AAA615: Formal Methods Lecture 6 — Program Analysis

Hakjoo Oh 2017 Fall

Program Verification vs. Program Analysis

Essentially the same things with different trade-offs:

- Program verification
 - Pros: powerful to prove properties
 - Cons: hardly automated
- Program analysis
 - Pros: fully automatic
 - Cons: focus on rather weak properties

Contents

- Symbolic analysis
 - concrete, non-terminating
- Interval analysis
 - abstract, non-relational
- Octagon analysis
 - abstract, relational

Program Representation

Control-flow graph $(\mathbb{C}, \rightarrow)$

- $\bullet~\mathbb{C}:$ the set of program points in the program
- $(\rightarrow) \subseteq \mathbb{C} \times \mathbb{C}$: the control-flow relation

• c
ightarrow c': c is a predecessor of c'

• Each control-flow edge c o c' is associated with a command, denoted $\operatorname{cmd}(c o c')$:

 $cmd \rightarrow v := e \mid$ assume $c \mid cmd_1; cmd_2$

Weakest Precondition

Weakest precondition transformer

 $wp: FOL \times stmts \rightarrow FOL$

computes the most general precondition of a given postcondition and program statement:

• wp
$$(F, ext{assume } c) \iff c o F$$

• wp
$$(F[v], v := e) \iff F[e]$$

• wp
$$(F, S_1; \ldots; S_n) \iff$$
 wp $($ wp $(F, S_n), S_1; \ldots; S_{n-1})$

Strongest Postcondition

Strongest postcondition transformer

 $sp: FOL \times stmts \rightarrow FOL$

computes the most specific postcondition of a given precondition and program statement:

•
$$\mathsf{sp}(F, \mathsf{assume}\ c) \iff c \wedge F$$

•
$$\mathsf{sp}(F[v], v := e[v]) \iff \exists v^0. \ v = e[v^0] \land F[v^0]$$

•
$$\mathsf{sp}(F, S_1; \ldots; S_n) \iff \mathsf{sp}(\mathsf{sp}(F, S_1), S_2; \ldots; S_n)$$

$$egin{aligned} & \mathsf{sp}(i \geq n, i := i + k) \ & \Longleftrightarrow \exists i^0. \ i = i^0 + k \wedge i^0 \geq n \ & \Longleftrightarrow i - k \geq n \end{aligned}$$

$$egin{aligned} & \mathbf{sp}(i \geq n, ext{assume } k \geq 0; \ i := i + k) \ & \Longleftrightarrow \ & \mathbf{sp}(\mathbf{sp}(i \geq n, ext{assume } k \geq 0), i := i + k) \ & \Longleftrightarrow \ & \mathbf{sp}(i \geq n \wedge k \geq 0, i := i + k) \ & \Longleftrightarrow \ & \exists i^0. \ i = i^0 + k \wedge i^0 \geq n \wedge k \geq 0 \ & \Longleftrightarrow \ & i - k \geq n \wedge k \geq 0 \end{aligned}$$

Inductive Map

• The goal of static analysis is to find a map

 $T:\mathbb{C}\to \mathsf{FOL}$

that stores inductive invariants for each program point and is implied by the precondition:

$$F_{pre} \implies T(c_0).$$

• If the result $T(c_{exit})$ implies the postcondition

$$T(c_{exit}) \implies F_{post}$$

the function obeys the specification.

Forward Symbolic Analysis Procedure

- Sets of reachable states are represented by formulas.
- Strongest postcondition (sp) executes statements over formulas.

$$\begin{split} W &:= \{c_0\} \\ T(c_0) &:= F_{pre} \\ T(c) &:= \bot \text{ for } c \in \mathbb{C} \setminus \{c_0\} \\ \text{while } W \neq \emptyset \\ c &:= \text{Choose}(W) \\ W &:= W \setminus \{c\} \\ \text{ foreach } c' \in \text{succ}(c) \\ F &:= \text{sp}(T(c), \text{cmd}(c \rightarrow c')) \\ \text{ if } F \not\Longrightarrow T(c') \\ T(c') &:= T(c') \lor F \\ W &:= W \cup \{c'\} \\ \text{ done } \end{split}$$

Issues

• The implication checking

$$F \implies T(c')$$

is undecidable in general. The underlying logic must be restricted to a decidable theory or fragment.

• Nontermination of loops.

Initial map:

$$egin{array}{ll} T(c_0) \iff i=0 \wedge n \geq 0 \ T(c_1) \iff ot \end{array}$$

Following basic path $c_0 \rightarrow c_1$:

$$egin{aligned} T(c_0) & \Longleftrightarrow \ i=0 \wedge n \geq 0 \ T(c_1) & \Longleftrightarrow \ T(c_1) \lor i=0 \wedge n \geq 0 \ \Longleftrightarrow \ i=0 \wedge n \geq 0 \end{aligned}$$

Following basic path $c_1 \rightarrow c_1$:

Symbolic execution:

$${f sp}(T(c_1), {f assume } i < n; i := i + 1) \ \Longleftrightarrow {f sp}(i = 0 \land n \ge 0, {f assume } i < n; i := i + 1) \ \Longleftrightarrow {f sp}(i < n \land i = 0 \land n \ge 0, i := i + 1) \ \Longleftrightarrow {\exists} i^0. \ i = i^0 + 1 \land i^0 < n \land i^0 = 0 \land n \ge 0 \ \Longleftrightarrow i = 1 \land n \ge 1$$

One Checking the implication:

$$i=1 \wedge n \geq 1 \implies i=0 \wedge n \geq 0$$

Join the result:

$$T(c_1) \iff (i=0 \wedge n \geq 0) \lor (i=1 \wedge n \geq 1)$$

At the end of the next iteration:

 $T(c_1) \iff (i=0 \land n \ge 0) \lor (i=1 \land n \ge 1) \lor (i=2 \land n \ge 2)$

and at the end of kth iteration:

$$T(c_1) \iff (i=0 \wedge n \ge 0) \lor (i=1 \wedge n \ge 1) \lor \cdots \lor (i=k \wedge n \ge k)$$

This process does not terminate because

$$(i=k \wedge n \geq k) \implies (i=0 \wedge n \geq 0) \lor \cdots \lor (i=k-1 \wedge n \geq k-1)$$

for any k. However,

$$0 \leq i \leq n$$

is an obvious inductive invariant that proves the postcondition:

$$0 \leq i \leq n \wedge i \geq n \implies i = n.$$

Addressing the Issues

- Unsound approach, e.g., unrolling loops for a fixed number
 - incapable of verifying properties but still useful for bug-finding
- Sound approach ensures correctness but cannot be complete.
- Abstract interpretation is a general method for obtaining sound and computable static analysis.
 - abstract domain
 - abstract semantics
 - widening and narrowing

1. Choose an Abstract Domain

The abstract domain D is a restricted subset of formulas; each member $d \in D$ represents a set of program states: e.g.,

• In the interval abstract domain D_I , a domain element $d \in D_I$ is a conjunction of constraints of the forms

$$c \leq x$$
 and $x \leq c$

• In the octagon abstract domain D_O , a domain element $d \in D_I$ is a conjunction of constraints of the forms

$$\pm x_1 \pm x_2 \le c$$

• In the Karr's abstract domain D_K , a domain element $d \in D_K$ is a conjunction of constraints of the forms

$$c_0+c_1x_1+\cdots c_nx_n=0$$

2. Construct an Abstraction Function

The abstraction function:

 $\alpha_D: \mathsf{FOL} \to D$

such that $F \implies lpha_D(F)$. For example, the assertion

 $F:i=0\wedge n\geq 0$

can be represented in the interval abstract domain by

$$lpha_{D_I}(F): 0 \leq i \wedge i \leq 0 \wedge 0 \leq n$$

and in Karr's abstract domain by

$$lpha_{D_K}(F): i=0$$

3. Define an Abstract Strongest Postcondition

Define an abstract strongest postcondition operator $\hat{\mathbf{sp}}_D$, also known as abstract semantics or transfer function:

 $\widehat{\operatorname{sp}}_D:D imes$ stmts o D

such that \widehat{sp}_D over-approximates **sp**:

 $\operatorname{sp}(F,S) \implies \widehat{\operatorname{sp}}_D(F,S).$

3. Define an Abstract Strongest Postcondition

For example, the strongest postcondition for assume:

$$\mathsf{sp}(F, \mathsf{assume}\ c) \iff c \wedge F$$

is abstracted by

$$\widehat{\mathsf{sp}}(F, ext{assume } c) \iff lpha_D(c) \sqcap_D F$$

where abstract conjunction $\sqcap_D: D imes D o D$ is such that

$$F_1 \wedge F_2 \implies F_1 \sqcap_D F_2.$$

When the domain D consists of conjunctions of constraints of some form (e.g. interval domain), \sqcap_D is exact and equals to the usual conjunction \land :

$$F_1 \wedge F_2 \iff F_1 \sqcap_D F_2.$$

4. Define Abstract Disjunction and Implication Checking

ullet Define abstract disjunction $\sqcup_D: D imes D o D$ such that

$$F_1 \lor F_2 \implies F_1 \sqcup_D F_2$$

Usually abstract disjunction is not exact.

• With a proper abstract domain, the implication checking

$$F \implies T(c_k)$$

can be performed by a custom solver without querying a full SMT solver.

5. Define Widening

A widening operator ∇D is a binary operator

$$\nabla_D: D \times D \to D$$

such that

$$F_1 \lor F_2 \implies F_1 \bigtriangledown_D F_2$$

and the following property holds. For all increasing sequence F_1,F_2,F_3,\ldots (i.e. $F_i\implies F_{i+1}$ for all i), the sequence G_i defined by

$$G_i = \left\{ \begin{array}{ll} F_1 & \text{if } i = 1 \\ G_{i-1} \bigtriangledown_D F_i & \text{if } i > 1 \end{array} \right.$$

eventually converges:

for some
$$k$$
 and for all $i \geq k, G_i \iff G_{i+1}$.

Abstract Interpretation Algorithm

$$\begin{split} W &:= \{c_0\} \\ T(c_0) &:= \alpha_D(F_{pre}) \\ T(c) &:= \bot \text{ for } c \in \mathbb{C} \setminus \{c_0\} \\ \text{while } W \neq \emptyset \\ c &:= \text{Choose}(W) \\ W &:= W \setminus \{c\} \\ \text{ foreach } c' \in \text{succ}(c) \\ F &:= \widehat{sp}(T(c), \text{cmd}(c \to c')) \\ \text{ if } F \implies T(c') \\ \text{ if widening is needed} \\ T(c') &:= T(c') \bigtriangledown (T(c') \sqcup_D F) \\ else \\ T(c') &:= T(c') \sqcup_D F \\ W &:= W \cup \{c'\} \\ \text{ done} \\ \end{split}$$

Hakjoo Oh

Interval Analysis

The interval analysis uses the abstract domain D_I that includes \bot, \top and conjunctions of constraints of the form

 $c \leq v$ and $v \leq c$

Equivalently, interval analysis computes intervals of program variables:

$$\{\bot\}\cup\{[a,b]\mid a\in\mathbb{Z}\cup\{-\infty\},b\in\mathbb{Z}\cup\{+\infty\},a\leq b\}$$

Consider the simple set of commands:

$$cmd \hspace{.1in}
ightarrow \hspace{.1in} skip \mid x := e \mid x < n \ e \hspace{.1in}
ightarrow \hspace{.1in} n \mid x \mid e + e \mid e - e \mid e * e \mid e / e$$

How Interval Analysis Works

Node	Result
1	$x\mapsto \bot$
-	$y\mapsto \bot$
2	$x\mapsto [0,0]$
4	$y\mapsto [0,0]$
3	$x\mapsto [0,9]$
J	$y\mapsto [0,+\infty]$
4	$x\mapsto [1,10]$
4	$y\mapsto [0,+\infty]$
5	$x\mapsto [1,10]$
0	$y\mapsto [1,+\infty]$
6	$x\mapsto [10,10]$
U	$y\mapsto [0,+\infty]$

Forward Propagation

Node	initial	1	2	3	10	11	k	∞
1	$x \mapsto \bot$	$x\mapsto\bot$	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$	$x \mapsto \bot$	$x\mapsto \bot$
	$y \mapsto \bot$	$y\mapsto \bot$	$y \mapsto \bot$	$y\mapsto\bot$	$y\mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y\mapsto \bot$
2	$x \mapsto \bot$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x\mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$
3	$x \mapsto \bot$	$x \mapsto [0,0]$	$x \mapsto [0,1]$	$x \mapsto [0,2]$	$x \mapsto [0,9]$	$x \mapsto [0,9]$	$x \mapsto [0,9]$	$x \mapsto [0,9]$
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0,2]$	$y \mapsto [0,9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$
4	$x \mapsto \bot$	$x \mapsto [1,1]$	$x \mapsto [1,2]$	$x \mapsto [1,3]$	$x \mapsto [1, 10]$			
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0,2]$	$y \mapsto [0,9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$
5	$x \mapsto \bot$	$x \mapsto [1,1]$	$x \mapsto [1,2]$	$x \mapsto [1,3]$	$x \mapsto [1, 10]$			
	$y \mapsto \bot$	$y \mapsto [1,1]$	$y \mapsto [1,2]$	$y \mapsto [1,3]$	$y \mapsto [1, 10]$	$y \mapsto [1, 11]$	$y \mapsto [1, k]$	$y\mapsto [1,+\infty]$
6	$x \mapsto \bot$	$x\mapsto \bot$	$x \mapsto \bot$	$x\mapsto \bot$	$x \mapsto [10, 10]$			
	$ y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0,2]$	$y \mapsto [0,9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$

Forward Propagation Widening

Node	initial 1		2	3
1	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$
1	$y\mapsto ot$	$y\mapsto ot$	$y\mapsto ot$	$y\mapsto ot$
2	$x\mapsto \bot$	$x\mapsto [0,0]$	$x\mapsto [0,0]$	$x\mapsto [0,0]$
4	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,0]$	$y\mapsto [0,0]$
3	$x\mapsto \bot$	$x\mapsto [0,0]$	$x\mapsto [0,9]$	$x\mapsto [0,9]$
J	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
4	$x\mapsto \bot$	$x\mapsto [1,1]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
-	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
F	$x\mapsto \bot$	$x\mapsto [1,1]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
J	$y\mapsto ot$	$y\mapsto [1,1]$	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$
6	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto [10,+\infty]$	$x\mapsto [10,+\infty]$
U	$ y \mapsto \bot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$

Forward Propagation with Narrowing

Node	initial	1	2
1	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$
	$y\mapsto ot$	$y\mapsto ot$	$y\mapsto ot$
2	$x\mapsto [0,0]$	$x\mapsto [0,0]$	$x\mapsto [0,0]$
	$y\mapsto [0,0]$	$y\mapsto [0,0]$	$y\mapsto [0,0]$
9	$x\mapsto [0,9]$	$x\mapsto [0,9]$	$x\mapsto [0,9]$
3	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
4	$x\mapsto [1,10]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
- *	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
5	$x\mapsto [1,10]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
5	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$
6	$x\mapsto [10,+\infty]$	$x\mapsto [10,10]$	$x\mapsto [10,10]$
	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$

Hakjoo Oh

Interval Domain

• Definition:

$$\mathbb{I} = \{ot\} \cup \{[l,u] \mid l,u \in \mathbb{Z} \cup \{-\infty,+\infty\} \ \land \ l \leq u\}$$

• An interval is an abstraction of a set of integers:

$$\begin{array}{l} \flat \ \gamma([1,5]) = \\ \flat \ \gamma([3,3]) = \\ \flat \ \gamma([0,+\infty]) = \\ \flat \ \gamma([-\infty,7]) = \\ \flat \ \gamma(\bot) = \end{array}$$

Concretization/Abstraction Functions

• $\gamma: \mathbb{I} \to \wp(\mathbb{Z})$ is called *concretization function*:

$$egin{array}{rll} \gamma(ot) &=& \emptyset \ \gamma([a,b]) &=& \{z\in\mathbb{Z}\mid a\leq z\leq b\} \end{array}$$

• $\alpha: \wp(\mathbb{Z}) \to \mathbb{I}$ is abstraction function:

Partial Order $(\sqsubseteq) \subseteq \mathbb{I} \times \mathbb{I}$

•
$$\perp \sqsubseteq i$$
 for all $i \in \mathbb{I}$
• $i \sqsubseteq [-\infty, +\infty]$ for all $i \in \mathbb{I}$.
• $[1,3] \sqsubseteq [0,4]$
• $[1,3] \nvdash [0,2]$

Definition:

$$i_1 \sqsubseteq i_2 ext{ iff } \left\{ egin{array}{ll} i_1 = ot ee \ i_2 = [-\infty, +\infty] \lor \ (i_1 = [l_1, u_1] \ \land \ i_2 = [l_2, u_2] \ \land \ l_1 \ge l_2 \ \land \ u_1 \le u_2) \end{array}
ight.$$

Partial Order

Join \square and Meet \sqcap Operators

• The join operator computes the *least upper bound*:

$$[1,3] \sqcup [2,4] = [1,4]$$

- ▶ $[1,3] \sqcup [7,9] = [1,9]$
- The conditions of $i_1 \sqcup i_2$:

$$\begin{array}{c} \bullet \quad i_1 \sqsubseteq i_1 \sqcup i_2 \ \land \ i_2 \sqsubseteq i_1 \sqcup i_2 \\ \bullet \quad \forall i. \ i_1 \sqsubseteq i \ \land \ i_2 \sqsubseteq i \implies i_1 \sqcup i_2 \sqsubseteq i \end{array}$$

• Definition:

$$egin{array}{rcl} ot &\sqcup ot &= i \ i \sqcup ot &= i \ i \sqcup ot &= i \ [l_1, u_1] \sqcup [l_2, u_2] &= [\min(l_1, l_2), \max(l_1, l_2)] \end{array}$$

Join \square and Meet \sqcap Operators

- The meet operator computes the greatest lower bound:
 - ▶ $[1,3] \sqcap [2,4] = [2,3]$
 - ▶ $[1,3] \sqcap [7,9] = \bot$
- The conditions of $i_1 \sqcap i_2$:

$$\begin{array}{c} \bullet \quad i_1 \sqsubseteq i_1 \sqcup i_2 \ \land \ i_2 \sqsubseteq i_1 \sqcup i_2 \\ \bullet \quad \forall i. \ i \sqsubseteq i_1 \ \land \ i \sqsubseteq i_2 \implies i \sqsubseteq i_1 \sqcap i_2 \end{array}$$

Definition:

$$\begin{array}{rcl} \bot \sqcap i &=& \bot \\ i \sqcap \bot &=& \bot \\ [l_1, u_1] \sqcap [l_2, u_2] &=& \left\{ \begin{array}{ll} \bot & \max(l_1, l_2) > \min(l_1, l_2) \\ [\max(l_1, l_2), \min(l_1, l_2)] & \text{o.w.} \end{array} \right. \end{array}$$

Widening and Narrowing

A simple widening operator for the Interval domain:

$$egin{array}{rll} [a,b] &\bigtriangledown &\perp &= [a,b] \ &\perp &\bigtriangledown & [c,d] &= [c,d] \ [a,b] &\bigtriangledown & [c,d] &= [(c < a? - \infty:a), (b < d? + \infty:b)] \end{array}$$

A simple narrowing operator:

$$egin{array}{rcl} [a,b] & \bigtriangleup & \bot & = \bot \ & \bot & \bigtriangleup & [c,d] & = \bot \ [a,b] & \bigtriangleup & [c,d] & = [(a=-\infty?c:a), (b=+\infty?d:b)] \end{array}$$

Abstract States

$$\mathbb{S} = \mathsf{Var} \to \mathbb{I}$$

Partial order, join, meet, widening, and narrowing are lifted pointwise:

$$s_1 \sqsubseteq s_2$$
 iff $\forall x \in \mathsf{Var.} \ s_1(x) \sqsubseteq s_2(x)$
 $s_1 \sqcup s_2 = \lambda x. \ s_1(x) \sqcup s_2(x)$
 $s_1 \sqcap s_2 = \lambda x. \ s_1(x) \sqcap s_2(x)$
 $s_1 \bigtriangledown s_2 = \lambda x. \ s_1(x) \bigtriangledown s_2(x)$
 $s_1 \bigtriangleup s_2 = \lambda x. \ s_1(x) \bigtriangledown s_2(x)$

The Abstract Domain

$$\mathbb{D} = \mathbb{C} \to \mathbb{S}$$

Partial order, join, meet, widening, and narrowing are lifted pointwise:

$$egin{aligned} &d_1 \sqsubseteq d_2 ext{ iff } orall c \in \mathbb{C}. \ d_1(x) \sqsubseteq d_2(x) \ &d_1 \sqcup d_2 = \lambda c. \ d_1(c) \sqcup d_2(c) \ &d_1 \sqcap d_2 = \lambda c. \ d_1(c) \sqcap d_2(c) \ &d_1 \bigtriangledown d_2 = \lambda c. \ d_1(c) \bigtriangledown d_2(c) \ &d_1 \bigtriangleup d_2 = \lambda c. \ d_1(c) \bigtriangleup d_2(c) \end{aligned}$$

Abstract Semantics of Expressions

$$e \rightarrow n \mid x \mid e + e \mid e - e \mid e * e \mid e/e$$

$$\begin{array}{rcl} eval & : & e \times \mathbb{S} \to \mathbb{I} \\ eval(n,s) & = & [n,n] \\ eval(x,s) & = & s(x) \\ eval(e_1 + e_2,s) & = & eval(e_1,s) \stackrel{?}{+} eval(e_2,s) \\ eval(e_1 - e_2,s) & = & eval(e_1,s) \stackrel{?}{-} eval(e_2,s) \\ eval(e_1 * e_2,s) & = & eval(e_1,s) \stackrel{?}{*} eval(e_2,s) \\ eval(e_1/e_2,s) & = & eval(e_1,s) \stackrel{?}{/} eval(e_2,s) \end{array}$$

Abstract Binary Operators

$$\begin{array}{rcl} i_1 \stackrel{.}{+} i_2 &=& \alpha(\{z_1 + z_2 \mid z_1 \in \gamma(i_1) \ \land \ z_2 \in \gamma(i_2)\}) \\ i_1 \stackrel{.}{-} i_2 &=& \alpha(\{z_1 - z_2 \mid z_1 \in \gamma(i_1) \ \land \ z_2 \in \gamma(i_2)\}) \\ i_1 \stackrel{.}{*} i_2 &=& \alpha(\{z_1 * z_2 \mid z_1 \in \gamma(i_1) \ \land \ z_2 \in \gamma(i_2)\}) \\ i_1 \stackrel{.}{/} i_2 &=& \alpha(\{z_1 / z_2 \mid z_1 \in \gamma(i_1) \ \land \ z_2 \in \gamma(i_2)\}) \end{array}$$

Implementable version:

Abstract Execution of Commands

$$f_c:\mathbb{S} o\mathbb{S}$$
 $f_c(s)=\left\{egin{array}{ll} s&c=skip\ [x\mapsto eval(e,s)]s&c=x:=e\ [x\mapsto s(x)\sqcap [-\infty,n-1]]s&c=x$

Forward Propagation with Widening

```
W := \{c_0\}
T(c_0) := \alpha_D(F_{pre})
T(c) := \bot for c \in \mathbb{C} \setminus \{c_0\}
while W \neq \emptyset
    c := \mathsf{Choose}(W)
    W := W \setminus \{c\}
    foreach c' \in \operatorname{succ}(c)
        s := f_{\mathsf{cmd}(c \to c')}(T(c))
        if s \not \sqsubset T(c')
             if c' is a head of a flow cycle
                 T(c') := T(c') \bigtriangledown (T(c') \sqcup_D s)
             else
                 T(c') := T(c') \sqcup_D F
             W := W \cup \{c'\}
    done
done
```

Hakjoo Oh

Forward Propagation with Narrowing

 $W := \mathbb{C}$ T := result from widening phase while $W \neq \emptyset$ c := choose(W) $W := W \setminus \{c\}$ foreach $c' \in \operatorname{succ}(c)$ $s := f_{\mathsf{cmd}(c \to c')}(T(c))$ if $T(c') \not \sqsubseteq s$ $T(c') := T(c') \bigtriangleup s$ $W := W \cup \{c'\}$

done

Numerical Abstract Domains

Infer numerical properties of program variables: e.g.,

- division by zero,
- array index out of bounds,
- integer overflow, etc.

Well-known numerical domains:

- interval domain: $x \in [l, u]$
- ullet octagon domain: $\pm x \pm y \leq c$
- ullet polyhedron domain (affine inequalities): $a_1x_1+\dots+a_nx_n\leq c$
- Karr's domain (affine equalities): $a_1x_1 + \dots + a_nx_n = c$

• congruence domain: $x \in a\mathbb{Z} + b$

The octagon domain is a restriction of the polyhedron domain where each constraint involves at most two variables and unit coefficients.

Interval vs. Octagon

Abstract Domain for Difference Constraints

We consider a restriction of the Octagon domain, which is able to discover invariants of the form

$$x-y \leq c$$
 and $\pm x \leq c$

where x, y are program variables and c is an integer. Reference:

• Antoine Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO 2001.

Difference Constraints

- Let $\mathcal{V} = \{v_1, \dots, v_n\}$ be the set of program variables and \mathbb{I} be the set of integers.
- We are interested in constraints of the forms

$$v_j - v_i \leq c, \quad v_i \leq c, \quad v_i \geq c$$

• By fixing v_1 to be the constant 0, we can only consider potential/difference constraints of the form

$$v_j - v_i \le c$$

since $v_i \leq c$ and $v_i \geq c$ can be rewritten by $v_i - v_1 \leq c$ and $v_1 - v_i \leq -c$, respectively.

• \mathbb{I} is extended to $\overline{\mathbb{I}} = \mathbb{I} \cup \{+\infty\}.$

Difference-Bound Matrices

• A set C of potential constraints over \mathcal{V} can be represented by a $n \times n$ difference-bound matrix:

$$m_{ij} = \left\{ egin{array}{cc} c & ext{if } (v_j - v_i \leq c) \in C \ +\infty & o.w. \end{array}
ight.$$

• A DBM can be represented by a weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{A}, w)$, where $\mathcal{A} \subseteq \mathcal{V} \times \mathcal{V}$ and $w \in \mathcal{A} \rightarrow \mathbb{I}$:

$$\left\{\begin{array}{ll} (v_i,v_j) \not\in \mathcal{A} & \text{if } m_{ij} = +\infty \\ (v_i,v_j) \in \mathcal{A} \text{ and } w(v_i,v_j) = m_{ij} & \text{if } m_{ij} \neq +\infty \end{array}\right.$$

• A path $\langle v_{i_1},\ldots,v_{i_k}
angle$ in ${\mathcal G}$ is a cycle if $i_1=i_k$.

Domain of DBMs

• The \mathcal{V} -domain, denoted D(m), of a DBM m is the set of points in \mathbb{I}^n that satisfy all constraints in m:

$$D(m) = \{(x_1,\ldots,x_n) \in \mathbb{I}^n \mid orall i, j. \ x_j - x_i \leq m_{ij}\}.$$

• Because v_1 is fixed to 0, we are interested in v_2, \ldots, v_n . The \mathcal{V}^0 -domain, denoted $D^0(m)$, of a DBM m is defined by

$$D^0(m) = \{(x_2,\ldots,x_n) \in \mathbb{I}^{n-1} \mid (0,x_2,\ldots,x_n) \in D(m)\}.$$

Partial Order

 The order between DBMs is defined as a point-wise extension of ≤ on I
:

$$m \sqsubseteq n \iff orall i, j. \ m_{ij} \le n_{ij}.$$

• We have $m \sqsubseteq n \implies D^0(m) \subseteq D^0(n)$ but the converse is not true. For example, two different DBMs can represent the same domain (i.e. $D^0(m) = D^0(n) \implies m = n$):

• However, there is a normal form for any DBM and an algorithm to find it:

$$D^0(m) = D^0(n) \implies m^* = n^*$$

Emptiness Testing

Deciding unsatisfiability of potential constraints:

Theorem

A DBM has an empty \mathcal{V}^0 -domain iff there exists, in its potential graph, a cycle with a strictly negative total weight.

Checking for cycles with a strictly negative weight can be done by running Bellman-Ford algorithm, which runs in $O(n^3)$.

Closure and Normal Form

Let m be a DBM with a non-empty \mathcal{V}^0 -domain and \mathcal{G} its potential graph. Since \mathcal{G} has no cycle with a negative weight, we can compute its shortest path closure \mathcal{G}^* . The corresponding closed DBM m^* is defined by

$$egin{aligned} m^*_{ii} &= 0 \ m^*_{ij} &= & \min_{\substack{ ext{all path from i to j} \ \langle i &= i_1, i_2, \dots, i_N &= j
angle} & \sum_{k=1}^{N-1} m_{i_k i_{k+1}} & ext{if $i
eq j$} \end{aligned}$$

which can be computed with any shortest path algorithm (e.g. Floyd-Warshall, $O(n^3)$).

Properties

•
$$D^0(m^*) = D^0(m)$$

• $m^* = \min_{\sqsubseteq} \{n \mid D^0(n) = D^0(m)\}$ (normal form)

Equality and Inclusion Testing

To check equality and inclusion, DMBs must be closed beforehand:

Theorem

If m and n have non-empty \mathcal{V}^0 -domain,

$$D^0(m) = D^0(n) \iff m^* = n^*$$

$$\ 2 \ D^0(m) \subseteq D^0(n) \iff m^* \sqsubseteq n$$

Projection

Given a DBM m, we can get the interval value of variable v_k as follows:

Theorem

If m has a non-empty \mathcal{V}^0 -domain, then $\pi|_{v_k}(m) = [-m_{k1}^*, m_{1k}^*]$.

Intersection and Least Upper Bound

Definition:

$$(m \sqcap n)_{ij} = \min(m_{ij}, n_{ij})$$

 $(m \sqcup n)_{ij} = \max(m_{ij}, n_{ij})$

Properties:

- $D^0(m \sqcap n) = D^0(m) \cap D^0(n)$ (exact)
- $D^0(m\sqcup n)\supseteq D^0(m)\cup D^0(n)$ (exact)
- $m^* \sqcup n^* = \min_{\sqsubseteq} \{ o \mid D^0(o) \supseteq D^0(m) \cup D^0(n) \}$ (we have to close both arguments before join to get the most precise result)
- If m and n are closed, so is $m \sqcup n$.

Widening

A definition:

$$(m \bigtriangledown n)_{ij} = \left\{egin{array}{cc} m_{ij} & ext{if } n_{ij} \leq m_{ij} \ +\infty & o.w. \end{array}
ight.$$

Properties:

- $D^0(m\bigtriangledown n)\supseteq D^0(m)\cup D^0(n)$
- Finite chain property: For all m and $(n_i)_i$, the chain $(x_i)_i$

$$egin{array}{rcl} x_0&=&m\ x_{i+1}&=&x_i\bigtriangledown n_i \end{array}$$

eventually stabilizes.

• To improve precision, we can close m and n_i but not x_i .

Transfer Functions

Example definitions:

•
$$(\llbracket v_k :=? \rrbracket(m))_{ij} = \begin{cases} m_{ij} & \text{if } i \neq k \land j \neq k \\ 0 & \text{if } i = j = k \\ \infty & o.w. \end{cases}$$

• $(\llbracket v_{j_0} - v_{i_0} \le c \rrbracket(m))_{ij} = \begin{cases} \min(m_{ij}, c) & \text{if } i = i_0 \land j = j_0 \\ m_{ij} & o.w. \end{cases}$
• $\llbracket v_{i_0} := v_{j_0} + c \rrbracket(m) = \llbracket v_{j_0} - v_{i_0} \le -c \rrbracket \circ \llbracket v_{i_0} - v_{j_0} \le c \rrbracket \circ \llbracket v_{i_0} :=? \rrbracket(m) \ (i_0 \neq j_0) \end{cases}$
• Otherwise, $\llbracket g \rrbracket(m) = m$ and $\llbracket v_{i_0} := e \rrbracket(m) = \llbracket v_{i_0} :=? \rrbracket(m)$

Program Analysis

Automated techniques for computing program invariants:

- Generic symbolic analysis procedure
- Abstraction examples: Interval and octagon analyses