AAA616: Program Analysis

Lecture I:
Review on Operational Semantics

Hakjoo Oh
2016 Fall

Syntax of While

* Notations for syntactic categories:

n will range over numerals, Num,

r will range over variables, Var,

a will range over arithmetic expressions, Aexp,

b will range over boolean expressions, Bexp, and

S will range over statements, Stm.

» Abstract syntax:

a == nlzx|la+az|axaz|ar — as
= true |false|a; =as| a3 < as | b | by A bs
S == xz:=a|skip| Sy ; Sy | if b then S else S5

| while bdo S

Abstract Syntax Trees

A
A
A/

X = Qa —

Z

/

N

y

Semantics of Expressions

* The meaning of an expression depends on the state:

State = Var — Z

Semantics of Expressions

+ The semantic function for arithmetic expressions:

A: Aexp — (State — Z)

Aln]s = N]n]

Alz]s = sz«
Alar + az]s = Alai]s + Alaz]s
Alar x az]s = Ala1]s - Alaz]s
Alar — az]s = Alai]s — Alaz]s

Semantics of Expressions

 The semantic function for boolean expressions

B: Bexp — (State — T)

B|true]s

B[false]s

Bla1 = as2]s

Blar < as]s

B[— b]s

B[[bl A\ bg]]S

tt

tt

tt

tt

tt

if A
if A
if A
if A

it B
it B
it B
it B

a1]s = Alaz]s
a1]s # Alaz]s
a1]s < Alasz]s
a1]s > Alas]s

[b]s = fE
[b]s = tt

[b1]s = tt and B[bs]s = tt

[01]s = ff or Bbs]s = ff

Free Variables & Substitution

* Free variables: variables occurring in expressions

FV(n) = 0 FV(true) =
FV(z) = {2} FV(false) = 0
FV(ai 4+ a2) = FV(a1)UFV(a) FV(a1 = a2) = FV(a1) UFV(az)
FV(a; * as) = FV(a1) UFV(ay) FV(ar < a2) = FV(a1) UFV(a2)
FV(a1 — as) = FV(a1)UFV(as) FV(=b) = FV(})
FEV(by AN ba) = FV(by) UFV(by)
Lemma 1.12

Let s and s’ be two states satisfying that s z = s’ x for all z in FV(a). Then
Ala]s = Ala]s’.

Free Variables & Substitution

Substitutions: replacing each occurrence of a variable
with another expression

nly—ag] = n
et = {10
itz #y
(a1 + az2)ly—ao] = (aily—ao)) + (azly—aol)
(a1 % az)ly—a0] = (a1ly—ao]) * (az]y—ao))
(a1 — a2)ly—ao] = (aily—ao]) — (az[y—aol)

Substitution for states:

v iftr =y

(sly—v]) z = {

Property of substitution:

Alaly—apl]s = Ala](s|y—A[ag]s]) for all states s.

Operational Semantics

- Operational semantics is concerned about how to execute
programs and not merely what the results of execution are.

- Two different approaches:
* big-step operational semantics (natural semantics)

- small-step operational semantics (structural operational
semantics)

* In both cases, the semantics is defined by a transition system:
- configurations

* transition relation

Big-Step Operational Semantics

(S, s) — s

[asspg] (x := a, s) — s[z—Afa]s]
[skipps] (skip, §) — s

(S1, 8) — §', (S, 8"y — §”

COMPyq
| Dns] (S1:S9,) — s
[if £4] 51, 8) = & if B[b]s = tt
" (if b then S; else Sy, s) — &’
So, 8) — &
i) (52, 5) it B[b]s = ff

(if b then S; else So, s) — &'

(S, s) — s, (while b do S, s’y — s”
[while '?] if B[b]s = tt
(while b do S, s) — s”

[while L] (while b do S, s) — s if B|b]|s = fF

Example

Example 2.1
Let us first consider the statement of Chapter 1:

(z:=x; x:=y); y:=2

Let sg be the state that maps all variables except x and y to 0 and has sg x = 5
and sy y = 7. Then an example of a derivation tree is

(z:=X, Sg) — S1 (x:=y, §1) — S2

(z:=x; x:=y, 50) — 52 (yi=z, 52) — 53

((zi=x; x:1=y); y:=2, $0) — $3
where we have used the abbreviations:
s1 = So|lz—5

S9 = S1 Xl—>7

S3 = S9 yl—>5

Properties

- The execution either terminates or loops:

— terminates if and only if there is a state s’ such that (S, s) — s’ and

— loops if and only if there is no state s’ such that (S, s) — 5.

« The semantics is deterministic:

/ /!

(S, s) — s and (S, s) — s imply s =s

The Semantic Function

Sus: Stm — (State — State)

s’ if (S, s) — &

undef otherwise

SulS1s = {

Small-Step Operational Semantics

(5, 8) =7
[asSsos] (x := a, s) = slz—Ala]s]
[skipsos] (skip, $) = S
<Sla S> = <S/17 3/>
[Compslos] / /
<Sl;82, S> = <Sl;SQ, 8>
(S1, 5) = &
[compZ]
(5152,) = (S2, §')
if] (if b then S else So, s) = (51, s) if B[b]s = tt
iff] (if b then S; else So, s) = (99, s) if B[b]s = ff
'whilegos| (while b do §, s) =
(if b then (S5; while b do §) else skip, s)

The Semantic Function

Ssos: Stm — (State — State)

(s if (5, s) ="
SSOS[[S]]S =

. undef otherwise

Equivalence

Theorem 2.26
For every statement S of While, we have S.s[S] = Sqos[5].

