AAA615: Formal Methods

Lecture 6 - Program Analysis

Hakjoo Oh

2017 Fall

Program Verification vs. Program Analysis

Essentially the same things with different trade-offs:

- Program verification
- Pros: powerful to prove properties
- Cons: hardly automated
- Program analysis
- Pros: fully automatic
- Cons: focus on rather weak properties

Contents

- Symbolic analysis
- concrete, non-terminating
- Interval analysis
- abstract, non-relational
- Octagon analysis
- abstract, relational

Program Representation

Control-flow graph $(\mathbb{C}, \rightarrow)$

- \mathbb{C} : the set of program points in the program
- $(\rightarrow) \subseteq \mathbb{C} \times \mathbb{C}$: the control-flow relation
- $c \rightarrow \boldsymbol{c}^{\prime}: c$ is a predecessor of \boldsymbol{c}^{\prime}
- Each control-flow edge $\boldsymbol{c} \rightarrow \boldsymbol{c}^{\prime}$ is associated with a command, denoted $\mathbf{c m d}\left(c \rightarrow c^{\prime}\right)$:

$$
c m d \rightarrow v:=e \mid \text { assume } c \mid c m d_{1} ; c m d_{2}
$$

Weakest Precondition

Weakest precondition transformer

$$
\mathbf{w p}: \text { FOL } \times \text { stmts } \rightarrow \text { FOL }
$$

computes the most general precondition of a given postcondition and program statement:

- $\boldsymbol{w p}(\boldsymbol{F}$, assume $\boldsymbol{c}) \Longleftrightarrow \boldsymbol{c} \rightarrow \boldsymbol{F}$
- $\boldsymbol{w p}(F[v], v:=e) \Longleftrightarrow F[e]$
$\bullet \mathbf{w p}\left(F, S_{1} ; \ldots ; S_{n}\right) \Longleftrightarrow \operatorname{wp}\left(\mathbf{w p}\left(F, S_{n}\right), S_{1} ; \ldots ; S_{n-1}\right)$

Strongest Postcondition

Strongest postcondition transformer

sp : FOL \times stmts \rightarrow FOL

computes the most specific postcondition of a given precondition and program statement:

- $\mathbf{s p}(\boldsymbol{F}$, assume $\boldsymbol{c}) \Longleftrightarrow \boldsymbol{c} \wedge \boldsymbol{F}$
- $\operatorname{sp}(F[\boldsymbol{v}], v:=e[v]) \Longleftrightarrow \exists \boldsymbol{v}^{0} \cdot \boldsymbol{v}=e\left[\boldsymbol{v}^{0}\right] \wedge F\left[\boldsymbol{v}^{0}\right]$
$\bullet \operatorname{sp}\left(F, S_{1} ; \ldots ; S_{n}\right) \Longleftrightarrow \operatorname{sp}\left(\operatorname{sp}\left(F, S_{1}\right), S_{2} ; \ldots ; S_{n}\right)$

Examples

$$
\begin{aligned}
& \operatorname{sp}(i \geq n, i:=i+k) \\
\Longleftrightarrow & \exists i^{0} . i=i^{0}+k \wedge i^{0} \geq n \\
\Longleftrightarrow & i-k \geq n
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sp}(i \geq n, \text { assume } k \geq 0 ; i:=i+k) \\
\Longleftrightarrow & \mathbf{s p}(\operatorname{sp}(i \geq n, \text { assume } k \geq 0), i:=i+k) \\
\Longleftrightarrow & \operatorname{sp}(i \geq n \wedge k \geq 0, i:=i+k) \\
\Longleftrightarrow & \exists i^{0} . i=i^{0}+k \wedge i^{0} \geq n \wedge k \geq 0 \\
\Longleftrightarrow & i-k \geq n \wedge k \geq 0
\end{aligned}
$$

Inductive Map

- The goal of static analysis is to find a map

$$
T: \mathbb{C} \rightarrow \mathrm{FOL}
$$

that stores inductive invariants for each program point and is implied by the precondition:

$$
F_{p r e} \Longrightarrow T\left(c_{0}\right)
$$

- If the result $\boldsymbol{T}\left(\boldsymbol{c}_{\boldsymbol{e x i t}}\right)$ implies the postcondition

$$
T\left(c_{e x i t}\right) \Longrightarrow F_{p o s t}
$$

the function obeys the specification.

Forward Symbolic Analysis Procedure

- Sets of reachable states are represented by formulas.
- Strongest postcondition (sp) executes statements over formulas.

$$
\begin{aligned}
& W:=\left\{c_{0}\right\} \\
& T\left(c_{0}\right):=F_{\text {pre }} \\
& T(c):=\perp \text { for } c \in \mathbb{C} \backslash\left\{c_{0}\right\} \\
& \text { while } W \neq \emptyset \\
& \quad c:=\text { Choose }(W) \\
& W:=W \backslash\{c\} \\
& \text { foreach } c^{\prime} \in \operatorname{succ}(c) \\
& \quad F:=\operatorname{sp}\left(T(c), \operatorname{cmd}\left(c \rightarrow c^{\prime}\right)\right) \\
& \quad \text { if } F \nRightarrow T\left(c^{\prime}\right) \\
& \quad T\left(c^{\prime}\right):=T\left(c^{\prime}\right) \vee F \\
& \quad W:=W \cup\left\{c^{\prime}\right\} \\
& \text { done } \\
& \text { done }
\end{aligned}
$$

Issues

- The implication checking

$$
F \nRightarrow T\left(c^{\prime}\right)
$$

is undecidable in general. The underlying logic must be restricted to a decidable theory or fragment.

- Nontermination of loops.

Example

$$
\begin{aligned}
& @ c_{0}: i=0 \wedge n \geq 0 ; \\
& \text { while @ } c_{1} \\
& (i<n) \text { \{ } \\
& i:=i+1 ; \\
& \text { \} } \\
& @ c_{2}: i=n
\end{aligned}
$$

Initial map:

$$
\begin{aligned}
& T\left(c_{0}\right) \Longleftrightarrow i=0 \wedge n \geq 0 \\
& T\left(c_{1}\right) \Longleftrightarrow \perp
\end{aligned}
$$

Following basic path $c_{0} \rightarrow c_{1}$:

$$
\begin{aligned}
& T\left(c_{0}\right) \Longleftrightarrow i=0 \wedge n \geq 0 \\
& T\left(c_{1}\right) \Longleftrightarrow T\left(c_{1}\right) \vee i=0 \wedge n \geq 0 \Longleftrightarrow i=0 \wedge n \geq 0
\end{aligned}
$$

Example

Following basic path $c_{1} \rightarrow c_{1}$:
(1) Symbolic execution:

$$
\begin{aligned}
& \operatorname{sp}\left(T\left(c_{1}\right), \text { assume } i<n ; i:=i+1\right) \\
\Longleftrightarrow & \mathbf{s p}(i=0 \wedge n \geq 0, \text { assume } i<n ; i:=i+1) \\
\Longleftrightarrow & \mathbf{s p}(i<n \wedge i=0 \wedge n \geq 0, i:=i+1) \\
\Longleftrightarrow & \exists i^{0} . i=i^{0}+1 \wedge i^{0}<n \wedge i^{0}=0 \wedge n \geq 0 \\
\Longleftrightarrow & i=1 \wedge n \geq 1
\end{aligned}
$$

(2) Checking the implication:

$$
i=1 \wedge n \geq 1 \nRightarrow i=0 \wedge n \geq 0
$$

(3) Join the result:

$$
T\left(c_{1}\right) \Longleftrightarrow(i=0 \wedge n \geq 0) \vee(i=1 \wedge n \geq 1)
$$

Example

At the end of the next iteration:

$$
T\left(c_{1}\right) \Longleftrightarrow(i=0 \wedge n \geq 0) \vee(i=1 \wedge n \geq 1) \vee(i=2 \wedge n \geq 2)
$$

and at the end of \boldsymbol{k} th iteration:
$T\left(c_{1}\right) \Longleftrightarrow(i=0 \wedge n \geq 0) \vee(i=1 \wedge n \geq 1) \vee \cdots \vee(i=k \wedge n \geq k)$
This process does not terminate because
$(i=k \wedge n \geq k) \nRightarrow(i=0 \wedge n \geq 0) \vee \cdots \vee(i=k-1 \wedge n \geq k-1)$
for any \boldsymbol{k}. However,

$$
\mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{n}
$$

is an obvious inductive invariant that proves the postcondition:

$$
0 \leq i \leq n \wedge i \geq n \Longrightarrow i=n
$$

Addressing the Issues

- Unsound approach, e.g., unrolling loops for a fixed number
- incapable of verifying properties but still useful for bug-finding
- Sound approach ensures correctness but cannot be complete.
- Abstract interpretation is a general method for obtaining sound and computable static analysis.
- abstract domain
- abstract semantics
- widening and narrowing

1. Choose an Abstract Domain

The abstract domain \boldsymbol{D} is a restricted subset of formulas; each member $\boldsymbol{d} \in \boldsymbol{D}$ represents a set of program states: e.g.,

- In the interval abstract domain $\boldsymbol{D}_{\boldsymbol{I}}$, a domain element $\boldsymbol{d} \in \boldsymbol{D}_{\boldsymbol{I}}$ is a conjunction of constraints of the forms

$$
\boldsymbol{c} \leq \boldsymbol{x} \quad \text { and } \quad \boldsymbol{x} \leq \boldsymbol{c}
$$

- In the octagon abstract domain $\boldsymbol{D}_{\boldsymbol{O}}$, a domain element $\boldsymbol{d} \in \boldsymbol{D}_{\boldsymbol{I}}$ is a conjunction of constraints of the forms

$$
\pm x_{1} \pm x_{2} \leq c
$$

- In the Karr's abstract domain $\boldsymbol{D}_{\boldsymbol{K}}$, a domain element $\boldsymbol{d} \in \boldsymbol{D}_{\boldsymbol{K}}$ is a conjunction of constraints of the forms

$$
c_{0}+c_{1} x_{1}+\cdots c_{n} x_{n}=0
$$

2. Construct an Abstraction Function

The abstraction function:

$$
\alpha_{D}: \mathrm{FOL} \rightarrow D
$$

such that $F \Longrightarrow \alpha_{D}(F)$. For example, the assertion

$$
F: i=0 \wedge n \geq 0
$$

can be represented in the interval abstract domain by

$$
\alpha_{D_{I}}(F): 0 \leq i \wedge i \leq 0 \wedge 0 \leq n
$$

and in Karr's abstract domain by

$$
\alpha_{D_{K}}(F): i=0
$$

3. Define an Abstract Strongest Postcondition

Define an abstract strongest postcondition operator $\widehat{\mathbf{s p}}_{D}$, also known as abstract semantics or transfer function:

$$
\widehat{\mathbf{s p}}_{D}: D \times \text { stmts } \rightarrow D
$$

such that $\widehat{\mathbf{s p}}_{D}$ over-approximates $\mathbf{s p}$:

$$
\mathrm{sp}(F, S) \Longrightarrow \widehat{\mathbf{s p}}_{D}(F, S)
$$

3. Define an Abstract Strongest Postcondition

For example, the strongest postcondition for assume:

$$
\mathbf{s p}(\boldsymbol{F}, \text { assume } \boldsymbol{c}) \Longleftrightarrow \boldsymbol{c} \wedge \boldsymbol{F}
$$

is abstracted by

$$
\widehat{\mathbf{s p}}(\boldsymbol{F}, \text { assume } \boldsymbol{c}) \Longleftrightarrow \alpha_{D}(c) \sqcap_{D} F
$$

where abstract conjunction $\sqcap_{D}: D \times D \rightarrow D$ is such that

$$
F_{1} \wedge F_{2} \Longrightarrow F_{1} \sqcap_{D} F_{2} .
$$

When the domain \boldsymbol{D} consists of conjunctions of constraints of some form (e.g. interval domain), Π_{D} is exact and equals to the usual conjunction \wedge :

$$
F_{1} \wedge F_{2} \Longleftrightarrow F_{1} \sqcap_{D} F_{2} .
$$

4. Define Abstract Disjunction and Implication Checking

- Define abstract disjunction $\sqcup_{D}: D \times D \rightarrow D$ such that

$$
F_{1} \vee F_{2} \Longrightarrow F_{1} \sqcup_{D} F_{2}
$$

Usually abstract disjunction is not exact.

- With a proper abstract domain, the implication checking

$$
F \nRightarrow T\left(c_{k}\right)
$$

can be performed by a custom solver without querying a full SMT solver.

5. Define Widening

A widening operator ∇_{D} is a binary operator

$$
\nabla_{D}: D \times D \rightarrow D
$$

such that

$$
F_{1} \vee F_{2} \Longrightarrow F_{1} \nabla_{D} F_{2}
$$

and the following property holds. For all increasing sequence $\boldsymbol{F}_{1}, \boldsymbol{F}_{2}, \boldsymbol{F}_{3}, \ldots$ (i.e. $\boldsymbol{F}_{\boldsymbol{i}} \Longrightarrow \boldsymbol{F}_{i+1}$ for all \boldsymbol{i}), the sequence $\boldsymbol{G}_{\boldsymbol{i}}$ defined by

$$
\boldsymbol{G}_{i}= \begin{cases}\boldsymbol{F}_{\mathbf{1}} & \text { if } i=1 \\ \boldsymbol{G}_{i-1} \nabla_{D} \boldsymbol{F}_{\boldsymbol{i}} & \text { if } i>1\end{cases}
$$

eventually converges:
for some k and for all $i \geq k, G_{i} \Longleftrightarrow G_{i+1}$.

Abstract Interpretation Algorithm

$$
\begin{aligned}
& W:=\left\{c_{0}\right\} \\
& T\left(c_{0}\right):=\alpha_{D}\left(F_{\text {pre }}\right) \\
& T(c):=\perp \text { for } c \in \mathbb{C} \backslash\left\{c_{0}\right\} \\
& \text { while } W \neq \emptyset \\
& c:=\text { Choose }(W) \\
& W:=W \backslash\{c\} \\
& \text { foreach } c^{\prime} \in \operatorname{succ}(c) \\
& F:=\widehat{\text { sp }}\left(T(c), \operatorname{cmd}\left(c \rightarrow c^{\prime}\right)\right) \\
& \text { if } \underset{\neq T\left(c^{\prime}\right)}{ } \quad \text { if widening is needed } \\
& \quad T\left(c^{\prime}\right):=T\left(c^{\prime}\right) \nabla\left(T\left(c^{\prime}\right) \sqcup_{D} F\right) \\
& \quad \text { else } \quad T\left(c^{\prime}\right):=T\left(c^{\prime}\right) \sqcup_{D} F \\
& \quad W:=W \cup\left\{c^{\prime}\right\} \\
& \text { done } \\
& \text { done }
\end{aligned}
$$

Interval Analysis

The interval analysis uses the abstract domain D_{I} that includes \perp, \top and conjunctions of constraints of the form

$$
\boldsymbol{c} \leq \boldsymbol{v} \quad \text { and } \quad \boldsymbol{v} \leq \boldsymbol{c}
$$

Equivalently, interval analysis computes intervals of program variables:

$$
\{\perp\} \cup\{[a, b] \mid a \in \mathbb{Z} \cup\{-\infty\}, b \in \mathbb{Z} \cup\{+\infty\}, a \leq b\}
$$

Consider the simple set of commands:

$$
\begin{aligned}
\text { cmd } & \rightarrow \text { skip }|x:=e| x<n \\
e & \rightarrow n|x| e+e|e-e| e * e \mid e / e
\end{aligned}
$$

How Interval Analysis Works

$\left.\left.\begin{array}{|c|l|}\hline \text { Node } & \text { Result } \\ \hline \mathbf{1} & \begin{array}{l}x \mapsto \perp \\ y\end{array}>\perp\end{array} \right\rvert\, \begin{array}{l}x \mapsto[\mathbf{0}, \mathbf{0}] \\ y \mapsto[\mathbf{0}, \mathbf{0}]\end{array}\right]$

Forward Propagation

Node	initial	1	2	3	10	11	k	∞
1	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$
2	$y \mapsto \perp$	$\begin{aligned} x & \mapsto[0,0] \\ y & \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$
3		$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[0,1] \\ & y \mapsto[0,1] \end{aligned}$	$\begin{aligned} & x \mapsto[0,2] \\ & y \mapsto[0,2] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,9] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,10] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0, k-1] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$
4		$\begin{aligned} & x \mapsto[1,1] \\ & y \mapsto[0,0] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[1,2] \\ & y \mapsto[0,1] \end{aligned}$	$\begin{aligned} & x \mapsto[1,3] \\ & y \mapsto[0,2] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,9] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,10] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0, k-1] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$
5	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[1,1] \\ & y \mapsto[1,1] \end{aligned}$	$\begin{aligned} & x \mapsto[1,2] \\ & y \mapsto[1,2] \end{aligned}$	$\begin{aligned} & x \mapsto[1,3] \\ & y \mapsto[1,3] \end{aligned}$	$\begin{aligned} & \mid x \mapsto[1,10] \\ & y \mapsto[1,10] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,11] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1, k] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$
6	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto[0,1] \end{aligned}$	$x \mapsto \perp$ $y \mapsto[0,2]$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,9] \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,10] \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0, k-1] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,+\infty] \end{aligned}$

Forward Propagation Widening

Node	initial	1	2	3
1	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$
2	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{0}, \mathbf{0}] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{0}, \mathbf{0}] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{0}, \mathbf{0}] \\ & y \mapsto[0,0] \end{aligned}$
3	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{0}, \mathbf{0}] \\ & \boldsymbol{y} \mapsto[\mathbf{0}, \mathbf{0}] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$
4	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[1, \mathbf{1}] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$
5	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[1,1] \\ & y \mapsto[1,1] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \\ & \hline \end{aligned}$
6	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} x & \mapsto \perp \\ y & \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[10,+\infty] \\ & y \mapsto[0,+\infty] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[10,+\infty] \\ & y \mapsto[0,+\infty] \end{aligned}$

Forward Propagation with Narrowing

Node	initial	1	2
1	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$
2	$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{0 , 0} \mathbf{0} \\ & \boldsymbol{y} \mapsto[\mathbf{0}, \mathbf{0}] \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{0}, \mathbf{0}] \\ & \boldsymbol{y} \mapsto[\mathbf{0}, \mathbf{0}] \end{aligned}$
3	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$
4	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$
5	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$
6	$\begin{aligned} & x \mapsto[10,+\infty] \\ & y \mapsto[0,+\infty] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,+\infty] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,+\infty] \\ & \hline \end{aligned}$

Interval Domain

- Definition:

$$
\mathbb{I}=\{\perp\} \cup\{[l, u] \mid l, u \in \mathbb{Z} \cup\{-\infty,+\infty\} \wedge l \leq u\}
$$

- An interval is an abstraction of a set of integers:
- $\gamma([1,5])=$
- $\gamma([3,3])=$
- $\gamma([0,+\infty])=$
- $\gamma([-\infty, 7])=$
- $\gamma(\perp)=$

Concretization/Abstraction Functions

- $\gamma: \mathbb{I} \rightarrow \wp(\mathbb{Z})$ is called concretization function:

$$
\begin{aligned}
\gamma(\perp) & =\emptyset \\
\gamma([a, b]) & =\{z \in \mathbb{Z} \mid a \leq z \leq b\}
\end{aligned}
$$

- $\alpha: \wp(\mathbb{Z}) \rightarrow \mathbb{I}$ is abstraction function:
- $\alpha(\{2\})=$
- $\alpha(\{-1,0,1,2,3\})=$
- $\alpha(\{-1,3\})=$
- $\alpha(\{1,2, \ldots\})=$
- $\alpha(\emptyset)=$
- $\alpha(\mathbb{Z})=$

$$
\begin{aligned}
\alpha(\emptyset) & =\perp \\
\alpha(S) & =[\min (S), \max (S)]
\end{aligned}
$$

Partial Order $(\sqsubseteq) \subseteq \mathbb{I} \times \mathbb{I}$

- $\perp \sqsubseteq i$ for all $i \in \mathbb{I}$
- $i \sqsubseteq[-\infty,+\infty]$ for all $i \in \mathbb{I}$.
- $[1,3] \sqsubseteq[0,4]$
- $[1,3] \mathbb{Z}[0,2]$

Definition:

$$
i_{1} \sqsubseteq i_{2} \text { iff }\left\{\begin{array}{l}
i_{1}=\perp \vee \\
i_{2}=[-\infty,+\infty] \vee \\
\left(i_{1}=\left[l_{1}, u_{1}\right] \wedge i_{2}=\left[l_{2}, u_{2}\right] \wedge l_{1} \geq l_{2} \wedge u_{1} \leq u_{2}\right)
\end{array}\right.
$$

Partial Order

Join \sqcup and Meet \sqcap Operators

- The join operator computes the least upper bound:
- $[1,3] \sqcup[2,4]=[1,4]$
- $[1,3] \sqcup[7,9]=[1,9]$
- The conditions of $i_{1} \sqcup i_{2}$:
(1) $i_{1} \sqsubseteq i_{1} \sqcup i_{2} \wedge i_{2} \sqsubseteq i_{1} \sqcup i_{2}$
(2) $\forall i . i_{1} \sqsubseteq i \wedge i_{2} \sqsubseteq i \Longrightarrow i_{1} \sqcup i_{2} \sqsubseteq i$
- Definition:

$$
\begin{aligned}
\perp \sqcup i & =i \\
i \sqcup \perp & =i \\
{\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right] } & =\left[\min \left(l_{1}, l_{2}\right), \max \left(l_{1}, l_{2}\right)\right]
\end{aligned}
$$

Join \sqcup and Meet \sqcap Operators

- The meet operator computes the greatest lower bound:
- $[1,3] \sqcap[2,4]=[2,3]$
- $[1,3] \sqcap[7,9]=\perp$
- The conditions of $\boldsymbol{i}_{1} \sqcap i_{2}$:
(1) $i_{1} \sqsubseteq i_{1} \sqcup i_{2} \wedge i_{2} \sqsubseteq i_{1} \sqcup i_{2}$
(2) $\forall i . i \sqsubseteq i_{1} \wedge i \sqsubseteq i_{2} \Longrightarrow i \sqsubseteq i_{1} \sqcap i_{2}$
- Definition:

$$
\begin{array}{rll}
\perp \sqcap i & =\perp & \\
i \sqcap \perp & =\perp & \max \left(l_{1}, l_{2}\right)>\min \left(l_{1}, l_{2}\right) \\
{\left[l_{1}, u_{1}\right] \sqcap\left[l_{2}, u_{2}\right]} & =\left\{\begin{array}{ll}
\perp &
\end{array}\right)
\end{array}
$$

Widening and Narrowing

A simple widening operator for the Interval domain:

$$
\begin{array}{rccl}
{[a, b]} & \nabla & \perp & =[a, b] \\
\perp & \nabla & {[c, d]} & =[c, d] \\
{[a, b]} & \nabla & {[c, d]} & =[(c<a ?-\infty: a),(b<d ?+\infty: b)]
\end{array}
$$

A simple narrowing operator:

$$
\begin{array}{rlll}
{[a, b]} & \triangle & \perp & =\perp \\
\perp & \triangle & {[c, d]} & =\perp \\
{[a, b]} & \triangle & {[c, d]} & =[(a=-\infty ? c: a),(b=+\infty ? d: b)]
\end{array}
$$

Abstract States

$$
\mathbb{S}=\operatorname{Var} \rightarrow \mathbb{I}
$$

Partial order, join, meet, widening, and narrowing are lifted pointwise:

$$
\begin{aligned}
s_{1} & \sqsubseteq s_{2} \text { iff } \forall x \in \operatorname{Var} . s_{1}(x) \sqsubseteq s_{2}(x) \\
s_{1} \sqcup s_{2} & =\lambda x . s_{1}(x) \sqcup s_{2}(x) \\
s_{1} \sqcap s_{2} & =\lambda x . s_{1}(x) \sqcap s_{2}(x) \\
s_{1} \nabla s_{2} & =\lambda x . s_{1}(x) \nabla s_{2}(x) \\
s_{1} \triangle s_{2} & =\lambda x . s_{1}(x) \triangle s_{2}(x)
\end{aligned}
$$

The Abstract Domain

$$
\mathbb{D}=\mathbb{C} \rightarrow \mathbb{S}
$$

Partial order, join, meet, widening, and narrowing are lifted pointwise:

$$
\begin{gathered}
d_{1} \sqsubseteq d_{2} \text { iff } \forall c \in \mathbb{C} . d_{1}(x) \sqsubseteq d_{2}(x) \\
d_{1} \sqcup d_{2}=\lambda c . d_{1}(c) \sqcup d_{2}(c) \\
d_{1} \sqcap d_{2}=\lambda c \cdot d_{1}(c) \sqcap d_{2}(c) \\
d_{1} \nabla d_{2}=\lambda c . d_{1}(c) \nabla d_{2}(c) \\
d_{1} \triangle d_{2}=\lambda c . d_{1}(c) \triangle d_{2}(c)
\end{gathered}
$$

Abstract Semantics of Expressions

$$
\begin{aligned}
& e \rightarrow n|x| e+e|e-e| e * e \mid e / e \\
& e v a l: e \times \mathbb{S} \rightarrow \mathbb{I} \\
& \operatorname{eval}(n, s)=[n, n] \\
& \operatorname{eval}(x, s)=s(x) \\
& \operatorname{eval}\left(e_{1}+e_{2}, s\right)=\operatorname{eval}\left(e_{1}, s\right) \hat{+} \operatorname{eval}\left(e_{2}, s\right) \\
& \operatorname{eval}\left(e_{1}-e_{2}, s\right)=\operatorname{eval}\left(e_{1}, s\right) \hat{\sim} \operatorname{eval}\left(e_{2}, s\right) \\
& \operatorname{eval}\left(e_{1} * e_{2}, s\right)=\operatorname{eval}\left(e_{1}, s\right) \hat{*} \operatorname{eval}\left(e_{2}, s\right) \\
& \operatorname{eval}\left(e_{1} / e_{2}, s\right)=\operatorname{eval}\left(e_{1}, s\right) \hat{/} \operatorname{eval}\left(e_{2}, s\right)
\end{aligned}
$$

Abstract Binary Operators

$$
\begin{aligned}
i_{1} \hat{+} i_{2} & =\alpha\left(\left\{z_{1}+z_{2} \mid z_{1} \in \gamma\left(i_{1}\right) \wedge z_{2} \in \gamma\left(i_{2}\right)\right\}\right) \\
i_{1} \hat{-} i_{2} & =\alpha\left(\left\{z_{1}-z_{2} \mid z_{1} \in \gamma\left(i_{1}\right) \wedge z_{2} \in \gamma\left(i_{2}\right)\right\}\right) \\
i_{1} \hat{*} i_{2} & =\alpha\left(\left\{z_{1} * z_{2} \mid z_{1} \in \gamma\left(i_{1}\right) \wedge z_{2} \in \gamma\left(i_{2}\right)\right\}\right) \\
i_{1} \hat{/} i_{2} & =\alpha\left(\left\{z_{1} / z_{2} \mid z_{1} \in \gamma\left(i_{1}\right) \wedge z_{2} \in \gamma\left(i_{2}\right)\right\}\right)
\end{aligned}
$$

Implementable version:

$$
\begin{aligned}
\perp \hat{+} i & = \\
i \hat{+} \perp & = \\
{\left[l_{1}, u_{1}\right] \hat{+}\left[l_{2}, u_{2}\right] } & = \\
{\left[l_{1}, u_{1}\right] \hat{-}\left[l_{2}, u_{2}\right] } & = \\
{\left[l_{1}, u_{1}\right] \hat{*}\left[l_{2}, u_{2}\right] } & = \\
{\left[l_{1}, u_{1}\right] /\left[l_{2}, u_{2}\right] } & =
\end{aligned}
$$

Abstract Execution of Commands

$$
f_{c}(s)= \begin{cases}s & f_{c}: \mathbb{S} \rightarrow \mathbb{S} \\ s & c=s k i p \\ {[x \mapsto e v a l(e, s)] s} & c=x:=e \\ {[x \mapsto s(x) \sqcap[-\infty, n-1]] s} & c=x<n\end{cases}
$$

Forward Propagation with Widening

$$
\begin{aligned}
& W:=\left\{c_{0}\right\} \\
& T\left(c_{0}\right):=\alpha_{D}\left(F_{p r e}\right) \\
& T(c):=\perp \text { for } c \in \mathbb{C} \backslash\left\{c_{0}\right\} \\
& \text { while } W \neq \emptyset \\
& \quad c:=\operatorname{Choose}(W) \\
& W:=W \backslash\{c\} \\
& \text { foreach } c^{\prime} \in \operatorname{succ}(c) \\
& \quad s:=f_{\text {cmd }\left(c \rightarrow c^{\prime}\right)}(T(c)) \\
& \text { if } s \nsubseteq T\left(c^{\prime}\right) \\
& \quad \text { if } c^{\prime} \text { is a head of a flow cycle } \\
& T\left(c^{\prime}\right):=T\left(c^{\prime}\right) \nabla\left(T\left(c^{\prime}\right) \sqcup_{D} s\right) \\
& \quad \text { else } \\
& \quad T\left(c^{\prime}\right):=T\left(c^{\prime}\right) \sqcup_{D} F \\
& \quad W:=W \cup\left\{c^{\prime}\right\} \\
& \text { done } \\
& \text { done }
\end{aligned}
$$

Forward Propagation with Narrowing

$W:=\mathbb{C}$
$T:=$ result from widening phase while $W \neq \emptyset$
$c:=$ choose (\boldsymbol{W})
$W:=W \backslash\{c\}$
foreach $c^{\prime} \in \operatorname{succ}(c)$
$s:=f_{\text {cmd }\left(c \rightarrow c^{\prime}\right)}(T(c))$
if $T\left(c^{\prime}\right) \mathbb{Z}$
$T\left(c^{\prime}\right):=T\left(c^{\prime}\right) \Delta s$ $W:=W \cup\left\{c^{\prime}\right\}$
done

Numerical Abstract Domains

Infer numerical properties of program variables: e.g.,

- division by zero,
- array index out of bounds,
- integer overflow, etc.

Well-known numerical domains:

- interval domain: $\boldsymbol{x} \in[\boldsymbol{l}, \boldsymbol{u}]$
- octagon domain: $\pm \boldsymbol{x} \pm \boldsymbol{y} \leq \boldsymbol{c}$
- polyhedron domain (affine inequalities): $a_{1} x_{1}+\cdots+a_{n} x_{n} \leq c$
- Karr's domain (affine equalities): $a_{1} x_{1}+\cdots+a_{n} x_{n}=c$
- congruence domain: $\boldsymbol{x} \in \boldsymbol{a} \mathbb{Z}+\boldsymbol{b}$

The octagon domain is a restriction of the polyhedron domain where each constraint involves at most two variables and unit coefficients.

Interval vs. Octagon

```
i = 0;
p = 0;
```

while (i<12) \{
$i=i+1 ;$
$\mathrm{p}=\mathrm{p}+1 ;$
\}
assert(i==p)

Interval analysis

i	$[12,12]$
p	$[0,+\infty]$

Octagon analysis

i	$[12,12]$
p	$[12,12]$
$p-i$	$[0,0]$
$p+i$	$[24,24]$

Example

Example

Example

Example

Example

Abstract Domain for Difference Constraints

We consider a restriction of the Octagon domain, which is able to discover invariants of the form

$$
\boldsymbol{x}-\boldsymbol{y} \leq \boldsymbol{c} \quad \text { and } \quad \pm \boldsymbol{x} \leq \boldsymbol{c}
$$

where $\boldsymbol{x}, \boldsymbol{y}$ are program variables and \boldsymbol{c} is an integer. Reference:

- Antoine Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO 2001.

Difference Constraints

- Let $\mathcal{V}=\left\{\boldsymbol{v}_{\boldsymbol{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ be the set of program variables and \mathbb{I} be the set of integers.
- We are interested in constraints of the forms

$$
v_{j}-v_{i} \leq c, \quad v_{i} \leq c, \quad v_{i} \geq c
$$

- By fixing $\boldsymbol{v}_{\mathbf{1}}$ to be the constant $\mathbf{0}$, we can only consider potential/difference constraints of the form

$$
\boldsymbol{v}_{j}-\boldsymbol{v}_{i} \leq c
$$

since $\boldsymbol{v}_{\boldsymbol{i}} \leq \boldsymbol{c}$ and $\boldsymbol{v}_{\boldsymbol{i}} \geq \boldsymbol{c}$ can be rewritten by $\boldsymbol{v}_{\boldsymbol{i}}-\boldsymbol{v}_{\boldsymbol{1}} \leq \boldsymbol{c}$ and $\boldsymbol{v}_{\boldsymbol{1}}-\boldsymbol{v}_{\boldsymbol{i}} \leq-\boldsymbol{c}$, respectively.

- \mathbb{I} is extended to $\overline{\mathbb{I}}=\mathbb{I} \cup\{+\infty\}$.

Difference-Bound Matrices

- A set C of potential constraints over \mathcal{V} can be represented by a $\boldsymbol{n} \times \boldsymbol{n}$ difference-bound matrix:

$$
m_{i j}= \begin{cases}c & \text { if }\left(v_{j}-v_{i} \leq c\right) \in C \\ +\infty & \text { o.w. }\end{cases}
$$

- A DBM can be represented by a weighted $\operatorname{graph} \mathcal{G}=(\mathcal{V}, \mathcal{A}, \boldsymbol{w})$, where $\mathcal{A} \subseteq \mathcal{V} \times \mathcal{V}$ and $\boldsymbol{w} \in \mathcal{A} \rightarrow \mathbb{I}$:

$$
\begin{cases}\left(v_{i}, v_{j}\right) \notin \mathcal{A} & \text { if } m_{i j}=+\infty \\ \left(v_{i}, v_{j}\right) \in \mathcal{A} \text { and } w\left(v_{i}, v_{j}\right)=m_{i j} & \text { if } m_{i j} \neq+\infty\end{cases}
$$

- A path $\left\langle\boldsymbol{v}_{\boldsymbol{i}_{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{i}_{\boldsymbol{k}}}\right\rangle$ in \mathcal{G} is a cycle if $\boldsymbol{i}_{\boldsymbol{1}}=\boldsymbol{i}_{\boldsymbol{k}}$.

Domain of DBMs

- The \mathcal{V}-domain, denoted $\boldsymbol{D}(\boldsymbol{m})$, of a DBM \boldsymbol{m} is the set of points in \mathbb{I}^{n} that satisfy all constraints in m :

$$
D(m)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{I}^{n} \mid \forall i, j . x_{j}-x_{i} \leq m_{i j}\right\}
$$

- Because $\boldsymbol{v}_{\mathbf{1}}$ is fixed to $\mathbf{0}$, we are interested in $\boldsymbol{v}_{\boldsymbol{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$. The \mathcal{V}^{0}-domain, denoted $D^{0}(m)$, of a DBM m is defined by

$$
D^{0}(m)=\left\{\left(x_{2}, \ldots, x_{n}\right) \in \mathbb{I}^{n-1} \mid\left(0, x_{2}, \ldots, x_{n}\right) \in D(m)\right\}
$$

Example

(c)

(d)

(e)

Partial Order

- The order between DBMs is defined as a point-wise extension of \leq on $\overline{\mathbb{I}}$:

$$
m \sqsubseteq n \Longleftrightarrow \forall i, j . m_{i j} \leq n_{i j}
$$

- We have $m \sqsubseteq n \Longrightarrow D^{0}(m) \subseteq D^{0}(n)$ but the converse is not true. For example, two different DBMs can represent the same domain (i.e. $D^{0}(m)=D^{0}(n) \nRightarrow m=n$):

(a) | | v_{1} | v_{2} | v_{3} |
| :---: | :---: | :---: | :---: |
| v_{1} | $+\infty$ | 4 | 3 |
| v_{2} | -1 | $+\infty$ | $+\infty$ |
| v_{3} | -1 | 1 | $+\infty$ |

(b) | | v_{1} | v_{2} | v_{3} |
| :---: | :---: | :---: | :---: |
| v_{1} | $\mathbf{0}$ | $\mathbf{5}$ | 3 |
| v_{2} | -1 | $+\infty$ | $+\infty$ |
| v_{3} | -1 | 1 | $+\infty$ |

(c)

	v_{1}	v_{2}	v_{3}
v_{1}	$\mathbf{0}$	4	3
v_{2}	-1	$\mathbf{0}$	$+\infty$
v_{3}	-1	1	$\mathbf{0}$

- However, there is a normal form for any DBM and an algorithm to find it:

$$
D^{0}(m)=D^{0}(n) \Longrightarrow m^{*}=n^{*}
$$

Emptiness Testing

Deciding unsatisfiability of potential constraints:
Theorem
A DBM has an empty \mathcal{V}^{0}-domain iff there exists, in its potential graph, a cycle with a strictly negative total weight.

Checking for cycles with a strictly negative weight can be done by running Bellman-Ford algorithm, which runs in $O\left(n^{3}\right)$.

Closure and Normal Form

Let \boldsymbol{m} be a DBM with a non-empty \mathcal{V}^{0}-domain and \mathcal{G} its potential graph. Since \mathcal{G} has no cycle with a negative weight, we can compute its shortest path closure \mathcal{G}^{*}. The corresponding closed DBM \boldsymbol{m}^{*} is defined by

$$
\begin{aligned}
& m_{i i}^{*}=0 \\
& m_{i j}^{*}=
\end{aligned}
$$

$$
N-1
$$

$$
\min
$$

$$
\text { all path from } i \text { to } j
$$

$$
\sum_{k=1} m_{i_{k} i_{k+1}} \quad \text { if } i \neq j
$$

$$
\left\langle i=i_{1}, i_{2}, \ldots, i_{N}=j\right\rangle
$$

which can be computed with any shortest path algorithm (e.g. Floyd-Warshall, $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$).

Properties

- $D^{0}\left(m^{*}\right)=D^{0}(m)$
- $m^{*}=\min _{\sqsubseteq}\left\{n \mid D^{0}(n)=D^{0}(m)\right\}$ (normal form)

Equality and Inclusion Testing

To check equality and inclusion, DMBs must be closed beforehand:
Theorem
If \boldsymbol{m} and \boldsymbol{n} have non-empty \mathcal{V}^{0}-domain,
(1) $D^{0}(m)=D^{0}(n) \Longleftrightarrow m^{*}=n^{*}$
(2) $D^{0}(m) \subseteq D^{0}(n) \Longleftrightarrow m^{*} \sqsubseteq n$

Projection

Given a DBM \boldsymbol{m}, we can get the interval value of variable $\boldsymbol{v}_{\boldsymbol{k}}$ as follows:
Theorem
If \boldsymbol{m} has a non-empty \mathcal{V}^{0}-domain, then $\left.\pi\right|_{v_{k}}(\boldsymbol{m})=\left[-\boldsymbol{m}_{k 1}^{*}, \boldsymbol{m}_{1 k}^{*}\right]$.

Intersection and Least Upper Bound

Definition:

$$
\begin{aligned}
& (m \sqcap n)_{i j}=\min \left(m_{i j}, n_{i j}\right) \\
& (m \sqcup n)_{i j}=\max \left(m_{i j}, n_{i j}\right)
\end{aligned}
$$

Properties:

- $D^{0}(m \sqcap n)=D^{0}(m) \cap D^{0}(n)$ (exact)
- $D^{0}(m \sqcup n) \supseteq D^{0}(m) \cup D^{0}(n)$ (exact)
- $m^{*} \sqcup n^{*}=\min _{\sqsubseteq}\left\{o \mid D^{0}(o) \supseteq D^{0}(m) \cup D^{0}(n)\right\}$ (we have to close both arguments before join to get the most precise result)
- If \boldsymbol{m} and \boldsymbol{n} are closed, so is $\boldsymbol{m} \sqcup \boldsymbol{n}$.

Widening

A definition:

$$
(m \nabla n)_{i j}= \begin{cases}m_{i j} & \text { if } n_{i j} \leq m_{i j} \\ +\infty & \text { o.w. }\end{cases}
$$

Properties:

- $D^{0}(m \nabla n) \supseteq D^{0}(m) \cup D^{0}(n)$
- Finite chain property: For all \boldsymbol{m} and $\left(\boldsymbol{n}_{\boldsymbol{i}}\right)_{i}$, the chain $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)_{i}$

$$
\begin{aligned}
x_{0} & =\boldsymbol{m} \\
x_{i+1} & =x_{i} \nabla \boldsymbol{n}_{i}
\end{aligned}
$$

eventually stabilizes.

- To improve precision, we can close \boldsymbol{m} and $\boldsymbol{n}_{\boldsymbol{i}}$ but not $\boldsymbol{x}_{\boldsymbol{i}}$.

Transfer Functions

Example definitions:

- $\left(\llbracket v_{k}:=? \rrbracket(m)\right)_{i j}= \begin{cases}m_{i j} & \text { if } i \neq k \wedge j \neq k \\ 0 & \text { if } i=j=k \\ \infty & \text { o.w. }\end{cases}$
- $\left(\llbracket v_{j_{0}}-v_{i_{0}} \leq c \rrbracket(m)\right)_{i j}= \begin{cases}\min \left(m_{i j}, c\right) & \text { if } i=i_{0} \wedge j=j_{0} \\ m_{i j} & \text { o.w. }\end{cases}$
- $\llbracket v_{i_{0}}:=v_{j_{0}}+c \rrbracket(m)=\llbracket v_{j_{0}}-v_{i_{0}} \leq-c \rrbracket \circ \llbracket v_{i_{0}}-v_{j_{0}} \leq$ $c \rrbracket \circ \llbracket v_{i_{0}}:=? \rrbracket(m)\left(i_{0} \neq j_{0}\right)$
- Otherwise, $\llbracket g \rrbracket(m)=m$ and $\llbracket v_{i_{0}}:=e \rrbracket(m)=\llbracket v_{i_{0}}:=? \rrbracket(m)$

Program Analysis

Automated techniques for computing program invariants:

- Generic symbolic analysis procedure
- Abstraction examples: Interval and octagon analyses

