
AAA615: Formal Methods

Lecture 7 — SAT-based Program Analysis

Hakjoo Oh
2017 Fall

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 1 / 10

Bit-Level Static Analysis via Boolean Satisfiability

Finding bugs in low-level systems code is challenging due to
difficult-to-model language constructs such as pointers, bit-wise
operators, and type casts, which requires bit-level reasoning.

One successful approach is to encode program semantics at bit-level
and translate it to a boolean satisfiability formula, exploiting
impressive advances in solving boolean satisfiability.

References:
I A Tool for Checking ANSI-C Programs. TACAS 2004.
I Scalable Error Detection using Boolean Satisfiability. POPL 2005.

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 2 / 10

Saturn1

A static error detection tool based on boolean satisfiability.
I Yichen Xie and Alex Aiken. Scalable Error Detection using Boolean

Satisfiability. POPL 2005.

The analysis is path-sensitive, precise down to bit level, and models
pointers and heap data. Yet highly scalable thanks to modern SAT
solvers and various optimization techniques.

In particular, Saturn performs a bottom-up analysis, which computes
a summary of each analyzed function and reuses the summary when
the function is called later.

1SATisfiability-based failURe aNalysis
Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 3 / 10

A Low-Level Programming Language

A subset of the language that does not include structures and pointers:

τ → (n, signed | unsigned)
e → unknown(τ) | const(n, τ) | x | −e | !e | e1 ⊕ e2

| e1 band e2 | e1 lshift e2 | (τ)e | lifte(c, τ)
c → true | false | ¬c | e1 = e2 | c1 ∧ c2 | c1 ∨ c2 | liftc(e)
s → skip | x := e | assert(c) | if c s1 s2 | while c s | s1; s2

Representation:

β → [bn−1 . . . b0]s where s ∈ {signed, unsigned}
b → 0 | 1 | α | b1 ∧ b2 | b1 ∨ b2 | ¬b

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 4 / 10

Translation Rules (Expressions)

β = ψ(x)

ψ ` x E⇒ β

(n, s) = τ

ψ ` unknown(τ)
E⇒ [αn−1 . . . α0]s

αi fresh

ψ ` e E⇒ [bn−1 . . . b0]s′

τ = (m, s)
b′i =

 bi if 0 ≤ i < n
0 if s = unsigned ∧ n ≤ i < m
bn−1 if s = signed ∧ n ≤ i < m

ψ ` (τ) e
E⇒ [b′m−1 . . . b

′
0]s

(n, s) = τ ψ ` c C⇒ b

ψ ` lifte(c, τ)
E⇒ [0 . . . 0b]s

ψ ` e E⇒ [bn−1 . . . b0]s ψ ` e′ E⇒ [b′n−1 . . . b
′
0]s

ψ ` e band e′
E⇒ [bn−1 ∧ b′n−1 . . . b0 ∧ b′0]s

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 5 / 10

Translation Rules (Conditionals)

ψ ` true
C⇒ 1 ψ ` false

C⇒ 0

ψ ` c C⇒ b

ψ ` ¬c C⇒ ¬b

ψ ` e E⇒ [bn−1 . . . b0]s ψ ` e′ E⇒ [b′n−1 . . . b
′
0]s

ψ ` e1 = e2
C⇒

∧
i(bi ∧ b′i) ∨ (¬bi ∧ ¬b′i)

ψ ` c1
C⇒ b1 ψ ` c2

C⇒ b2

ψ ` c1 ∧ c2
C⇒ b1 ∧ b2

ψ ` c1
C⇒ b1 ψ ` c2

C⇒ b2

ψ ` c1 ∨ c2
C⇒ b1 ∨ b2

ψ ` e E⇒ [bn−1 . . . b0]s

ψ ` liftc(e)
C⇒

∨
i bi

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 6 / 10

Translation Rules (Statements)

ψ ` e E⇒ β

G, ψ ` x := e
S⇒ G, ψ[x 7→ β]

ψ ` c C⇒ b (G ∧ ¬b) unsatisfiable

G, ψ ` assert(c)
S⇒ G, ψ

G ∧ c, ψ ` s1
S⇒ G1, ψ1 G ∧ ¬c, ψ ` s2

S⇒ G2, ψ2

G, ψ ` if c s1 s2
S⇒ G1 ∨ G2, λx.[(G1 ∧ bm) ∨ (G2 ∧ b′m) . . .]

where ψ1(x) = [bm . . . b0]s, ψ2(x) = [b′m . . . b′0]s

G, ψ ` if c s skip; if c s skip
S⇒ G′, ψ′

G, ψ ` while c s
S⇒ G′, ψ′

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 7 / 10

Structures and Pointers

The extension with structures is rather straightforward.

Translation of pointers is more involved and maintains path sensitivity
for heap locations by introducing guarded locations.

I A pointer points to a set of guarded locations.
I A guarded location is a location associated with a boolean guard that

represents the condition under which the points-to relationship holds.

if (c) p = &x; // p : {(true, x)}
else p = &y; // p : {(true, y)}
∗p = 3; // p : {(c, x), (¬c, y)}

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 8 / 10

Interprocedural Analysis

A common technique is inlining. However, inlining incurs exponential
blow-up, not practical for large software systems.
Saturn uses a bottom-up, summary-based interprocedural analysis.

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 9 / 10

Experimental Results

Saturn can be instantiated into various error detection tools by
defining appropriate function summaries.

E.g., memory leak detection, lock checking (e.g. double lock/unlock)

In Linux kernel (4.8 MLoC), Saturn found 179 lock-related errors with
a false positive rate of 40%.

Hakjoo Oh AAA615 2017 Fall, Lecture 7 November 12, 2017 10 / 10

