AAA615: Formal Methods

Lecture 4 - Problem-Solving with SMT Solvers

Hakjoo Oh
2017 Fall

The Z3 SMT Solver

- A popular SMT solver from Microsoft Research:
https://github.com/Z3Prover/z3
- Supported theories:
- Propositional Logic
- Theory of Equality
- Uninterpreted Functions
- Arithmetic
- Arrays
- Bit-vectors, ...
- References
- Z3 Guide https://rise4fun.com/z3/tutorialcontent/guide
- Z3 API in Python
http://ericpony.github.io/z3py-tutorial/guide-examples.htm

Propositional Logic

```
p = Bool('p')
2q = Bool('q')
3 r= Bool('r')
4 solve(Implies(p, q), r = Not(q), Or(Not(p), r))
[q = False, p = False, r = True]
```


Arithmetic

1 from z3 import *
2
$3 x=\operatorname{lnt}\left(x^{\prime}\right)$
$4 y=\operatorname{lnt}\left(y^{\prime} y^{\prime}\right)$
5 solve $(x>2, y<10, x+2 * y=7)$
6
$7 x=$ Real $\left({ }^{\prime} x^{\prime}\right)$
$8 \mathrm{y}=\operatorname{Real}\left({ }^{\prime} \mathrm{y}^{\prime}\right)$
9 solve $(x * * 2+y * * 2>3, x * * 3+y<5)$
\$ python test.py
[y $=0, x=7]$
$[\mathrm{x}=1 / 8, \mathrm{y}=2]$

BitVectors

```
1 x = BitVec('x', 32)
2 y = BitVec('y', 32)
3
4 ~ s o l v e ( x ~ \& ~ y ~ = = ~ \sim ~ y ) ~
5 \mp@code { s o l v e ( x \gg ~ 2 = = ~ 3 ) }
6 solve(x << 2 == 3)
7 solve(x << 2== 24)
```

$$
\begin{aligned}
& {[\mathrm{y}=4294967295, \mathrm{x}=0]} \\
& {[\mathrm{x}=12]} \\
& \text { no } \text { solution } \\
& {[\mathrm{x}=6]}
\end{aligned}
$$

Uninterpreted Functions

```
\(x=\operatorname{lnt}\left({ }^{\prime} x^{\prime}\right)\)
\(y=\ln t\left(y^{\prime}\right)\)
\(\mathrm{f}=\) Function('f', IntSort(), IntSort())
s = Solver ()
s.add(f(f(x)) =x, f(x) =y, x \(!=y)\)
print s.check()
\(\mathrm{m}=\mathrm{s}\). model ()
print m
print " \(f(f(x))=", m\) evaluate \((f(f(x)))\)
print " \(f(x)=", m\) evaluate \((f(x))\)
sat
\([\mathrm{x}=0, \mathrm{y}=1, \mathrm{f}=[0 \rightarrow 1,1 \rightarrow 0\), else \(->1]]\)
\(f(f(x))=0\)
\(f(x)=1\)
```


Constraint Generation with Python List

```
X = [ Int('x%s' % i) for i in range(5) ]
Y = [ Int('y%s' % i) for i in range(5) ]
print X, Y
X_plus_Y = [ X[i] + Y[i] for i in range(5) ]
X_gt_Y = [ X[i] > Y[i] for i in range(5) ]
print X_plus_Y
print X_gt_Y
a = And(X_gt_Y)
print a
solve(a)
```

```
[x0, x1, x2, x3, x4] [y0, y1, y2, y3, y4]
[x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4]
[x0 > y0, x1 > y1, x2 > y2, x3 > y3, x4 > y4]
And(x0 > y0, x1 > y1, x2 > y2, x3 > y3, x4 > y4)
[y4 = 0, x4 = 1, y3 = 0, x3 = 1, y2 = 0, x2 = 1,
y1 = 0, x1 = 1, y0 = 0, x0 = 1]
```


Problem 1: Program Equivalence

Consider the two code fragments.

```
if (!a&&!b) then h
else if (!a) then g else f
if (a) then f
else if (b) then g else h
```

The latter might have been generated from an optimizing compiler. We would like to prove that the two programs are equivalent.

Encoding in Propositional Logic

The if-then-else construct can be replaced by a PL formula as follows:

$$
\text { if } x \text { then } y \text { else } z \equiv(x \wedge y) \vee(\neg \boldsymbol{x} \wedge z)
$$

The problem of checking the equivalence is to check the validity of the formula:

$$
\begin{aligned}
& F:(\neg a \wedge \neg b) \wedge h \vee \neg(\neg a \wedge \neg b) \wedge(\neg a \wedge g \vee a \wedge f) \\
& \Longleftrightarrow a \wedge f \vee \neg a \wedge(b \wedge g \vee \neg b \wedge h)
\end{aligned}
$$

If $\neg \boldsymbol{F}$ is unsatisfiable, the two expressions are equivalent. Write a Python program that checks the validity of the formula \boldsymbol{F}.

Problem 2: Seat Assignment

Consider three persons A, B, and C who need to be seated in a row. There are three constraints:

- A does not want to sit next to C
- A does not want to sit in the leftmost chair
- B does not want to sit to the right of C

We would like to check if there is a seat assignment for the three persons that satisfies the above constraints.

Encoding in Propositional Logic

To encode the problem, let $\boldsymbol{X}_{i \boldsymbol{j}}$ be boolean variables such that

$\boldsymbol{X}_{\boldsymbol{i j}} \Longleftrightarrow$ person \boldsymbol{i} seats in chair \boldsymbol{j}

We need to encode two types of constraints.

- Valid assignments:
- Every person is seated

$$
\bigwedge_{i} \bigvee_{j} X_{i j}
$$

- Every seat is occupied

$$
\bigwedge_{j} \bigvee_{i} X_{i j}
$$

- One person per seat

$$
\bigwedge_{i, j}\left(X_{i j} \Longrightarrow \bigwedge_{k \neq j} \neg X_{i k}\right)
$$

Encoding in Propositional Logic

- Problem constraints:
- A does not want to sit next to C:

$$
\left(\boldsymbol{X}_{00} \Longrightarrow \neg \boldsymbol{X}_{21}\right) \wedge\left(\boldsymbol{X}_{01} \Longrightarrow\left(\neg \boldsymbol{X}_{20} \wedge \neg \boldsymbol{X}_{22}\right)\right) \wedge\left(\boldsymbol{X}_{02} \Longrightarrow \neg \boldsymbol{X}_{21}\right)
$$

- A does not want to sit in the leftmost chair

$$
\neg \boldsymbol{X}_{00}
$$

- B does not want to sit to the right of C

$$
\left(\boldsymbol{X}_{20} \Longrightarrow \neg \boldsymbol{X}_{11}\right) \wedge\left(\boldsymbol{X}_{21} \Longrightarrow \neg \boldsymbol{X}_{12}\right)
$$

Write a Python program that solves the problem.

Problem 3: Eight Queens

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens attack each other. Thus, a solution requires that no two queens share the same row, column, or diagonal.

Encoding

Define boolean variables $\boldsymbol{Q}_{\boldsymbol{i}}$ as follows:
$\boldsymbol{Q}_{\boldsymbol{i}}$: the column position of the queen in row \boldsymbol{i}

- Each queen is in a column $\{1, \ldots, 8\}$:

$$
\bigwedge_{i=1}^{8} 1 \leq Q_{i} \wedge Q_{i} \leq 8
$$

- No queens share the same column:

$$
\bigwedge_{i=1}^{8} \bigwedge_{j=1}^{8}\left(i \neq j \Longrightarrow Q_{i} \neq Q_{j}\right)
$$

- No queens share the same diagonal:

$$
\bigwedge_{i=1}^{8} \bigwedge_{j=1}^{i}\left(i \neq j \Longrightarrow Q_{i}-Q_{j} \neq i-j \wedge Q_{i}-Q_{j} \neq j-i\right)
$$

In Python

```
from z3 import *
def print_board (r):
        for i in range(8):
            for }\textrm{j}\mathrm{ in range(8):
                                print 1,
            else:
                        print 0,
            print ","
Q [ Int ("Q_%i" % (i+1)) for i in range(8) ]
val_c = And (1<= Q[i], Q[i]<= 8) for i in range(8)]
col_c [ Implies (i <> j, Q[i] <>Q Q j]) for i in range(8)
for j in range(8) ]
16 diag_c = [ Implies (i <> j, And (Q[i]-Q[j] != i-j, Q[i]-Q[j]
    != j-i)) for i in range(8) for j in range(i)]
```


In Python

```
\(\mathrm{s}=\) Solver ()
s.add (val_c + col_c + diag_c)
res \(=\) s.check ()
if res == sat:
    \(\mathrm{m}=\mathrm{s}\). model ()
    \(r=[m\).evaluate ( \(Q[i]\) ) for \(i\) in range (8) ]
    print_board (r)
    print ""
```

\$ python queens.py
00010000
01000000
00000001
00000100
10000000
00100000
00001000
00000010

Finding All Solutions

There are multiple solutions to the eight queens problem. For example, the following can also be a solution:

0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	1	0	0
0	1	0	0	0	0	0	0

How many different solutions can you find? Write a Python program that finds all solutions of the problem.

