
AAA615: Formal Methods

Lecture 4 — Problem-Solving with SMT Solvers

Hakjoo Oh
2017 Fall

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 1 / 17

The Z3 SMT Solver

A popular SMT solver from Microsoft Research:

https://github.com/Z3Prover/z3

Supported theories:
I Propositional Logic
I Theory of Equality
I Uninterpreted Functions
I Arithmetic
I Arrays
I Bit-vectors, ...

References

I Z3 Guide
https://rise4fun.com/z3/tutorialcontent/guide

I Z3 API in Python
http://ericpony.github.io/z3py-tutorial/guide-examples.htm

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 2 / 17

https://rise4fun.com/z3/tutorialcontent/guide
http://ericpony.github.io/z3py-tutorial/guide-examples.htm

Propositional Logic

1 p = Bool (’ p ’)
2 q = Bool (’ q ’)
3 r = Bool (’ r ’)
4 s o l v e (Im p l i e s (p , q) , r == Not (q) , Or (Not (p) , r))

[q = False, p = False, r = True]

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 3 / 17

Arithmetic

1 from z3 impor t ∗
2

3 x = I n t (’ x ’)
4 y = I n t (’ y ’)
5 s o l v e (x > 2 , y < 10 , x + 2∗y == 7)
6

7 x = Rea l (’ x ’)
8 y = Rea l (’ y ’)
9 s o l v e (x∗∗2 + y∗∗2 > 3 , x∗∗3 + y < 5)

$ python test.py

[y = 0, x = 7]

[x = 1/8, y = 2]

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 4 / 17

BitVectors

1 x = BitVec (’ x ’ , 32)
2 y = BitVec (’ y ’ , 32)
3

4 s o l v e (x & y == ˜y)
5 s o l v e (x >> 2 == 3)
6 s o l v e (x << 2 == 3)
7 s o l v e (x << 2 == 24)

[y = 4294967295, x = 0]

[x = 12]

no solution

[x = 6]

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 5 / 17

Uninterpreted Functions

1 x = I n t (’ x ’)
2 y = I n t (’ y ’)
3 f = Funct i on (’ f ’ , I n t S o r t () , I n t S o r t ())
4

5 s = So l v e r ()
6 s . add (f (f (x)) == x , f (x) == y , x != y)
7

8 p r i n t s . check ()
9

10 m = s . model ()
11 p r i n t m
12

13 p r i n t ” f (f (x)) =”, m. e v a l u a t e (f (f (x)))
14 p r i n t ” f (x) =”, m. e v a l u a t e (f (x))

sat

[x = 0, y = 1, f = [0 -> 1, 1 -> 0, else -> 1]]

f(f(x)) = 0

f(x) = 1

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 6 / 17

Constraint Generation with Python List

1 X = [I n t (’ x%s ’ % i) f o r i i n range (5)]
2 Y = [I n t (’ y%s ’ % i) f o r i i n range (5)]
3 p r i n t X, Y
4 X plus Y = [X[i] + Y[i] f o r i i n range (5)]
5 X gt Y = [X[i] > Y[i] f o r i i n range (5)]
6 p r i n t X p lus Y
7 p r i n t X gt Y
8 a = And(X gt Y)
9 p r i n t a

10 s o l v e (a)

[x0, x1, x2, x3, x4] [y0, y1, y2, y3, y4]

[x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4]

[x0 > y0, x1 > y1, x2 > y2, x3 > y3, x4 > y4]

And(x0 > y0, x1 > y1, x2 > y2, x3 > y3, x4 > y4)

[y4 = 0, x4 = 1, y3 = 0, x3 = 1, y2 = 0, x2 = 1,

y1 = 0, x1 = 1, y0 = 0, x0 = 1]

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 7 / 17

Problem 1: Program Equivalence

Consider the two code fragments.

if (!a&&!b) then h

else if (!a) then g else f

if (a) then f

else if (b) then g else h

The latter might have been generated from an optimizing compiler. We
would like to prove that the two programs are equivalent.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 8 / 17

Encoding in Propositional Logic

The if-then-else construct can be replaced by a PL formula as follows:

if x then y else z ≡ (x ∧ y) ∨ (¬x ∧ z)

The problem of checking the equivalence is to check the validity of the
formula:

F : (¬a ∧ ¬b) ∧ h ∨ ¬(¬a ∧ ¬b) ∧ (¬a ∧ g ∨ a ∧ f)
⇐⇒ a ∧ f ∨ ¬a ∧ (b ∧ g ∨ ¬b ∧ h)

If ¬F is unsatisfiable, the two expressions are equivalent. Write a Python
program that checks the validity of the formula F .

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 9 / 17

Problem 2: Seat Assignment

Consider three persons A, B, and C who need to be seated in a row. There
are three constraints:

A does not want to sit next to C

A does not want to sit in the leftmost chair

B does not want to sit to the right of C

We would like to check if there is a seat assignment for the three persons
that satisfies the above constraints.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 10 / 17

Encoding in Propositional Logic

To encode the problem, let Xij be boolean variables such that

Xij ⇐⇒ person i seats in chair j

We need to encode two types of constraints.

Valid assignments:
I Every person is seated ∧

i

∨
j

Xij

I Every seat is occupied ∧
j

∨
i

Xij

I One person per seat ∧
i,j

(Xij =⇒
∧
k 6=j

¬Xik)

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 11 / 17

Encoding in Propositional Logic

Problem constraints:
I A does not want to sit next to C:

(X00 =⇒ ¬X21)∧(X01 =⇒ (¬X20∧¬X22))∧(X02 =⇒ ¬X21)

I A does not want to sit in the leftmost chair

¬X00

I B does not want to sit to the right of C

(X20 =⇒ ¬X11) ∧ (X21 =⇒ ¬X12)

Write a Python program that solves the problem.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 12 / 17

Problem 3: Eight Queens

The eight queens puzzle is the problem of placing eight chess queens on an
8x8 chessboard so that no two queens attack each other. Thus, a solution
requires that no two queens share the same row, column, or diagonal.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 13 / 17

Encoding

Define boolean variables Qi as follows:

Qi : the column position of the queen in row i

Each queen is in a column {1, . . . , 8}:
8∧

i=1

1 ≤ Qi ∧Qi ≤ 8

No queens share the same column:

8∧
i=1

8∧
j=1

(i 6= j =⇒ Qi 6= Qj)

No queens share the same diagonal:

8∧
i=1

i∧
j=1

(i 6= j =⇒ Qi −Qj 6= i− j ∧Qi −Qj 6= j − i)

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 14 / 17

In Python

1 from z3 impor t ∗
2

3 de f p r i n t b o a r d (r) :
4 f o r i i n range (8) :
5 f o r j i n range (8) :
6 i f r [i] == j +1:
7 p r i n t 1 ,
8 e l s e :
9 p r i n t 0 ,

10 p r i n t ””
11

12 Q = [I n t (”Q %i ” % (i +1)) f o r i i n range (8)]
13

14 v a l c = [And (1 <= Q[i] , Q[i] <= 8) f o r i i n range (8)]
15 c o l c = [Imp l i e s (i <> j , Q[i] <> Q[j]) f o r i i n range (8)

f o r j i n range (8)]
16 d i a g c = [Imp l i e s (i <> j , And (Q[i]−Q[j] != i−j , Q[i]−Q[j]

!= j−i)) f o r i i n range (8) f o r j i n range (i)]

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 15 / 17

In Python

1 s = So l v e r ()
2 s . add (v a l c + c o l c + d i a g c)
3 r e s = s . check ()
4 i f r e s == sa t :
5 m = s . model ()
6 r = [m. e v a l u a t e (Q[i]) f o r i i n range (8)]
7 p r i n t b o a r d (r)
8 p r i n t ””

$ python queens.py

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 16 / 17

Finding All Solutions

There are multiple solutions to the eight queens problem. For example, the
following can also be a solution:

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

How many different solutions can you find? Write a Python program that
finds all solutions of the problem.

Hakjoo Oh AAA615 2017 Fall, Lecture 4 October 15, 2017 17 / 17

