
AAA615: Formal Methods

Lecture 9 — Symbolic Execution

Hakjoo Oh
2017 Fall

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 1 / 49

Symbolic Execution

A program analysis technique that executes a program with symbolic
– rather than concrete – input values.

Popular for finding software bugs and vulnerabilities: e.g.,
I In Microsoft, 30% of bugs are discovered by symbolic execution.
I Symbolic execution is the key technique used in DARPA Cyber Grand

Challenge.

Symbolic execution tools:
I Stanford: KLEE
I NASA: PathFinder
I Microsoft: SAGE
I UC Berkeley: CUTE
I EPFL: S2E

Slides are based on the paper:
I A Survey of Symbolic Execution Techniques. arXiv:1610.00502

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 2 / 49

Example

1. void foobar(int a, int b) {

2. int x = 1, y = 0;

3. if (a != 0) {

4. y = 3+x;

5. if (b == 0)

6. x = 2*(a+b);

7. }

8. assert(x-y != 0);

9. }

The goal is to find the inputs that make the assertion fail.

Random testing with concrete values unlikely generate the inputs.

Symbolic execution overcomes the limitation of random testing by
reasoning on classes of inputs, rather than single input values.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 3 / 49

Symbolic Execution

Program inputs are represented by symbols: αa, αb.

Symbolic execution maintains a state (stmt, σ, π):
I stmt: the next statement to evaluate
I σ: symbolic store
I π: path constraints

Depending on stmt, symbolic execution proceeds as follows:
I x = e: It updates the symbolic store σ by associating x with a new

symbolic expression es, where es is a symbolic expression obtained by
evaluating e symbolically.

I if e then s1 else s2: It is forked by creating two states with path
constraints π ∧ es and π ∧ ¬es.

I assert(e): The validity of e is checked.
F If ¬e ∧ π is unsatisfiable, the assertion is always true.
F If ¬e ∧ π is satisfiable, an assert-fail input is found.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 4 / 49

Symbolic Execution Tree

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 5 / 49

Challenges

Symbolic execution for real-world software is challenging:

Pointers and arrays.

Loops

Constraint solving.

Open programs (e.g. programs with external calls).

Path explosion.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 6 / 49

Handling of Pointers and Arrays

Classical approaches maintain fully symbolic memory addresses with state
forking or if-then-else formulas. For example, consider the code:

1. void foobar(unsigned i, unsigned j) {

2. int a[2] = { 0 };

3. if (i>1 || j>1) return;

4. a[i] = 5;

5. assert(a[j] != 5);

6. }

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 7 / 49

State Forking

If an operation reads from or writes to a symbolic address, the state is
forked by considering all possible states that may result from the operation.
The path constraints are updated accordingly for each forked state.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 8 / 49

If-then-else Formulas

An alternative is to encode the possibilities in the symbolic store with
if-then-else, without forking states.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 9 / 49

Other Approaches

Other approaches for scalability:

Address concretization

Partial memory modeling

Lazy initialization

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 10 / 49

Handling Loops

Consider the program, where we do not know the loop bound:

void f (unsigned int n) {

i = 0;

while (i < n) {

i = i + 1;

}

}

Symbolic execution would keep forking and running forever.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 11 / 49

Handling Loops

A common solution in practice is to unroll the loop for a fixed bound, e.g.,
k = 2:

void f (unsigned int n) {

i = 0;

if (i < n) {

i = i + 1;

}

if (i < n) {

i = i + 1;

}

}

The resulting analysis compromises soundness.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 12 / 49

Handling Loops

Another solution is to provide a loop invariant and let symbolic execution
use it to skip the analysis of the loop:

void f (unsigned int n) {

i = 0;

while (i < n) { // inv: i <= n

i = i + 1;

}

}

The resulting analysis is either semi-automatic or over-approximated.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 13 / 49

Constraint Solving

A key component of symbolic execution is a constraint solver. Two
problems:

Invoking an SMT solver is expensive.
I Symbolic execution maintains a mapping from formulas to satisfying

assignments: e.g.,

x+ y < 10 ∧ x > 5 7→ {x = 6, y = 3}

I When we query a weaker formula, e.g., x+ y < 10, we can reuse the
previously computed solution, without invoking an SMT solver.

I When the formula is stronger, e.g., x+ y < 10 ∧ x > 5 ∧ y ≥ 0,
then we first try the solution in the cache. If it does not work, call the
SMT solver.

Constraints from real-world software are hard to solve.
I E.g., non-linear constraints

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 14 / 49

Open Programs

How to handle unknown external calls?

Environment modeling

Execution with concrete values

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 15 / 49

Path Explosion

Because symbolic execution forks off a new state at every branch of the
program, the total number of states easily becomes exponential in the
number of branches. Techniques for addressing path explosion:

Pruning unrealizable paths

State merging

Path selection

Function and loop summarization

Path subsumption and equivalence

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 16 / 49

Pruning Unrealizable Paths

We can reduce the state space by invoking an SMT solver to detect
unrealizable paths. For example,

if (a > 0) { ... }

if (a > 1) { ... }

Eager evaluation calls an SMT solver at each branch.

Lazy evaluation does not to reduce the burden on the solver.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 17 / 49

State Merging

State merging is a technique that merges different paths into a single
state. For example,

1. void foo(int x, int y) {

2. if (x < 5)

3. y = y * 2;

4. else

5. y = y * 3;

6. return y;

7. }

without state merging with state merging

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 18 / 49

State Merging

Given two states (stmt, σ1, π1) and (stmt, σ2, π2), the merged
state is

(stmt, σ′, π1 ∨ π2)

where σ′ merges σ1 and σ2 with ite expressions.

State merging has trade-offs: merging decreases the number of paths
to explore but also put a burden on constraints solvers.

State merging heuristics:
I See Query cost estimation, Veritesting, etc
I See also (Efficient State Merging in Symbolic Execution. PLDI 2012)

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 19 / 49

Path Selection Heuristics

Since enumerating all paths of a program can be prohibitively expensive,
symbolic execution prioritizes the most promising paths. Several strategies
for selecting the next path to be explored have been proposed: e.g.,

Depth-first search

Breadth-first search

Random path selection

Coverage optimize search

Subpath-guided search

Buggy-path first search

. . .

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 20 / 49

Concolic Execution

An approach that combines concrete and symbolic execution to address
the limitations of symbolic execution.

external calls

constraint solving

pointers

Approaches to concolic execution:

Dynamic symbolic execution (e.g. DART, SAGE, KLEE)

Selective symbolic execution (e.g. S2E)

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 21 / 49

Dynamic Symbolic Execution

One popular concolic execution approach, where concrete execution drives
symbolic execution. Consider the code:

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 22 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 23 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 24 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 25 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 26 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 27 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 28 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 29 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 30 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 31 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 32 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 33 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 34 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 35 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 36 / 49

Dynamic Symbolic Execution

Consider the program with non-linear expression:

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 37 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 38 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 39 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 40 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 41 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 42 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 43 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 44 / 49

Dynamic Symbolic Execution

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 45 / 49

Trade-off

By replacing symbolic values by concrete values, the analysis cannot
generate the inputs that exercise the false branch of x>y+10.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 46 / 49

Handling of External Calls

External calls are executed with concrete values:

void foo(int x, int y) {

int a = bar(x);

if (y < 0) ERROR;

}

Assume that x = 1 and y = 2 are initial input parameters.

The concolic engine executes bar (which returns a = 0) and skips the
branch that would trigger the error statement.

At the same time, the symbolic execution tracks the path constraint
αy ≥ 0 inside function foo.

Notice that branch conditions in function bar are not known to the engine.

To explore the alternative path, the engine negates the path constraint of
the branch in foo, generating inputs, such as x = 1 and y = −4, that
actually drive the concrete execution to the alternative path.

With this approach, the engine can explore both paths in foo even if bar is
not symbolically tracked.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 47 / 49

Downside: Path Divergence

void baz(int x) {

abs(&x);

if (x < 0) ERROR;

}

Function baz invokes the external function abs, which simply computes the
absolute value of a number.

Choosing x = 1 as the initial concrete value, the concrete execution does
not trigger the error statement, but the concolic engine tracks the path
constraint αx ≥ 0 due to the branch in baz, trying to generate a new input
by negating it.

However the new input, e.g., x = −1, does not trigger the error statement
due to the (untracked) side effects of abs.

In this case, after generating a new input the engine detects a path
divergence: a concrete execution that does not follow the predicted path.

Interestingly, in this example no input could actually trigger the error, but
the engine is not able to detect this property.

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 48 / 49

Summary

Symbolic execution is a popular technique for finding software bugs
and vulnerabilities.

The key idea is to execute a program symbolically, rather than
concretely.

Remaining challenges:
I path explosion, external environment, constraint solving, etc

Hakjoo Oh AAA615 2017 Fall, Lecture 9 November 24, 2017 49 / 49

