
AAA615: Formal Methods

Lecture 6 — Program Analysis

Hakjoo Oh
2017 Fall

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 1 / 61

Program Verification vs. Program Analysis

Essentially the same things with different trade-offs:

Program verification
I Pros: powerful to prove properties
I Cons: hardly automated

Program analysis
I Pros: fully automatic
I Cons: focus on rather weak properties

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 2 / 61

Contents

Symbolic analysis
I concrete, non-terminating

Interval analysis
I abstract, non-relational

Octagon analysis
I abstract, relational

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 3 / 61

Program Representation

Control-flow graph (C,→)

C: the set of program points in the program

(→) ⊆ C× C: the control-flow relation
I c→ c′: c is a predecessor of c′

Each control-flow edge c→ c′ is associated with a command,
denoted cmd(c→ c′):

cmd → v := e | assume c | cmd1; cmd2

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 4 / 61

Weakest Precondition

Weakest precondition transformer

wp : FOL× stmts→ FOL

computes the most general precondition of a given postcondition and
program statement:

wp(F, assume c) ⇐⇒ c→ F

wp(F [v], v := e) ⇐⇒ F [e]

wp(F, S1; . . . ;Sn) ⇐⇒ wp(wp(F, Sn), S1; . . . ;Sn−1)

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 5 / 61

Strongest Postcondition

Strongest postcondition transformer

sp : FOL× stmts→ FOL

computes the most specific postcondition of a given precondition and
program statement:

sp(F, assume c) ⇐⇒ c ∧ F
sp(F [v], v := e[v]) ⇐⇒ ∃v0. v = e[v0] ∧ F [v0]

sp(F, S1; . . . ;Sn) ⇐⇒ sp(sp(F, S1), S2; . . . ;Sn)

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 6 / 61

Examples

sp(i ≥ n, i := i+ k)

⇐⇒ ∃i0. i = i0 + k ∧ i0 ≥ n
⇐⇒ i− k ≥ n

sp(i ≥ n, assume k ≥ 0; i := i+ k)

⇐⇒ sp(sp(i ≥ n, assume k ≥ 0), i := i+ k)

⇐⇒ sp(i ≥ n ∧ k ≥ 0, i := i+ k)

⇐⇒ ∃i0. i = i0 + k ∧ i0 ≥ n ∧ k ≥ 0

⇐⇒ i− k ≥ n ∧ k ≥ 0

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 7 / 61

Inductive Map

The goal of static analysis is to find a map

T : C→ FOL

that stores inductive invariants for each program point and is implied
by the precondition:

Fpre =⇒ T (c0).

If the result T (cexit) implies the postcondition

T (cexit) =⇒ Fpost

the function obeys the specification.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 8 / 61

Forward Symbolic Analysis Procedure

Sets of reachable states are represented by formulas.

Strongest postcondition (sp) executes statements over formulas.

W := {c0}
T (c0) := Fpre

T (c) := ⊥ for c ∈ C \ {c0}
while W 6= ∅
c := Choose(W)
W := W \ {c}
foreach c′ ∈ succ(c)
F := sp(T (c), cmd(c→ c′))
if F 6=⇒ T (c′)
T (c′) := T (c′) ∨ F
W := W ∪ {c′}

done
done

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 9 / 61

Issues

The implication checking

F 6=⇒ T (c′)

is undecidable in general. The underlying logic must be restricted to a
decidable theory or fragment.

Nontermination of loops.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 10 / 61

Example

@c0 : i = 0 ∧ n ≥ 0;
while @c1
(i < n) {

i := i+ 1;
}
@c2 : i = n

Initial map:

T (c0) ⇐⇒ i = 0 ∧ n ≥ 0

T (c1) ⇐⇒ ⊥

Following basic path c0 → c1:

T (c0) ⇐⇒ i = 0 ∧ n ≥ 0

T (c1) ⇐⇒ T (c1) ∨ i = 0 ∧ n ≥ 0 ⇐⇒ i = 0 ∧ n ≥ 0

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 11 / 61

Example

Following basic path c1 → c1:

1 Symbolic execution:

sp(T (c1), assume i < n; i := i+ 1)

⇐⇒ sp(i = 0 ∧ n ≥ 0, assume i < n; i := i+ 1)

⇐⇒ sp(i < n ∧ i = 0 ∧ n ≥ 0, i := i+ 1)

⇐⇒ ∃i0. i = i0 + 1 ∧ i0 < n ∧ i0 = 0 ∧ n ≥ 0

⇐⇒ i = 1 ∧ n ≥ 1

2 Checking the implication:

i = 1 ∧ n ≥ 1 6=⇒ i = 0 ∧ n ≥ 0

3 Join the result:

T (c1) ⇐⇒ (i = 0 ∧ n ≥ 0) ∨ (i = 1 ∧ n ≥ 1)

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 12 / 61

Example

At the end of the next iteration:

T (c1) ⇐⇒ (i = 0 ∧ n ≥ 0) ∨ (i = 1 ∧ n ≥ 1) ∨ (i = 2 ∧ n ≥ 2)

and at the end of kth iteration:

T (c1) ⇐⇒ (i = 0∧n ≥ 0)∨(i = 1∧n ≥ 1)∨· · ·∨(i = k∧n ≥ k)

This process does not terminate because

(i = k∧n ≥ k) 6=⇒ (i = 0∧n ≥ 0)∨· · ·∨(i = k−1∧n ≥ k−1)

for any k. However,
0 ≤ i ≤ n

is an obvious inductive invariant that proves the postcondition:

0 ≤ i ≤ n ∧ i ≥ n =⇒ i = n.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 13 / 61

Addressing the Issues

Unsound approach, e.g., unrolling loops for a fixed number
I incapable of verifying properties but still useful for bug-finding

Sound approach ensures correctness but cannot be complete.

Abstract interpretation is a general method for obtaining sound and
computable static analysis.

I abstract domain
I abstract semantics
I widening and narrowing

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 14 / 61

1. Choose an Abstract Domain

The abstract domain D is a restricted subset of formulas; each member
d ∈ D represents a set of program states: e.g.,

In the interval abstract domain DI , a domain element d ∈ DI is a
conjunction of constraints of the forms

c ≤ x and x ≤ c

In the octagon abstract domain DO, a domain element d ∈ DI is a
conjunction of constraints of the forms

±x1 ± x2 ≤ c

In the Karr’s abstract domain DK , a domain element d ∈ DK is a
conjunction of constraints of the forms

c0 + c1x1 + · · · cnxn = 0

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 15 / 61

2. Construct an Abstraction Function

The abstraction function:

αD : FOL→ D

such that F =⇒ αD(F). For example, the assertion

F : i = 0 ∧ n ≥ 0

can be represented in the interval abstract domain by

αDI(F) : 0 ≤ i ∧ i ≤ 0 ∧ 0 ≤ n

and in Karr’s abstract domain by

αDK(F) : i = 0

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 16 / 61

3. Define an Abstract Strongest Postcondition

Define an abstract strongest postcondition operator ŝpD, also known as
abstract semantics or transfer function:

ŝpD : D × stmts→ D

such that ŝpD over-approximates sp:

sp(F, S) =⇒ ŝpD(F, S).

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 17 / 61

3. Define an Abstract Strongest Postcondition

For example, the strongest postcondition for assume:

sp(F, assume c) ⇐⇒ c ∧ F

is abstracted by

ŝp(F, assume c) ⇐⇒ αD(c) uD F

where abstract conjunction uD : D ×D → D is such that

F1 ∧ F2 =⇒ F1 uD F2.

When the domain D consists of conjunctions of constraints of some form
(e.g. interval domain), uD is exact and equals to the usual conjunction ∧:

F1 ∧ F2 ⇐⇒ F1 uD F2.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 18 / 61

4. Define Abstract Disjunction and Implication Checking

Define abstract disjunction tD : D ×D → D such that

F1 ∨ F2 =⇒ F1 tD F2

Usually abstract disjunction is not exact.

With a proper abstract domain, the implication checking

F 6=⇒ T (ck)

can be performed by a custom solver without querying a full SMT
solver.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 19 / 61

5. Define Widening

A widening operator 5D is a binary operator

5D : D ×D → D

such that
F1 ∨ F2 =⇒ F15D F2

and the following property holds. For all increasing sequence
F1, F2, F3, . . . (i.e. Fi =⇒ Fi+1 for all i), the sequence Gi defined by

Gi =

{
F1 if i = 1
Gi−15D Fi if i > 1

eventually converges:

for some k and for all i ≥ k,Gi ⇐⇒ Gi+1.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 20 / 61

Abstract Interpretation Algorithm

W := {c0}
T (c0) := αD(Fpre)
T (c) := ⊥ for c ∈ C \ {c0}
while W 6= ∅
c := Choose(W)
W := W \ {c}
foreach c′ ∈ succ(c)
F := ŝp(T (c), cmd(c→ c′))
if F 6=⇒ T (c′)

if widening is needed
T (c′) := T (c′)5 (T (c′) tD F)

else
T (c′) := T (c′) tD F

W := W ∪ {c′}
done

done
Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 21 / 61

Interval Analysis

The interval analysis uses the abstract domain DI that includes ⊥,> and
conjunctions of constraints of the form

c ≤ v and v ≤ c

Equivalently, interval analysis computes intervals of program variables:

{⊥} ∪ {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b}

Consider the simple set of commands:

cmd → skip | x := e | x < n
e → n | x | e+ e | e− e | e ∗ e | e/e

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 22 / 61

How Interval Analysis Works

Node Result

1
x 7→ ⊥
y 7→ ⊥

2
x 7→ [0, 0]
y 7→ [0, 0]

3
x 7→ [0, 9]
y 7→ [0,+∞]

4
x 7→ [1, 10]
y 7→ [0,+∞]

5
x 7→ [1, 10]
y 7→ [1,+∞]

6
x 7→ [10, 10]
y 7→ [0,+∞]

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 23 / 61

Forward Propagation

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 24 / 61

Forward Propagation Widening

Node initial 1 2 3

1
x 7→ ⊥
y 7→ ⊥

x 7→ ⊥
y 7→ ⊥

x 7→ ⊥
y 7→ ⊥

x 7→ ⊥
y 7→ ⊥

2
x 7→ ⊥
y 7→ ⊥

x 7→ [0, 0]
y 7→ [0, 0]

x 7→ [0, 0]
y 7→ [0, 0]

x 7→ [0, 0]
y 7→ [0, 0]

3
x 7→ ⊥
y 7→ ⊥

x 7→ [0, 0]
y 7→ [0, 0]

x 7→ [0, 9]
y 7→ [0,+∞]

x 7→ [0, 9]
y 7→ [0,+∞]

4
x 7→ ⊥
y 7→ ⊥

x 7→ [1, 1]
y 7→ [0, 0]

x 7→ [1, 10]
y 7→ [0,+∞]

x 7→ [1, 10]
y 7→ [0,+∞]

5
x 7→ ⊥
y 7→ ⊥

x 7→ [1, 1]
y 7→ [1, 1]

x 7→ [1, 10]
y 7→ [1,+∞]

x 7→ [1, 10]
y 7→ [1,+∞]

6
x 7→ ⊥
y 7→ ⊥

x 7→ ⊥
y 7→ [0, 0]

x 7→ [10,+∞]
y 7→ [0,+∞]

x 7→ [10,+∞]
y 7→ [0,+∞]

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 25 / 61

Forward Propagation with Narrowing

Node initial 1 2

1
x 7→ ⊥
y 7→ ⊥

x 7→ ⊥
y 7→ ⊥

x 7→ ⊥
y 7→ ⊥

2
x 7→ [0, 0]
y 7→ [0, 0]

x 7→ [0, 0]
y 7→ [0, 0]

x 7→ [0, 0]
y 7→ [0, 0]

3
x 7→ [0, 9]
y 7→ [0,+∞]

x 7→ [0, 9]
y 7→ [0,+∞]

x 7→ [0, 9]
y 7→ [0,+∞]

4
x 7→ [1, 10]
y 7→ [0,+∞]

x 7→ [1, 10]
y 7→ [0,+∞]

x 7→ [1, 10]
y 7→ [0,+∞]

5
x 7→ [1, 10]
y 7→ [1,+∞]

x 7→ [1, 10]
y 7→ [1,+∞]

x 7→ [1, 10]
y 7→ [1,+∞]

6
x 7→ [10,+∞]
y 7→ [0,+∞]

x 7→ [10, 10]
y 7→ [0,+∞]

x 7→ [10, 10]
y 7→ [0,+∞]

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 26 / 61

Interval Domain

Definition:

I = {⊥} ∪ {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}

An interval is an abstraction of a set of integers:
I γ([1, 5]) =
I γ([3, 3]) =
I γ([0,+∞]) =
I γ([−∞, 7]) =
I γ(⊥) =

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 27 / 61

Concretization/Abstraction Functions

γ : I→ ℘(Z) is called concretization function:

γ(⊥) = ∅
γ([a, b]) = {z ∈ Z | a ≤ z ≤ b}

α : ℘(Z)→ I is abstraction function:
I α({2}) =
I α({−1, 0, 1, 2, 3}) =
I α({−1, 3}) =
I α({1, 2, . . .}) =
I α(∅) =
I α(Z) =

α(∅) = ⊥
α(S) = [min(S),max(S)]

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 28 / 61

Partial Order (v) ⊆ I× I

⊥ v i for all i ∈ I
i v [−∞,+∞] for all i ∈ I.
[1, 3] v [0, 4]

[1, 3] 6v [0, 2]

Definition:

i1 v i2 iff

 i1 = ⊥ ∨
i2 = [−∞,+∞] ∨
(i1 = [l1, u1] ∧ i2 = [l2, u2] ∧ l1 ≥ l2 ∧ u1 ≤ u2)

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 29 / 61

Partial Order

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 30 / 61

Join t and Meet u Operators

The join operator computes the least upper bound:
I [1, 3] t [2, 4] = [1, 4]
I [1, 3] t [7, 9] = [1, 9]

The conditions of i1 t i2:
1 i1 v i1 t i2 ∧ i2 v i1 t i2
2 ∀i. i1 v i ∧ i2 v i =⇒ i1 t i2 v i

Definition:

⊥ t i = i
i t ⊥ = i

[l1, u1] t [l2, u2] = [min(l1, l2),max(l1, l2)]

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 31 / 61

Join t and Meet u Operators

The meet operator computes the greatest lower bound:
I [1, 3] u [2, 4] = [2, 3]
I [1, 3] u [7, 9] = ⊥

The conditions of i1 u i2:
1 i1 v i1 t i2 ∧ i2 v i1 t i2
2 ∀i. i v i1 ∧ i v i2 =⇒ i v i1 u i2

Definition:

⊥ u i = ⊥
i u ⊥ = ⊥

[l1, u1] u [l2, u2] =

{
⊥ max(l1, l2) > min(l1, l2)
[max(l1, l2),min(l1, l2)] o.w.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 32 / 61

Widening and Narrowing

A simple widening operator for the Interval domain:

[a, b] 5 ⊥ = [a, b]
⊥ 5 [c, d] = [c, d]

[a, b] 5 [c, d] = [(c < a?−∞ : a), (b < d? +∞ : b)]

A simple narrowing operator:

[a, b] 4 ⊥ = ⊥
⊥ 4 [c, d] = ⊥

[a, b] 4 [c, d] = [(a = −∞?c : a), (b = +∞?d : b)]

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 33 / 61

Abstract States

S = Var→ I

Partial order, join, meet, widening, and narrowing are lifted pointwise:

s1 v s2 iff ∀x ∈ Var. s1(x) v s2(x)

s1 t s2 = λx. s1(x) t s2(x)

s1 u s2 = λx. s1(x) u s2(x)

s15 s2 = λx. s1(x)5 s2(x)

s14 s2 = λx. s1(x)4 s2(x)

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 34 / 61

The Abstract Domain

D = C→ S

Partial order, join, meet, widening, and narrowing are lifted pointwise:

d1 v d2 iff ∀c ∈ C. d1(x) v d2(x)

d1 t d2 = λc. d1(c) t d2(c)

d1 u d2 = λc. d1(c) u d2(c)

d15 d2 = λc. d1(c)5 d2(c)

d14 d2 = λc. d1(c)4 d2(c)

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 35 / 61

Abstract Semantics of Expressions

e → n | x | e+ e | e− e | e ∗ e | e/e

eval : e× S→ I

eval(n, s) = [n, n]
eval(x, s) = s(x)

eval(e1 + e2, s) = eval(e1, s) +̂ eval(e2, s)

eval(e1 − e2, s) = eval(e1, s) −̂ eval(e2, s)
eval(e1 ∗ e2, s) = eval(e1, s) ∗̂ eval(e2, s)
eval(e1/e2, s) = eval(e1, s) /̂ eval(e2, s)

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 36 / 61

Abstract Binary Operators

i1 +̂ i2 = α({z1 + z2 | z1 ∈ γ(i1) ∧ z2 ∈ γ(i2)})
i1 −̂ i2 = α({z1 − z2 | z1 ∈ γ(i1) ∧ z2 ∈ γ(i2)})
i1 ∗̂ i2 = α({z1 ∗ z2 | z1 ∈ γ(i1) ∧ z2 ∈ γ(i2)})
i1 /̂ i2 = α({z1/z2 | z1 ∈ γ(i1) ∧ z2 ∈ γ(i2)})

Implementable version:

⊥ +̂ i =

i +̂ ⊥ =

[l1, u1] +̂ [l2, u2] =

[l1, u1] −̂ [l2, u2] =
[l1, u1] ∗̂ [l2, u2] =

[l1, u1] /̂ [l2, u2] =

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 37 / 61

Abstract Execution of Commands

fc : S→ S

fc(s) =

 s c = skip
[x 7→ eval(e, s)]s c = x := e
[x 7→ s(x) u [−∞, n− 1]]s c = x < n

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 38 / 61

Forward Propagation with Widening

W := {c0}
T (c0) := αD(Fpre)
T (c) := ⊥ for c ∈ C \ {c0}
while W 6= ∅
c := Choose(W)
W := W \ {c}
foreach c′ ∈ succ(c)
s := fcmd(c→c′)(T (c))
if s 6v T (c′)

if c′ is a head of a flow cycle
T (c′) := T (c′)5 (T (c′) tD s)

else
T (c′) := T (c′) tD F

W := W ∪ {c′}
done

done
Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 39 / 61

Forward Propagation with Narrowing

W := C
T := result from widening phase
while W 6= ∅
c := choose(W)
W := W \ {c}
foreach c′ ∈ succ(c)
s := fcmd(c→c′)(T (c))
if T (c′) 6v s
T (c′) := T (c′)4 s
W := W ∪ {c′}

done

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 40 / 61

Numerical Abstract Domains

Infer numerical properties of program variables: e.g.,

division by zero,

array index out of bounds,

integer overflow, etc.

Well-known numerical domains:

interval domain: x ∈ [l, u]

octagon domain: ±x± y ≤ c
polyhedron domain (affine inequalities): a1x1 + · · ·+ anxn ≤ c
Karr’s domain (affine equalities): a1x1 + · · ·+ anxn = c

congruence domain: x ∈ aZ + b

The octagon domain is a restriction of the polyhedron domain where each
constraint involves at most two variables and unit coefficients.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 41 / 61

Interval vs. Octagon

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 42 / 61

Example

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 43 / 61

Example

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 44 / 61

Example

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 45 / 61

Example

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 46 / 61

Example

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 47 / 61

Abstract Domain for Difference Constraints

We consider a restriction of the Octagon domain, which is able to discover
invariants of the form

x− y ≤ c and ± x ≤ c

where x, y are program variables and c is an integer.
Reference:

Antoine Miné. A New Numerical Abstract Domain Based on
Difference-Bound Matrices. PADO 2001.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 48 / 61

Difference Constraints

Let V = {v1, . . . , vn} be the set of program variables and I be the
set of integers.

We are interested in constraints of the forms

vj − vi ≤ c, vi ≤ c, vi ≥ c

By fixing v1 to be the constant 0, we can only consider
potential/difference constraints of the form

vj − vi ≤ c

since vi ≤ c and vi ≥ c can be rewritten by vi − v1 ≤ c and
v1 − vi ≤ −c, respectively.

I is extended to Ī = I ∪ {+∞}.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 49 / 61

Difference-Bound Matrices

A set C of potential constraints over V can be represented by a
n× n difference-bound matrix:

mij =

{
c if (vj − vi ≤ c) ∈ C
+∞ o.w.

A DBM can be represented by a weighted graph G = (V,A, w),
where A ⊆ V × V and w ∈ A → I:{

(vi, vj) 6∈ A if mij = +∞
(vi, vj) ∈ A and w(vi, vj) = mij if mij 6= +∞

A path 〈vi1, . . . , vik〉 in G is a cycle if i1 = ik.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 50 / 61

Domain of DBMs

The V-domain, denoted D(m), of a DBM m is the set of points in
In that satisfy all constraints in m:

D(m) = {(x1, . . . , xn) ∈ In | ∀i, j. xj − xi ≤ mij}.

Because v1 is fixed to 0, we are interested in v2, . . . , vn. The
V0-domain, denoted D0(m), of a DBM m is defined by

D0(m) = {(x2, . . . , xn) ∈ In−1 | (0, x2, . . . , xn) ∈ D(m)}.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 51 / 61

Example

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 52 / 61

Partial Order

The order between DBMs is defined as a point-wise extension of ≤
on Ī:

m v n ⇐⇒ ∀i, j. mij ≤ nij.

We have m v n =⇒ D0(m) ⊆ D0(n) but the converse is not
true. For example, two different DBMs can represent the same
domain (i.e. D0(m) = D0(n) 6=⇒ m = n):

However, there is a normal form for any DBM and an algorithm to
find it:

D0(m) = D0(n) =⇒ m∗ = n∗

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 53 / 61

Emptiness Testing

Deciding unsatisfiability of potential constraints:

Theorem

A DBM has an empty V0-domain iff there exists, in its potential graph, a
cycle with a strictly negative total weight.

Checking for cycles with a strictly negative weight can be done by running
Bellman-Ford algorithm, which runs in O(n3).

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 54 / 61

Closure and Normal Form

Let m be a DBM with a non-empty V0-domain and G its potential graph.
Since G has no cycle with a negative weight, we can compute its shortest
path closure G∗. The corresponding closed DBM m∗ is defined by

m∗ii = 0

m∗ij = min
all path from i to j

〈i = i1, i2, . . . , iN = j〉

N−1∑
k=1

mikik+1
if i 6= j

which can be computed with any shortest path algorithm (e.g.
Floyd-Warshall, O(n3)).

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 55 / 61

Properties

D0(m∗) = D0(m)

m∗ = minv{n | D0(n) = D0(m)} (normal form)

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 56 / 61

Equality and Inclusion Testing

To check equality and inclusion, DMBs must be closed beforehand:

Theorem

If m and n have non-empty V0-domain,

1 D0(m) = D0(n) ⇐⇒ m∗ = n∗

2 D0(m) ⊆ D0(n) ⇐⇒ m∗ v n

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 57 / 61

Projection

Given a DBM m, we can get the interval value of variable vk as follows:

Theorem

If m has a non-empty V0-domain, then π|vk(m) = [−m∗k1,m∗1k].

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 58 / 61

Intersection and Least Upper Bound

Definition:

(m u n)ij = min(mij, nij)

(m t n)ij = max(mij, nij)

Properties:

D0(m u n) = D0(m) ∩D0(n) (exact)

D0(m t n) ⊇ D0(m) ∪D0(n) (exact)

m∗ t n∗ = minv{o | D0(o) ⊇ D0(m) ∪D0(n)} (we have to
close both arguments before join to get the most precise result)

If m and n are closed, so is m t n.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 59 / 61

Widening

A definition:

(m5 n)ij =

{
mij if nij ≤ mij

+∞ o.w.

Properties:

D0(m5 n) ⊇ D0(m) ∪D0(n)

Finite chain property: For all m and (ni)i, the chain (xi)i

x0 = m
xi+1 = xi5 ni

eventually stabilizes.

To improve precision, we can close m and ni but not xi.

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 60 / 61

Transfer Functions

Example definitions:(
[[vk :=?]](m)

)
ij

=


mij if i 6= k ∧ j 6= k
0 if i = j = k
∞ o.w.(

[[vj0 − vi0 ≤ c]](m)
)
ij

=

{
min(mij, c) if i = i0 ∧ j = j0
mij o.w.

[[vi0 := vj0 + c]](m) = [[vj0 − vi0 ≤ −c]] ◦ [[vi0 − vj0 ≤
c]] ◦ [[vi0 :=?]](m) (i0 6= j0)

Otherwise, [[g]](m) = m and [[vi0 := e]](m) = [[vi0 :=?]](m)

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 61 / 61

Program Analysis

Automated techniques for computing program invariants:

Generic symbolic analysis procedure

Abstraction examples: Interval and octagon analyses

Hakjoo Oh AAA615 2017 Fall, Lecture 6 November 5, 2017 62 / 61

