AAA615: Formal Methods

Lecture 4 — Problem-Solving with SMT Solvers

Hakjoo Oh
2017 Fall

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 1/17

The Z3 SMT Solver

@ A popular SMT solver from Microsoft Research:
https://github.com/Z3Prover/z3

@ Supported theories:

» Propositional Logic
Theory of Equality
Uninterpreted Functions
Arithmetic
Arrays
Bit-vectors, ...

vV vy VvYy

v

@ References

» 73 Guide
https://rise4fun.com/z3/tutorialcontent/guide

» Z3 API in Python
http://ericpony.github.io/z3py-tutorial/guide-examples.htm

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 2/17

https://rise4fun.com/z3/tutorialcontent/guide
http://ericpony.github.io/z3py-tutorial/guide-examples.htm

Propositional Logic

1 p = Bool('p’)
> q = Bool('q")
3 r = Bool('r")
4 solve(Implies(p, q), r = Not(q), Or(Not(p), r))

[q = False, p = False, r = Truel

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 3/17

Arithmetic

from z3 import =*

.y < 10, x + 2xy = T7)

x
I
Y
o
j5)
—~
x
\/\;

solve (x*x2 + y*x2 > 3, x*x3 + y < 5)

$ python test.py
[y =0, x=7]
[x = 1/8, y = 2]

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 4 /17

BitVectors

1 x = BitVec('x", 32)
2y = BitVec('y', 32)
3

4 solve(x & y = 7y)
5 solve(x >> 2 = 3)
6 solve(x << 2 = 3)
7 solve(x << 2 = 24)

[y = 4294967295, x = 0]

[x = 12]
no solution
[x = 6]

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 5/17

Uninterpreted Functions

x = Int('x")
y = Int('y")
f = Function('f’', IntSort(), IntSort())
s = Solver()

s.add(f(f(x)) = x, f(x) =y, x !=vy)

print s.check()

© 0 N o U W N R

-
S)

m = s.model ()
print m

= = =
w N R

print "f(f(x)) =", m.evaluate(f(f(x)))

4 print " f(x) ", m.evaluate(f(x))
sat
[x =0, y=1, £f=1[0->1,1->0, else -> 1]]
f(£fx) =0
f(x) =1

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 6 /17

Constraint Generation with Python List

1 X =1 Int('x%s" % i) for i in range(5)]

2 Y = [Int('y%s' % i) for i in range(5)]

3 print X, Y

4 X_plus Y = [X[i] + Y[i] for i in range(5)]
5 Xegt.Y = [X[i] > Y[i] for i in range(5)]

6 print X_plus_.Y

7 print X_gt.Y

s a = And(X_gt_Y)

9 print a

Ll
o

solve(a)

[x0, x1, x2, x3, x4] [y0, y1, y2, y3, y4]

[x0 + yO, x1 + y1, x2 + y2, x3 + y3, x4 + y4]
[x0 > yO, x1 > y1, x2 > y2, x3 > y3, x4 > y4]
And(x0 > yO, x1 > y1, x2 > y2, x3 > y3, x4 > y4)
[y4 =0, x4=1, y3=0, x3=1, y2 =0, x2 =1,
yl =0, x1 =1, yo =0, x0 = 1]

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 7/17

Problem 1: Program Equivalence

Consider the two code fragments.

if ('a&&'b) then h
else if ('a) then g else f

if (a) then f
else if (b) then g else h

The latter might have been generated from an optimizing compiler. We
would like to prove that the two programs are equivalent.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 8 /17

Encoding in Propositional Logic

The if-then-else construct can be replaced by a PL formula as follows:
if x thenyelse z = (x Ay) VvV (—x A 2)

The problem of checking the equivalence is to check the validity of the
formula:

F:(maAN-b)AhV(maA-b)A(maAgVaAf)
< aANfV-aANn(bAgV-bAh)

If = F is unsatisfiable, the two expressions are equivalent. Write a Python
program that checks the validity of the formula F'.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 9 /17

Problem 2: Seat Assignment
Consider three persons A, B, and C who need to be seated in a row. There
are three constraints:

@ A does not want to sit next to C

@ A does not want to sit in the leftmost chair

@ B does not want to sit to the right of C

We would like to check if there is a seat assignment for the three persons
that satisfies the above constraints.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 10 / 17

Encoding in Propositional Logic
To encode the problem, let X;; be boolean variables such that
X;j <= person i seats in chair j

We need to encode two types of constraints.
e Valid assignments:
» Every person is seated

AV X
i g

» Every seat is occupied
AV Xis
i i

» One person per seat

/\(X'LJ — /\ _‘Xik:)

2% k#j

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 11 /17

Encoding in Propositional Logic

@ Problem constraints:
» A does not want to sit next to C:

(XOO — _‘X21)/\(X01 > (—|X20/\—|X22))/\(X02 — —|X21)

> A does not want to sit in the leftmost chair
—Xoo
» B does not want to sit to the right of C
(X20 = X11) A (X21 = —X12)

Write a Python program that solves the problem.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 12 /17

Problem 3: Eight Queens

The eight queens puzzle is the problem of placing eight chess queens on an
8x8 chessboard so that no two queens attack each other. Thus, a solution
requires that no two queens share the same row, column, or diagonal.

N W U1 OO N
N WA U1 OO N

Hakjoo Oh AAA615 2017 Fall, Lecture 4

Encoding
Define boolean variables QQ; as follows:

Q); : the column position of the queen in row 2

e Each queen is in a column {1,...,8}:

8
AN1<QinQi<8

i=1
@ No queens share the same column:
8 8
ANNGC#i = Qi#Qj)
i=1j=1
@ No queens share the same diagonal:
8 4
ANNGC#i = Qi—-Q;#i—jAQi—Q;#j—1i)
i=1j=1

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 14 /17

In Python

1 from z3 import x

2

3 def print_board (r):

4 for i in range(8):

5 for j in range(8):
6 if r[i] = j+1:
7 print 1,

8 else:

9 print 0,

10 print

2 Q=1 Int ("Q%i" % (i+1)) for i in range(8)]

4 val_.c = [And (1 <= Q[i], Q[i] <= 8) for i in range(8)]

15 col_c = [Implies (i <> j, Q[i] < Q[j]) for i in range(8)
for j in range(8)]

16 diag_c = [Implies (i < j, And (Q[i]—-Q[j] !'= i—=j, Q[i]—-Q[]j]
I= j—i)) for i in range(8) for j in range(i)]

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 15 / 17

In Python

m =
r =

[N I N N

0

O O O O O O O &«
O O O O O o+ O
O O O O O O

O O O O O O o

1

= O O O O O O

O O O =~ OO
=, O O O O O O
O O O O O = O

s = Solver()
s.add (val_c 4+ col_c + diag_-c)
res = s.check()
if res = sat:
s.model ()

[m.evaluate (Q[i]) for
print_board (r)

print ""

0

0

python queens.py

0

in

range (8)

Hakjoo Oh AAA615 2017 Fall, Lecture 4

]

October 15, 2017

16 / 17

Finding All Solutions

There are multiple solutions to the eight queens problem. For example, the
following can also be a solution:

00001000
00000010
00010000
10000000
00100000
00000O0OO0C1
00000100
01000000

How many different solutions can you find? Write a Python program that
finds all solutions of the problem.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 17 /17

