AAA615: Formal Methods

Lecture 7 — SAT-based Program Analysis

Hakjoo Oh
2017 Fall

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 1/10

Bit-Level Static Analysis via Boolean Satisfiability

@ Finding bugs in low-level systems code is challenging due to
difficult-to-model language constructs such as pointers, bit-wise
operators, and type casts, which requires bit-level reasoning.

@ One successful approach is to encode program semantics at bit-level
and translate it to a boolean satisfiability formula, exploiting
impressive advances in solving boolean satisfiability.

@ References:

» A Tool for Checking ANSI-C Programs. TACAS 2004.
» Scalable Error Detection using Boolean Satisfiability. POPL 2005.

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 2 /10

Saturn?

@ A static error detection tool based on boolean satisfiability.
» Yichen Xie and Alex Aiken. Scalable Error Detection using Boolean
Satisfiability. POPL 2005.
@ The analysis is path-sensitive, precise down to bit level, and models
pointers and heap data. Yet highly scalable thanks to modern SAT
solvers and various optimization techniques.

@ In particular, Saturn performs a bottom-up analysis, which computes
a summary of each analyzed function and reuses the summary when
the function is called later.

1SATisfiability-based failURe aNalysis
Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 3 /10

A Low-Level Programming Language
A subset of the language that does not include structures and pointers:
T — (n,signed | unsigned)
e — unknown(t) |const(n,7) | x| —e| 'e| el D es
| e1 band ez | ey Ishift ez | (7)e | lifte(c, T)
c — true|false| 7c|e1 =ez|c1ANeca|c1Ves|lift(e)
s — skip | x := e | assert(c) | if ¢ s1 s2 | while ¢ s | s1; 52

Representation:

B — [bp—1...bo]ls where s € {signed, unsigned}
b — Olllalbl/\b2|b1\/b2|—|b

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 4/10

Translation Rules (Expressions)

B = ¢(z) (n,s) =7
YphFax=B 1+ unknown(r) = [n_1 ... ool

o; fresh

& b; ifo<i<n
Y e=>_[bn—1"‘b0]3' b,=1< 0 if s =unsigned An<i<m
T = (m,s) bn_1 if s =signed An<i<m

Y (r)e= (b _,...b)ls

(nys) =71 prFeS>b
¥ Flift.(c,7) = [0...00],

E

e [bn—1...bols Ve =[b,_,...b0]s

Y+ eband € = [b,_1 Ab,_,...bo Abyls

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 5/ 10

Translation Rules (Conditionals)

Y Ftrue=1 1 false = 0

TPI—c:C>b ’l,bl—e=E>[bn—1---b0]s ¢|_e,:E>[b;l—1"

-bgls

Yk —e = —b Y el =ey = N\;(bi Ab))V (mb; A b))

i =b hhca=by PrFeci=b 1k cy= by

1,b|—c1/\C2:C>b1/\b2 ¢|—C1V02:C>b1Vb2

YFe= [bu_y...bols

P+ lifte(e) = \/; b;

Hakjoo Oh AAA615 2017 Fall, Lecture 7

November 12, 2017

6/10

Translation Rules (Statements)

Ve
G, x:i=e=> G,z —]

Yphe>b (G A —b) unsatisfiable
G, + assert(c) = G, v

GAc,p b s1=Gi,h1 G A, th b sy => Ga,ytha

G, b Fif ¢ 5152 = G1 V Ga, AZ.[(G1 Abm) V (G2 A)...]
where 11 () = [bm ... bols, Y2(x) = [b), ... bp]s

G, - if c s skip;if ¢ s skip = G, v’
G, F while ¢ s = G/, 1/

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 7 /10

Structures and Pointers

@ The extension with structures is rather straightforward.
@ Translation of pointers is more involved and maintains path sensitivity
for heap locations by introducing guarded locations.

» A pointer points to a set of guarded locations.
> A guarded location is a location associated with a boolean guard that
represents the condition under which the points-to relationship holds.

if (¢)p=&xz; //p:{(true,x)}
elsep=&y; //p:{(true,y)}
*p = 3; /] p:{(e;z), (mec,y)}

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 8 /10

Interprocedural Analysis

@ A common technique is inlining. However, inlining incurs exponential
blow-up, not practical for large software systems.
@ Saturn uses a bottom-up, summary-based interprocedural analysis.

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 9 /10

Experimental Results

@ Saturn can be instantiated into various error detection tools by
defining appropriate function summaries.

e E.g., memory leak detection, lock checking (e.g. double lock/unlock)

@ In Linux kernel (4.8 MLoC), Saturn found 179 lock-related errors with
a false positive rate of 40%.

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 10 / 10

