AAA616: Program Analysis

Lecture I:
 Review on Operational Semantics

Hakjoo Oh
2016 Fall

Syntax of While

- Notations for syntactic categories:
n will range over numerals, Num,
x will range over variables, Var,
a will range over arithmetic expressions, Aexp,
b will range over boolean expressions, Bexp, and
S will range over statements, $\mathbf{S t m}$.
- Abstract syntax:

$$
\begin{aligned}
a & ::=n|x| a_{1}+a_{2}\left|a_{1} \star a_{2}\right| a_{1}-a_{2} \\
b & ::=\text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2} \\
S & ::=x:=a \mid \text { skip }\left|S_{1} ; S_{2}\right| \text { if } b \text { then } S_{1} \text { else } S_{2} \\
& \mid \quad \text { while } b \text { do } S
\end{aligned}
$$

Abstract Syntax Trees

Semantics of Expressions

- The meaning of an expression depends on the state:

$$
\text { State }=\text { Var } \rightarrow \mathbf{Z}
$$

Semantics of Expressions

- The semantic function for arithmetic expressions:

$$
\begin{aligned}
\mathcal{A}: \mathbf{A e x p} & \rightarrow(\mathbf{S t a t e} \rightarrow \mathbf{Z}) \\
\mathcal{A} \llbracket n \rrbracket s & =\mathcal{N} \llbracket n \rrbracket \\
\mathcal{A} \llbracket x \rrbracket s & =s x \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s+\mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s \cdot \mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1}-a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s-\mathcal{A} \llbracket a_{2} \rrbracket s
\end{aligned}
$$

Semantics of Expressions

- The semantic function for boolean expressions

$$
\begin{aligned}
\mathcal{B}: \mathbf{B e x p} & \rightarrow(\text { State } \rightarrow \mathbf{T}) \\
\mathcal{B} \llbracket \text { true } \rrbracket s & =\mathbf{t t} \\
\mathcal{B} \llbracket \text { false } \rrbracket s & =\mathbf{f f} \\
\mathcal{B} \llbracket a_{1}=a_{2} \rrbracket s & = \begin{cases}\mathbf{t t} & \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s=\mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathbf{f f} & \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s \neq \mathcal{A} \llbracket a_{2} \rrbracket s\end{cases} \\
\mathcal{B} \llbracket a_{1} \leq a_{2} \rrbracket s & = \begin{cases}\mathbf{t t} & \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s \leq \mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathbf{f f} & \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s>\mathcal{A} \llbracket a_{2} \rrbracket s\end{cases} \\
\mathcal{B} \llbracket \neg b \rrbracket s & = \begin{cases}\mathbf{t t} & \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{f f} \\
\mathbf{f f} & \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t}\end{cases} \\
\mathcal{B} \llbracket b_{1} \wedge b_{2} \rrbracket s & = \begin{cases}\mathbf{t t} & \text { if } \mathcal{B} \llbracket b_{1} \rrbracket s=\mathbf{t t} \text { and } \mathcal{B} \llbracket b_{2} \rrbracket s=\mathbf{t t} \\
\mathbf{f f} & \text { if } \mathcal{B} \llbracket b_{1} \rrbracket s=\mathbf{f f} \text { or } \mathcal{B} \llbracket b_{2} \rrbracket s=\mathbf{f f}\end{cases}
\end{aligned}
$$

Free Variables \& Substitution

- Free variables: variables occurring in expressions

$$
\begin{aligned}
\mathrm{FV}(n) & =\emptyset \\
\operatorname{FV}(x) & =\{x\} \\
\mathrm{FV}\left(a_{1}+a_{2}\right) & =\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right) \\
\mathrm{FV}\left(a_{1} \star a_{2}\right) & =\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right) \\
\mathrm{FV}\left(a_{1}-a_{2}\right) & =\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{FV}(\text { true }) & =\emptyset \\
\mathrm{FV}(\mathrm{false}) & =\emptyset \\
\mathrm{FV}\left(a_{1}=a_{2}\right) & =\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right) \\
\mathrm{FV}\left(a_{1} \leq a_{2}\right) & =\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right) \\
\mathrm{FV}(\neg b) & =\mathrm{FV}(b) \\
\mathrm{FV}\left(b_{1} \wedge b_{2}\right) & =\mathrm{FV}\left(b_{1}\right) \cup \mathrm{FV}\left(b_{2}\right)
\end{aligned}
$$

Lemma 1.12
Let s and s^{\prime} be two states satisfying that $s x=s^{\prime} x$ for all x in $\operatorname{FV}(a)$. Then $\mathcal{A} \llbracket a \rrbracket s=\mathcal{A} \llbracket a \rrbracket s^{\prime}$.

Free Variables \& Substitution

- Substitutions: replacing each occurrence of a variable with another expression

$$
\begin{aligned}
n\left[y \mapsto a_{0}\right] & =n \\
x\left[y \mapsto a_{0}\right] & =\left\{\begin{array}{cc}
a_{0} & \text { if } x=y \\
x & \text { if } x \neq y
\end{array}\right. \\
\left(a_{1}+a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right)+\left(a_{2}\left[y \mapsto a_{0}\right]\right) \\
\left(a_{1} \star a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right) \star\left(a_{2}\left[y \mapsto a_{0}\right]\right) \\
\left(a_{1}-a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right)-\left(a_{2}\left[y \mapsto a_{0}\right]\right)
\end{aligned}
$$

- Substitution for states:

$$
(s[y \mapsto v]) x= \begin{cases}v & \text { if } x=y \\ s x & \text { if } x \neq y\end{cases}
$$

- Property of substitution:

$$
\mathcal{A} \llbracket a\left[y \mapsto a_{0} \rrbracket \rrbracket s=\mathcal{A} \llbracket a \rrbracket\left(s\left[y \mapsto \mathcal{A} \llbracket a_{0} \rrbracket s \rrbracket\right) \text { for all states } s\right.\right.
$$

Operational Semantics

- Operational semantics is concerned about how to execute programs and not merely what the results of execution are.
- Two different approaches:
- big-step operational semantics (natural semantics)
- small-step operational semantics (structural operational semantics)
- In both cases, the semantics is defined by a transition system:
- configurations
- transition relation

Big-Step Operational Semantics

$$
\langle S, s\rangle \rightarrow s^{\prime}
$$

$$
\begin{aligned}
& {\left[\mathrm{ass}_{\mathrm{ns}}\right] \quad\langle x:=a, s\rangle \rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket s]} \\
& \text { [skip } \left.{ }_{\mathrm{ns}}\right] \quad\langle\text { skip, } s\rangle \rightarrow s \\
& {\left[\operatorname{comp}_{\mathrm{ns}}\right] \quad \frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime},\left\langle S_{2}, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime \prime}}} \\
& {\left[\mathrm{if}_{\mathrm{ns}}^{\mathrm{tt}}\right]} \\
& \frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathrm{tt} \\
& {\left[\mathrm{if}_{\mathrm{ns}}\right. \text {] }} \\
& \frac{\left\langle S_{2}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathrm{ff} \\
& \text { [while }{ }_{\text {ns }}^{\mathrm{tt}} \text {] } \\
& \frac{\langle S, s\rangle \rightarrow s^{\prime},\left\langle\text { while } b \text { do } S, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\langle\text { while } b \text { do } S, s\rangle \rightarrow s^{\prime \prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathrm{tt} \\
& \text { [while } \mathrm{ff}_{\mathrm{ns}}^{\mathrm{ff}} \text {] } \\
& \langle\text { while } b \text { do } S, s\rangle \rightarrow s \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathrm{ff}
\end{aligned}
$$

Example

Example 2.1

Let us first consider the statement of Chapter 1:

$$
(\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}) ; \mathrm{y}:=\mathrm{z}
$$

Let s_{0} be the state that maps all variables except x and y to $\mathbf{0}$ and has $s_{0} \mathbf{x}=\mathbf{5}$ and $s_{0} \mathrm{y}=7$. Then an example of a derivation tree is

$$
\left\langle\mathrm{z}:=\mathrm{x}, s_{0}\right\rangle \rightarrow s_{1} \quad\left\langle\mathrm{x}:=\mathrm{y}, s_{1}\right\rangle \rightarrow s_{2}
$$

$$
\left\langle\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}, s_{0}\right\rangle \rightarrow s_{2} \quad\left\langle\mathrm{y}:=\mathrm{z}, s_{2}\right\rangle \rightarrow s_{3}
$$

$$
\left\langle(\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}) ; \mathrm{y}:=\mathrm{z}, s_{0}\right\rangle \rightarrow s_{3}
$$

where we have used the abbreviations:

$$
\begin{aligned}
& s_{1}=s_{0}[\mathbf{z} \mapsto \mathbf{5}] \\
& s_{2}=s_{1}[\mathbf{x} \mapsto \mathbf{7}] \\
& s_{3}=s_{2}[\mathrm{y} \mapsto \mathbf{5}]
\end{aligned}
$$

Properties

- The execution either terminates or loops:
- terminates if and only if there is a state s^{\prime} such that $\langle S, s\rangle \rightarrow s^{\prime}$ and
- loops if and only if there is no state s^{\prime} such that $\langle S, s\rangle \rightarrow s^{\prime}$.
- The semantics is deterministic:

$$
\langle S, s\rangle \rightarrow s^{\prime} \text { and }\langle S, s\rangle \rightarrow s^{\prime \prime} \quad \text { imply } \quad s^{\prime}=s^{\prime \prime}
$$

The Semantic Function

$\mathcal{S}_{\mathrm{ns}}: \mathbf{S t m} \rightarrow($ State \hookrightarrow State $)$

$$
\mathcal{S}_{\mathrm{ns}} \llbracket S \rrbracket s= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \rightarrow s^{\prime} \\ \underline{\text { undef }} & \text { otherwise }\end{cases}
$$

Small-Step Operational Semantics

$$
\langle S, s\rangle \Rightarrow \gamma
$$

[ass ${ }_{\text {sos }}$]
$\left[\right.$ skip $\left._{\text {sos }}\right] \quad\langle$ skip,$s\rangle \Rightarrow s$
$\left[\mathrm{comp}_{\mathrm{sos}}^{1}\right.$]

$$
\begin{gathered}
\frac{\left\langle S_{1}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, s^{\prime}\right\rangle} \\
\frac{\left\langle S_{1}, s\right\rangle \Rightarrow s^{\prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s^{\prime}\right\rangle}
\end{gathered}
$$

$\left[\operatorname{comp}_{\text {sos }}^{2}\right.$]
$\left[\mathrm{if}_{\mathrm{sos}}^{\mathrm{tt}}\right] \quad\left\langle\right.$ if b then S_{1} else $\left.S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}, s\right\rangle$ if $\mathcal{B} \llbracket b \rrbracket s=\mathbf{t t}$

$$
\left\langle\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}, s\right\rangle \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t}
$$

$\left[\mathrm{if}_{\mathrm{sos}}^{\mathrm{ff}}\right]$
$\left\langle\right.$ if b then S_{1} else $\left.S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s\right\rangle$ if $\mathcal{B} \llbracket b \rrbracket s=\mathrm{ff}$
[while ${ }_{\text {sos }}$]
$\langle x:=a, s\rangle \Rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket s]$
\langle while b do $S, s\rangle \Rightarrow$
\langle if b then (S; while b do S) else skip, $s\rangle$

The Semantic Function

$$
\begin{gathered}
\mathcal{S}_{\text {sos }}: \mathbf{S t m} \rightarrow(\text { State } \hookrightarrow \text { State }) \\
\mathcal{S}_{\text {sos }} \llbracket S \rrbracket s= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \Rightarrow^{*} s^{\prime} \\
\underline{\text { undef }} & \text { otherwise }\end{cases}
\end{gathered}
$$

Equivalence

Theorem 2.26
For every statement S of While, we have $\mathcal{S}_{\mathrm{ns}} \llbracket S \rrbracket=\mathcal{S}_{\text {sos }} \llbracket S \rrbracket$.

