abstract syntax of While in that it sim-
ply says how to build arithmetic expressions, boolean expressions, and state-
ments in the language. One way to think of the abstract syntax is as specifying
the parse trees of the language, and it will then be the purpose of the concrete
syntax to provide sufficient information that enables unique parse trees to be
constructed.

So given the string of characters

z:=x; x:=y; y:=z

the concrete syntax of the language must be able to resolve which of the two
abstract syntax trees of Figure 1.1 it is intended to represent. In this book, we
shall not be concerned with concrete syntax. Whenever we talk about syntactic
entities such as arithmetic expressions, boolean expressions, or statements, we
will always be talking about the abstract syntax so there is no ambiguity with
respect to the form of the entity. In particular, the two trees above are different
elements of the syntactic category Stm.

It is rather cumbersome to use the graphical representation of abstract
syntax, and we shall therefore use a linear notation. So we shall write

z:=x; (x:=y; y:=z)

for the leftmost syntax tree and



Semantics of Expressions

• The meaning of an expression depends on the state:

1.3 Semantics of Expressions 13

Semantic Functions

The meaning of an expression depends on the values bound to the variables
that occur in it. For example, if x is bound to 3, then the arithmetic expression
x+1 evaluates to 4, but if x is bound to 2, then the expression evaluates to 3.
We shall therefore introduce the concept of a state: to each variable the state
will associate its current value. We shall represent a state as a function from
variables to values; that is, an element of the set

State = Var → Z

Each state s specifies a value, written s x , for each variable x of Var. Thus, if
s x = 3, then the value of x+1 in state s is 4.

Actually, this is just one of several representations of the state. Some other
possibilities are to use a table

x 5

y 7

z 0

or a “list” of the form

[x"→5, y"→7, z"→0]

(as in Section 1.1). In all cases, we must ensure that exactly one value is asso-
ciated with each variable. By requiring a state to be a function, this is trivially
fulfilled, whereas for the alternative representations above extra, restrictions
have to be enforced.

Given an arithmetic expression a and a state s, we can determine the value of
the expression. Therefore we shall define the meaning of arithmetic expressions
as a total function A that takes two arguments: the syntactic construct and
the state. The functionality of A is

A: Aexp → (State → Z)

This means that A takes its parameters one at a time. So we may supply
A with its first parameter, say x+1, and study the function A[[x+1]]. It has
functionality State → Z, and only when we supply it with a state (which
happens to be a function, but that does not matter) do we obtain the value of
the expression x+1.

Assuming the existence of the function N defining the meaning of numerals,
we can define the function A by defining its value A[[a]]s on each arithmetic
expression a and state s. The definition of A is given in Table 1.1. The clause
for n reflects that the value of n in any state is N [[n]]. The value of a variable x
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14 1. Introduction

A[[n]]s = N [[n]]

A[[x ]]s = s x

A[[a1 + a2]]s = A[[a1]]s + A[[a2]]s

A[[a1 ⋆ a2]]s = A[[a1]]s · A[[a2]]s

A[[a1 − a2]]s = A[[a1]]s − A[[a2]]s

Table 1.1 The semantics of arithmetic expressions

in state s is the value bound to x in s; that is, s x . The value of the composite
expression a1+a2 in s is the sum of the values of a1 and a2 in s. Similarly,
the value of a1 ⋆ a2 in s is the product of the values of a1 and a2 in s, and
the value of a1 − a2 in s is the difference between the values of a1 and a2 in
s. Note that + and − occurring on the right of these equations are the usual
arithmetic operations, while on the left they are just pieces of syntax; this is
analogous to the distinction between numerals and numbers, but we shall not
bother to use different symbols.

Example 1.6

Suppose that s x = 3. Then we may calculate:

A[[x+1]]s = A[[x]]s + A[[1]]s

= (s x) + N [[1]]

= 3 + 1

= 4

Note that here 1 is a numeral (enclosed in the brackets ‘[[’ and ‘]]’), whereas 1
is a number.

Example 1.7

Suppose we add the arithmetic expression − a to our language. An acceptable
semantic clause for this construct would be

A[[− a]]s = 0 − A[[a]]s

whereas the alternative clause A[[− a]]s = A[[0 − a]]s would contradict the
compositionality requirement.



Semantics of Expressions
• The semantic function for boolean expressions
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B[[true]]s = tt

B[[false]]s = ff

B[[a1 = a2]]s =

{
tt if A[[a1]]s = A[[a2]]s

ff if A[[a1]]s ̸= A[[a2]]s

B[[a1 ≤ a2]]s =

{
tt if A[[a1]]s ≤ A[[a2]]s

ff if A[[a1]]s > A[[a2]]s

B[[¬ b]]s =

{
tt if B[[b]]s = ff

ff if B[[b]]s = tt

B[[b1 ∧ b2]]s =

{
tt if B[[b1]]s = tt and B[[b2]]s = tt

ff if B[[b1]]s = ff or B[[b2]]s = ff

Table 1.2 The semantics of boolean expressions

Exercise 1.8

Prove that the equations of Table 1.1 define a total function A in Aexp →
(State → Z): First argue that it is sufficient to prove that for each a ∈ Aexp
and each s ∈ State there is exactly one value v ∈ Z such that A[[a]]s = v.
Next use structural induction on the arithmetic expressions to prove that this
is indeed the case.

The values of boolean expressions are truth values, so in a similar way we
shall define their meanings by a (total) function from State to T:

B: Bexp → (State → T)

Here T consists of the truth values tt (for true) and ff (for false).
Using A, we can define B by the semantic clauses of Table 1.2. Again we have

the distinction between syntax (e.g., ≤ on the left-hand side) and semantics
(e.g., ≤ on the right-hand side).

Exercise 1.9

Assume that s x = 3, and determine B[[¬(x = 1)]]s.

Exercise 1.10

Prove that Table 1.2 defines a total function B in Bexp → (State → T).
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Free Variables & Substitution 
• Free variables: variables occurring in expressions
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Exercise 1.11

The syntactic category Bexp′ is defined as the following extension of Bexp:

b ::= true | false | a1 = a2 | a1 ̸= a2 | a1 ≤ a2 | a1 ≥ a2

| a1 < a2 | a1 > a2 | ¬b | b1 ∧ b2 | b1 ∨ b2

| b1 ⇒ b2 | b1 ⇔ b2

Give a compositional extension of the semantic function B of Table 1.2.
Two boolean expressions b1 and b2 are equivalent if for all states s:

B[[b1]]s = B[[b2]]s

Show that for each b′ of Bexp′ there exists a boolean expression b of Bexp
such that b′ and b are equivalent.

1.4 Properties of the Semantics

Later in the book, we shall be interested in two kinds of properties for expres-
sions. One is that their values do not depend on values of variables that do
not occur in them. The other is that if we replace a variable with an expres-
sion, then we could as well have made a similar change in the state. We shall
formalize these properties below and prove that they do hold.

Free Variables

The free variables of an arithmetic expression a are defined to be the set of
variables occurring in it. Formally, we may give a compositional definition of
the subset FV(a) of Var:

FV(n) = ∅

FV(x ) = { x }

FV(a1 + a2) = FV(a1) ∪ FV(a2)

FV(a1 ⋆ a2) = FV(a1) ∪ FV(a2)

FV(a1 − a2) = FV(a1) ∪ FV(a2)

As an example, FV(x+1) = { x } and FV(x+y⋆x) = { x, y }. It should be
obvious that only the variables in FV(a) may influence the value of a. This is
formally expressed by the following lemma.

1.4 Properties of the Semantics 17

Lemma 1.12

Let s and s ′ be two states satisfying that s x = s ′ x for all x in FV(a). Then
A[[a]]s = A[[a]]s ′.

Proof: We shall give a fairly detailed proof of the lemma using structural induc-
tion on the arithmetic expressions. We shall first consider the basis elements of
Aexp.

The case n: From Table 1.1 we have A[[n]]s = N [[n]] as well as A[[n]]s ′ = N [[n]].
So A[[n]]s = A[[n]]s ′ and clearly the lemma holds in this case.

The case x : From Table 1.1, we have A[[x ]]s = s x as well as A[[x ]]s ′ = s ′ x .
From the assumptions of the lemma, we get s x = s ′ x because x ∈ FV(x ), so
clearly the lemma holds in this case.

Next we turn to the composite elements of Aexp.

The case a1 + a2: From Table 1.1, we have A[[a1 + a2]]s = A[[a1]]s + A[[a2]]s
and similarly A[[a1 + a2]]s ′ = A[[a1]]s ′ + A[[a2]]s ′. Since a i (for i = 1, 2) is an
immediate subexpression of a1 + a2 and FV(a i) ⊆ FV(a1 + a2), we can apply
the induction hypothesis (that is, the lemma) to a i and get A[[a i]]s = A[[a i]]s ′.
It is now easy to see that the lemma holds for a1 + a2 as well.

The cases a1 − a2 and a1 ⋆ a2 follow the same pattern and are omitted. This
completes the proof.

In a similar way, we may define the set FV(b) of free variables in a boolean
expression b as follows:

FV(true) = ∅

FV(false) = ∅

FV(a1 = a2) = FV(a1) ∪ FV(a2)

FV(a1 ≤ a2) = FV(a1) ∪ FV(a2)

FV(¬b) = FV(b)

FV(b1 ∧ b2) = FV(b1) ∪ FV(b2)

Exercise 1.13 (Essential)

Let s and s ′ be two states satisfying that s x = s ′ x for all x in FV(b). Prove
that B[[b]]s = B[[b]]s ′.
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• Substitutions: replacing each occurrence of a variable 

with another expression

18 1. Introduction

Substitutions

We shall later be interested in replacing each occurrence of a variable y in an
arithmetic expression a with another arithmetic expression a0. This is called
substitution, and we write a[y !→a0] for the arithmetic expression so obtained.
The formal definition is as follows:

n[y !→a0] = n

x [y !→a0] =

{
a0 if x = y

x if x ̸= y

(a1 + a2)[y !→a0] = (a1[y !→a0]) + (a2[y !→a0])

(a1 ⋆ a2)[y !→a0] = (a1[y !→a0]) ⋆ (a2[y !→a0])

(a1 − a2)[y !→a0] = (a1[y !→a0]) − (a2[y !→a0])

As an example, (x+1)[x!→3] = 3+1 and (x+y⋆x)[x!→y−5] = (y−5)+y⋆(y−5).
We also have a notion of substitution (or updating) for states. We define

s[y !→v ] to be the state that is like s except that the value bound to y is v :

(s[y !→v ]) x =

{
v if x = y

s x if x ̸= y

The relationship between the two concepts is shown in the following exercise.

Exercise 1.14 (Essential)

Prove that A[[a[y !→a0]]]s = A[[a]](s[y !→A[[a0]]s]) for all states s.

Exercise 1.15 (Essential)

Define substitution for boolean expressions: b[y !→a0] is to be the boolean ex-
pression that is like b except that all occurrences of the variable y are replaced
by the arithmetic expression a0. Prove that your definition satisfies

B[[b[y !→a0]]]s = B[[b]](s[y !→A[[a0]]s])

for all states s.
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• Property of substitution:



Operational Semantics
• Operational semantics is concerned about how to execute 

programs and not merely what the results of execution are. 

• Two different approaches:

• big-step operational semantics (natural semantics)

• small-step operational semantics (structural operational 
semantics)

• In both cases, the semantics is defined by a transition system:

• configurations

• transition relation



Big-Step Operational Semantics

20 2. Operational Semantics

[assns] ⟨x := a, s⟩ → s[x $→A[[a]]s]

[skipns] ⟨skip, s⟩ → s

[compns]
⟨S 1, s⟩ → s ′, ⟨S 2, s ′⟩ → s ′′

⟨S 1;S 2, s⟩ → s ′′

[if tt
ns]

⟨S 1, s⟩ → s ′

⟨if b then S 1 else S 2, s⟩ → s ′
if B[[b]]s = tt

[ifff
ns]

⟨S 2, s⟩ → s ′

⟨if b then S 1 else S 2, s⟩ → s ′
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⟨S , s⟩ representing that the statement S is to be executed from the state
s and

s representing a terminal (that is final) state.

The terminal configurations will be those of the latter form. The transition
relation will then describe how the execution takes place. The difference be-
tween the two approaches to operational semantics amounts to different ways
of specifying the transition relation.

2.1 Natural Semantics

In a natural semantics we are concerned with the relationship between the
initial and the final state of an execution. Therefore the transition relation will
specify the relationship between the initial state and the final state for each
statement. We shall write a transition as

⟨S , s⟩ → s ′

Intuitively this means that the execution of S from s will terminate and the
resulting state will be s ′.

The definition of → is given by the rules of Table 2.1. A rule has the general
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⟨z:=x, s0⟩ → s1 ⟨x:=y, s1⟩ → s2

⟨z:=x; x:=y, s0⟩ → s2 ⟨y:=z, s2⟩ → s3

⟨(z:=x; x:=y); y:=z, s0⟩ → s3

where we have used the abbreviations:

s1 = s0[z$→5]

s2 = s1[x$→7]

s3 = s2[y$→5]

The derivation tree has three leaves, denoted ⟨z:=x, s0⟩ → s1, ⟨x:=y, s1⟩ → s2,
and ⟨y:=z, s2⟩ → s3, corresponding to three applications of the axiom [assns].
The rule [compns] has been applied twice. One instance is

⟨z:=x, s0⟩ → s1, ⟨x:=y, s1⟩ → s2

⟨z:=x; x:=y, s0⟩ → s2

which has been used to combine the leaves ⟨z:=x, s0⟩ → s1 and ⟨x:=y, s1⟩ →
s2 with the internal node labelled ⟨z:=x; x:=y, s0⟩ → s2. The other instance is

⟨z:=x; x:=y, s0⟩ → s2, ⟨y:=z, s2⟩ → s3

⟨(z:=x; x:=y); y:=z, s0⟩ → s3

which has been used to combine the internal node ⟨z:=x; x:=y, s0⟩ → s2 and
the leaf ⟨y:=z, s2⟩ → s3 with the root ⟨(z:=x; x:=y); y:=z, s0⟩ → s3.

Consider now the problem of constructing a derivation tree for a given
statement S and state s. The best way to approach this is to try to construct
the tree from the root upwards. So we will start by finding an axiom or rule
with a conclusion where the left-hand side matches the configuration ⟨S , s⟩.
There are two cases:

– If it is an axiom and if the conditions of the axiom are satisfied, then we
can determine the final state and the construction of the derivation tree is
completed.

– If it is a rule, then the next step is to try to construct derivation trees for
the premises of the rule. When this has been done, it must be checked that
the conditions of the rule are fulfilled, and only then can we determine the
final state corresponding to ⟨S , s⟩.

Often there will be more than one axiom or rule that matches a given configu-
ration, and then the various possibilities have to be inspected in order to find
a derivation tree. We shall see later that for While there will be at most one
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to tt in the state. The other rule, [ifff
ns], says that if b evaluates to ff, then to

execute if b then S 1 else S 2 we just execute S 2. Taking s0 x = 0,

⟨skip, s0⟩ → s0

⟨if x = 0 then skip else x := x+1, s0⟩ → s0

is an instance of the rule [if tt
ns] because B[[x = 0]]s0 = tt. However, had it been

the case that s0 x ̸= 0, then it would not be an instance of the rule [if tt
ns] because

then B[[x = 0]]s0 would amount to ff. Furthermore, it would not be an instance
of the rule [ifff

ns] because the premise would contain the wrong statement.
Finally, we have one rule and one axiom expressing how to execute the

while-construct. Intuitively, the meaning of the construct while b do S in the
state s can be explained as follows:

– If the test b evaluates to true in the state s, then we first execute the body
of the loop and then continue with the loop itself from the state so obtained.

– If the test b evaluates to false in the state s, then the execution of the loop
terminates.

The rule [while tt
ns] formalizes the first case where b evaluates to tt and it says

that then we have to execute S followed by while b do S again. The axiom
[whileff

ns] formalizes the second possibility and states that if b evaluates to
ff, then we terminate the execution of the while-construct, leaving the state
unchanged. Note that the rule [while tt

ns] specifies the meaning of the while-
construct in terms of the meaning of the very same construct, so we do not
have a compositional definition of the semantics of statements.

When we use the axioms and rules to derive a transition ⟨S , s⟩ → s ′,
we obtain a derivation tree. The root of the derivation tree is ⟨S , s⟩ → s ′

and the leaves are instances of axioms. The internal nodes are conclusions of
instantiated rules, and they have the corresponding premises as their immediate
sons. We request that all the instantiated conditions of axioms and rules be
satisfied. When displaying a derivation tree, it is common to have the root
at the bottom rather than at the top; hence the son is above its father. A
derivation tree is called simple if it is an instance of an axiom; otherwise it is
called composite.

Example 2.1

Let us first consider the statement of Chapter 1:

(z:=x; x:=y); y:=z

Let s0 be the state that maps all variables except x and y to 0 and has s0 x = 5
and s0 y = 7. Then an example of a derivation tree is
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• The execution either terminates or loops:
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⟨y:=y⋆x; x:=x−1, s13⟩→s32

and T 3 is a derivation tree with root

⟨while ¬(x=1) do (y:=y⋆x; x:=x−1), s32⟩→s61 (***)

for some state s32.
Using that the form of the statement y:=y⋆x; x:=x−1 is S1;S 2, it is now

easy to see that the derivation tree T 2 is

⟨y:=y⋆x, s13⟩→s33 ⟨x:=x−1, s33⟩→s32

⟨y:=y⋆x; x:=x−1, s13⟩→s32

where s33 = s[y%→3] and s32 = s[y%→3][x%→2]. The leaves of T 2 are instances
of [assns] and are combined using [compns]. So now T 2 is fully constructed.

In a similar way, we can construct the derivation tree T 3 with root (***)
and we get

⟨y:=y⋆x, s32⟩→s62 ⟨x:=x−1, s62⟩→s61

⟨y:=y⋆x; x:=x−1, s32⟩→s61 T 4

⟨while ¬(x=1) do (y:=y⋆x; x:=x−1), s32⟩→s61

where s62 = s[y%→6][x%→2], s61 = s[y%→6][x%→1], and T 4 is a derivation tree
with root

⟨while ¬(x=1) do (y:=y⋆x; x:=x−1), s61⟩→s61

Finally, we see that the derivation tree T 4 is an instance of the axiom
[whileff

ns] because B[[¬(x=1)]]s61 = ff. This completes the construction of the
derivation tree T for (*).

Exercise 2.3

Consider the statement

z:=0; while y≤x do (z:=z+1; x:=x−y)

Construct a derivation tree for this statement when executed in a state where
x has the value 17 and y has the value 5.

We shall introduce the following terminology. The execution of a statement
S on a state s

– terminates if and only if there is a state s ′ such that ⟨S , s⟩ → s ′ and

– loops if and only if there is no state s ′ such that ⟨S , s⟩ → s ′.

• The semantics is deterministic:
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y:=1; for z:=1 to x do (y:=y ⋆ x; x:=x−1)

from a state where x has the value 5. Hint: You may need to assume that
you have an “inverse” to N , so that there is a numeral for each number that
may arise during the computation. (The semantics of the for-construct is not
allowed to rely on the existence of a while-construct in the language.)

In the proof above Table 2.1 was used to inspect the structure of the deriva-
tion tree for a certain transition known to hold. In the proof of the next result,
we shall combine this with an induction on the shape of the derivation tree.
The idea can be summarized as follows:

Induction on the Shape of Derivation Trees

1: Prove that the property holds for all the simple derivation trees by
showing that it holds for the axioms of the transition system.

2: Prove that the property holds for all composite derivation trees: For
each rule assume that the property holds for its premises (this is
called the induction hypothesis) and prove that it also holds for the
conclusion of the rule provided that the conditions of the rule are
satisfied.

We shall say that the semantics of Table 2.1 is deterministic if for all choices
of S , s, s ′, and s ′′ we have that

⟨S , s⟩ → s ′ and ⟨S , s⟩ → s ′′ imply s ′ = s ′′

This means that for every statement S and initial state s we can uniquely
determine a final state s ′ if (and only if) the execution of S terminates.

Theorem 2.9

The natural semantics of Table 2.1 is deterministic.

Proof: We assume that ⟨S , s⟩→s ′ and shall prove that

if ⟨S , s⟩→s ′′ then s ′ = s ′′.

We shall proceed by induction on the shape of the derivation tree for ⟨S , s⟩→s ′.

The case [assns]: Then S is x :=a and s ′ is s[x %→A[[a]]s]. The only axiom or
rule that could be used to give ⟨x :=a, s⟩→s ′′ is [assns], so it follows that s ′′

must be s[x %→A[[a]]s] and thereby s ′ = s ′′.
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Since ⟨while b do S , s0⟩→s ′ is a premise of (the instance of) [while tt
ns], we can

apply the induction hypothesis to it. From ⟨while b do S , s0⟩→s ′′ we therefore
get s ′ = s ′′ as required.

The case [whileff
ns]: Straightforward.

Exercise 2.10 (*)

Prove that repeat S until b (as defined in Exercise 2.7) is semantically equiv-
alent to S ; while ¬b do S . Argue that this means that the extended semantics
is deterministic.

It is worth observing that we could not prove Theorem 2.9 using structural
induction on the statement S . The reason is that the rule [while tt

ns] defines the
semantics of while b do S in terms of itself. Structural induction works fine
when the semantics is defined compositionally (as, e.g., A and B in Chapter 1).
But the natural semantics of Table 2.1 is not defined compositionally because
of the rule [while tt

ns].
Basically, induction on the shape of derivation trees is a kind of structural

induction on the derivation trees: In the base case, we show that the property
holds for the simple derivation trees. In the induction step, we assume that the
property holds for the immediate constituents of a derivation tree and show
that it also holds for the composite derivation tree.

The Semantic Function Sns

The meaning of statements can now be summarized as a (partial) function from
State to State. We define

Sns: Stm → (State ↪→ State)

and this means that for every statement S we have a partial function

Sns[[S ]] ∈ State ↪→ State.

It is given by

Sns[[S ]]s =
{

s ′ if ⟨S , s⟩ → s ′

undef otherwise

Note that Sns is a well-defined partial function because of Theorem 2.9. The
need for partiality is demonstrated by the statement while true do skip that
always loops (see Exercise 2.4); we then have
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[asssos] ⟨x := a, s⟩ ⇒ s[x $→A[[a]]s]

[skipsos] ⟨skip, s⟩ ⇒ s

[comp 1
sos]

⟨S 1, s⟩ ⇒ ⟨S ′
1, s ′⟩

⟨S 1;S 2, s⟩ ⇒ ⟨S ′
1;S 2, s ′⟩

[comp 2
sos]

⟨S 1, s⟩ ⇒ s ′

⟨S 1;S 2, s⟩ ⇒ ⟨S 2, s ′⟩

[if tt
sos] ⟨if b then S 1 else S 2, s⟩ ⇒ ⟨S 1, s⟩ if B[[b]]s = tt

[ifff
sos] ⟨if b then S 1 else S 2, s⟩ ⇒ ⟨S 2, s⟩ if B[[b]]s = ff

[whilesos] ⟨while b do S , s⟩ ⇒

⟨if b then (S ; while b do S ) else skip, s⟩

Table 2.2 Structural operational semantics for While

2.2 Structural Operational Semantics

In structural operational semantics, the emphasis is on the individual steps of
the execution; that is, the execution of assignments and tests. The transition
relation has the form

⟨S , s⟩ ⇒ γ

where γ either is of the form ⟨S ′, s ′⟩ or of the form s ′. The transition ex-
presses the first step of the execution of S from state s. There are two possible
outcomes:

– If γ is of the form ⟨S ′, s ′⟩, then the execution of S from s is not completed and
the remaining computation is expressed by the intermediate configuration
⟨S ′, s ′⟩.

– If γ is of the form s ′, then the execution of S from s has terminated and the
final state is s ′.

We shall say that ⟨S , s⟩ is stuck if there is no γ such that ⟨S , s⟩ ⇒ γ.
The definition of ⇒ is given by the axioms and rules of Table 2.2, and the

general form of these is as in the previous section. Axioms [asssos] and [skipsos]
have not changed at all because the assignment and skip statements are fully
executed in one step.

The rules [comp 1
sos] and [comp 2

sos] express that to execute S 1;S 2 in state s
we first execute S 1 one step from s. Then there are two possible outcomes:
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The Semantic Function Ssos

As in the previous section, the meaning of statements can be summarized by
a (partial) function from State to State:

Ssos: Stm → (State ↪→ State)

It is given by

Ssos[[S ]]s =

{
s ′ if ⟨S , s⟩ ⇒∗ s ′

undef otherwise

The well-definedness of the definition follows from Exercise 2.22.

Exercise 2.25

Determine whether or not semantic equivalence of S 1 and S 2 amounts to
Ssos[[S 1]] = Ssos[[S 2]].

2.3 An Equivalence Result

We have given two definitions of the semantics of While and we shall now
address the question of their equivalence.

Theorem 2.26

For every statement S of While, we have Sns[[S ]] = Ssos[[S ]].

This result expresses two properties:

– If the execution of S from some state terminates in one of the semantics,
then it also terminates in the other and the resulting states will be equal.

– If the execution of S from some state loops in one of the semantics, then it
will also loop in the other.

It should be fairly obvious that the first property follows from the theorem be-
cause there are no stuck configurations in the structural operational semantics
of While. For the other property, suppose that the execution of S on state s
loops in one of the semantics. If it terminates in the other semantics, we have a
contradiction with the first property because both semantics are deterministic
(Theorem 2.9 and Exercise 2.22). Hence S will have to loop on state s also in
the other semantics.
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