AAA615: Formal Methods

Lecture 2 - First-Order Logic

Hakjoo Oh

2017 Fall

First-Order Logic

- An extension of propositional logic with predicates, functions, and quantifiers.
- First-order logic is also called predicate logic, first-order predicate calculus, and relational logic.
- First-order logic is expressive enough to make it suitable for reasoning about programs.
- However, it does not admit completely automated reasoning.

cf) First-Order Logic vs. Second-Order Logic

- In first-order logic, quantifications are allowed only for variables.
- In second-order logic, quantifers are allowed for sets, e.g., mathematical induction:

$$
\forall P .((0 \in P \wedge \forall i .(i \in P \rightarrow i+1 \in P)) \rightarrow \forall n .(n \in P))
$$

- In third-order logic, quantifiers for sets of sets.
- In higher-order logic, quantifiers are allowed over arbitrarily nested sets.

Terms

- While formulas in PL evaluate to true or false, terms in FOL evaluate to values other than truth values such as integers, people, etc.
- Basic terms are variables $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \ldots)$ and constants $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \ldots)$.
- Composite terms include \boldsymbol{n}-ary functions applied to \boldsymbol{n} terms, i.e., $\boldsymbol{f}\left(\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}\right)$, where $\boldsymbol{t}_{\boldsymbol{i}}$ s are terms. A constant can be viewed as a 0 -ary function.
- Examples:
- $f(a)$, a unary function f applied to a constant
- $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{b})$, a binary function \boldsymbol{g} applied to a variable \boldsymbol{x} and a constant \boldsymbol{b}
- $f(g(x, f(b)))$

Predicates

- The propositional variables of PL are generalized to predicates in FOL, denoted $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots$
- An \boldsymbol{n}-ary predicate takes \boldsymbol{n} terms as arguments.
- A FOL propositional variable is a 0 -ary predicate, denoted $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{R}$,
- Examples:
- \boldsymbol{P}, a propositional variable (or $\mathbf{0}$-ary predicate)
- $p(f(x), g(x, f(x)))$, a binary predicate applied to two terms

Syntax

- Atom: basic elements
- truth symbols \perp ("false") and \top ("true")
- n-ary predicates applied to n terms
- Literal: an atom $\boldsymbol{\alpha}$ or its negation $\neg \boldsymbol{\alpha}$.
- Formula: a literal or the application of a logical connective (boolean connective) to formulas, or the application of a quantifier to a formula.

$F \rightarrow$	$\perp\|\top\| p\left(t_{1}, \ldots, t_{n}\right)$	atom
1	$\neg \boldsymbol{F}$	negation ("not")
\|	$F_{1} \wedge F_{2}$	conjunction ("and")
	$F_{1} \vee F_{2}$	disjunction (" or")
	$F_{1} \rightarrow F_{2}$	implication ("implies")
	$F_{1} \leftrightarrow F_{2}$	iff (" if and only if')
\|	$\exists x . F[x]$	existential quantification
\|	$\forall x . F[x]$	universal quantification

Notations on Quantification

- In $\forall \boldsymbol{x} . \boldsymbol{F}[\boldsymbol{x}]$ and $\exists \boldsymbol{x} . \boldsymbol{F}[\boldsymbol{x}], \boldsymbol{x}$ is the quantified variable and $\boldsymbol{F}[\boldsymbol{x}]$ is the scope of the quantifier. We say \boldsymbol{x} is bound in $\boldsymbol{F}[\boldsymbol{x}]$.
- $\forall \boldsymbol{x} . \forall \boldsymbol{y} . \boldsymbol{F}[\boldsymbol{x}, \boldsymbol{y}]$ is often abbreviated by $\forall \boldsymbol{x}, \boldsymbol{y} \cdot \boldsymbol{F}[\boldsymbol{x}, \boldsymbol{y}]$.
- The scope of the quantified variable extends as far as possible: e.g.,

$$
\forall x . p(f(x), x) \rightarrow(\exists y \cdot p(f(g(x, y)), g(x, y))) \wedge q(x, f(x))
$$

- A variable is free in $\boldsymbol{F}[\boldsymbol{x}]$ if it is not bound. free (\boldsymbol{F}) and bound (\boldsymbol{F}) denote the free and bound variables of \boldsymbol{F}, respectively. A formula \boldsymbol{F} is closed if \boldsymbol{F} has no free variables. E.g.,

$$
\forall x \cdot p(f(x), y) \rightarrow \forall y \cdot p(f(x), y)
$$

- If $\operatorname{free}(F)=\left\{x_{1}, \ldots, x_{n}\right\}$, then its universal closure is $\forall x_{1} \ldots \forall x_{n} . F$ and its existential closure is $\exists x_{1} \ldots \exists x_{n} . \boldsymbol{F}$. They are usually written $\forall * . \boldsymbol{F}$ and $\exists * . \boldsymbol{F}$.

Example FOL Formulas

- Every dog has its day.

$$
\forall x . \operatorname{dog}(x) \rightarrow \exists y . \operatorname{day}(y) \wedge i t s D a y(x, y)
$$

- Some dogs have more days than others.

$$
\exists x, y \cdot \operatorname{dog}(x) \wedge \operatorname{dog}(y) \wedge \# \operatorname{days}(x)>\# \operatorname{days}(y)
$$

- The length of one side of a triangle is less than the sum of the lengths of the other two sides.
$\forall x, y, z . \operatorname{triangle}(x, y, z) \rightarrow l e n g t h(x)<l e n g t h(y)+l e n g t h(z)$
- Fermat's Last Theorem.

```
\(\forall n . \operatorname{integer}(n) \wedge n>2\)
    \(\rightarrow \forall x, y, z\).
        \(\operatorname{integer}(x) \wedge \operatorname{integer}(y) \wedge \operatorname{integer}(z) \wedge x>0 \wedge y>0 \wedge z>0\)
        \(\rightarrow x^{n}+y^{n} \neq z^{n}\)
```


Interpretation

- A FOL interpretation $I:\left(D_{I}, \alpha_{I}\right)$ is a pair of a domain and an assignment.
- D_{I} is a nonempty set of values such as integers, real numbers, dogs, people, etc.
- α_{I} maps variables, constant, functions, and predicate symbols to elements, functions, and predicates over D_{I}.
\star each variable \boldsymbol{x} is assigned a value from $\boldsymbol{D}_{\boldsymbol{I}}$
\star each n-ary function symbol f is assigned an n-ary function $f_{I}: D_{I}^{n} \rightarrow D_{I}$.
\star each \boldsymbol{n}-ary predicate symbol \boldsymbol{p} is assigned an \boldsymbol{n}-ary predicate $p_{I}: D_{I}^{n} \rightarrow\{$ true, false $\}$.
- Example: $\boldsymbol{F}: \boldsymbol{x}+\boldsymbol{y}>\boldsymbol{z} \rightarrow \boldsymbol{y}>\boldsymbol{z}-\boldsymbol{x}$
- Note,,$+->$ are just symbols: $p(f(x, y), z) \rightarrow p(y, g(z, x))$.
- Domain:

$$
D_{I}=\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}
$$

- Assignment:

$$
\alpha_{I}=\left\{+\mapsto+_{\mathbb{Z}},-\mapsto-_{\mathbb{Z}},>\mapsto>_{\mathbb{Z}}, x \mapsto 13, y \mapsto 42, z \mapsto 1, \ldots\right\}
$$

Semantics of First-Order Logic

Given an interpretation $\boldsymbol{I}:\left(\boldsymbol{D}_{I}, \boldsymbol{\alpha}_{\boldsymbol{I}}\right), \boldsymbol{I} \vDash \boldsymbol{F}$ or $\boldsymbol{I} \not \models \boldsymbol{F}$.

$$
\begin{aligned}
& I \vDash \top, \quad I \nvdash \perp, \\
& I \vDash p\left(t_{1}, \ldots, t_{n}\right) \quad \text { iff } \quad \alpha_{I}\left[p\left(t_{1}, \ldots, t_{n}\right)\right]=\text { true } \\
& \boldsymbol{I} \vDash \neg \boldsymbol{F} \\
& I \vDash F_{1} \wedge F_{2} \quad \text { iff } I \vDash F_{1} \text { and } I \vDash F_{2} \\
& \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \vee \boldsymbol{F}_{\mathbf{2}} \quad \text { iff } \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{1}} \text { or } \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{2}} \\
& I \vDash F_{1} \rightarrow F_{2} \\
& \text { iff } \boldsymbol{I} \not \models \boldsymbol{F}_{\mathbf{1}} \text { or } \boldsymbol{I} \vDash \boldsymbol{F}_{\mathbf{2}} \\
& I \vDash F_{1} \leftrightarrow F_{2} \quad \text { iff }\left(I \vDash F_{1} \text { and } I \vDash F_{2}\right) \text { or }\left(I \nvdash F_{1} \text { and } I \not \models F_{2}\right) \\
& \boldsymbol{I} \vDash \forall \boldsymbol{x} . \boldsymbol{F} \\
& I \vDash \exists x . F \\
& \text { iff for all } v \in D_{I}, I \triangleleft\{x \mapsto v\} \vDash F \\
& \text { iff there exists } v \in D_{I}, I \triangleleft\{x \mapsto v\} \vDash F
\end{aligned}
$$

where $\boldsymbol{J}: \boldsymbol{I} \triangleleft\{\boldsymbol{x} \mapsto \boldsymbol{v}\}$ denotes an \boldsymbol{x}-variant of \boldsymbol{I} :

- $D_{J}=D_{I}$
- $\alpha_{J}[y]=\alpha_{I}[y]$ for all constant, free variable, function, and predicate symbols y, except that $\alpha_{J}(x)=v$.

Example

$$
F: \exists x . f(x)=g(x)
$$

Consider the interpretation $I:\left(D:\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}, \alpha_{I}\right)$:

$$
\alpha_{I}:\left\{f\left(v_{1}\right) \mapsto v_{1}, f\left(v_{2}\right) \mapsto v_{2}, g\left(v_{1}\right) \mapsto v_{2}, g\left(v_{2}\right) \mapsto v_{1}\right\}
$$

Compute the truth value of \boldsymbol{F} under \boldsymbol{I} as follows:

1. $I \triangleleft\{x \mapsto v\} \quad \nvdash \quad f(x)=g(x) \quad$ for $v \in D$
2. $\quad I \not \models \exists x . f(x)=g(x)$ since $v \in D$ is arbitrary

Satisfiability and Validity

- A formula \boldsymbol{F} is satisfiable iff there exists an interpretation \boldsymbol{I} such that $\boldsymbol{I} \vDash \boldsymbol{F}$.
- A formula \boldsymbol{F} is valid iff for all interpretations $\boldsymbol{I}, \boldsymbol{I} \vDash \boldsymbol{F}$.
- Satisfiability and validity only apply to closed FOL formulas.
- If we say that a formula \boldsymbol{F} such that $\operatorname{free}(\boldsymbol{F}) \neq \emptyset$ is valid, we mean that its universal closure $\forall * . \boldsymbol{F}$ is valid.
- If we say that \boldsymbol{F} is satisfiable, we mean that its existential closure $\exists * . \boldsymbol{F}$ is satisfiable.
- Duality still holds:

$$
\forall * . \boldsymbol{F} \text { is valid } \Longleftrightarrow \exists * . \neg \boldsymbol{F} \text { is unsatisfiable. }
$$

Extension of the Semantic Argument Method

Most of the proof rules from PL carry over to FOL:

$$
\begin{array}{cl}
\frac{\boldsymbol{I} \vDash \neg \boldsymbol{F}}{\boldsymbol{I} \not \models \boldsymbol{F}} & \frac{\boldsymbol{I} \not \models \neg \boldsymbol{F}}{\boldsymbol{I} \vDash \boldsymbol{F}} \\
\frac{\boldsymbol{I} \vDash \boldsymbol{F} \wedge \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{F}, \boldsymbol{I} \vDash \boldsymbol{G}} & \frac{\boldsymbol{I} \not \models \boldsymbol{F} \wedge \boldsymbol{G}}{\boldsymbol{I} \not \models \boldsymbol{F} \mid \boldsymbol{I} \not \models \boldsymbol{G}} \\
\frac{\boldsymbol{I} \vDash \boldsymbol{F} \vee \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{F} \mid \boldsymbol{I} \vDash \boldsymbol{G}} & \frac{\boldsymbol{I} \not \models \boldsymbol{F} \vee \boldsymbol{G}}{\boldsymbol{I} \not \models \boldsymbol{F}, \boldsymbol{I} \not \models \boldsymbol{G}} \\
\frac{\boldsymbol{I} \vDash \boldsymbol{F} \rightarrow \boldsymbol{G}}{\boldsymbol{I} \nvdash \boldsymbol{F} \mid \boldsymbol{I} \vDash \boldsymbol{G}} & \frac{\boldsymbol{I} \not \models \boldsymbol{F} \rightarrow \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{F}, \boldsymbol{I} \not \models \boldsymbol{G}} \\
\frac{\boldsymbol{I} \vDash \boldsymbol{F} \leftrightarrow \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{F} \wedge \boldsymbol{G} \mid \boldsymbol{I} \vDash \neg \boldsymbol{F} \wedge \neg \boldsymbol{G}} & \frac{\boldsymbol{I} \not \models \boldsymbol{F} \leftrightarrow \boldsymbol{I} \leftrightarrow \boldsymbol{G}}{\boldsymbol{I} \vDash \boldsymbol{F} \wedge \neg \boldsymbol{G} \mid \boldsymbol{I} \vDash \neg \boldsymbol{F} \wedge \boldsymbol{G}}
\end{array}
$$

Rules for Quantifiers

- Universal elimination I:

$$
\frac{\boldsymbol{I} \vDash \forall \boldsymbol{x} . \boldsymbol{F}}{\boldsymbol{I} \triangleleft\{\boldsymbol{x} \mapsto \boldsymbol{v}\} \vDash \boldsymbol{F}} \text { for any } \boldsymbol{v} \in \boldsymbol{D}_{\boldsymbol{I}}
$$

- Existential elimination I:

$$
\frac{I \not \models \exists x . F}{I \triangleleft\{x \mapsto v\} \not \models F} \text { for any } v \in D_{I}
$$

- Existential elimination II:

$$
\frac{I \vDash \exists x . \boldsymbol{F}}{I \triangleleft\{x \mapsto v\} \vDash \boldsymbol{F}} \text { for a fresh } \boldsymbol{v} \in D_{I}
$$

- Universal elimination II:

$$
\frac{\boldsymbol{I} \not \models \forall x . \boldsymbol{F}}{I \triangleleft\{x \mapsto v\} \nvdash \boldsymbol{F}} \text { for a fresh } \boldsymbol{v} \in \boldsymbol{D}_{\boldsymbol{I}}
$$

Contradiction Rule

A contradiction exists if two variants of the original interpretation I disagree on the truth value of an \boldsymbol{n}-ary predicate \boldsymbol{p} for a given tuple of domain values:

$$
\begin{aligned}
& J: I \triangleleft \cdots \vDash p\left(s_{1}, \ldots, s_{n}\right) \\
& K: I \triangleleft \cdots \not \models p\left(t_{1}, \ldots, t_{n}\right) \\
& I \vDash \perp
\end{aligned} \text { for } i \in\{1, \ldots, n\}, \alpha_{J}\left[s_{i}\right]=\alpha_{K}\left[t_{i}\right]
$$

Example 1

Prove that the formula is valid:

$$
F:(\forall x . p(x)) \rightarrow(\forall y . p(y))
$$

Suppose not; there is an interpretation \boldsymbol{I} such that $\boldsymbol{I} \not \models \boldsymbol{F}$.

$$
\begin{array}{lll}
\text { 1. } & \boldsymbol{I} \not \models \boldsymbol{F} & \text { assumption } \\
\text { 2. } & \boldsymbol{I} \vDash \forall \boldsymbol{x} \cdot \boldsymbol{p}(\boldsymbol{x}) & 1 \text { and } \rightarrow \\
\text { 3. } & \boldsymbol{I \not \models \forall \boldsymbol { y } \cdot \boldsymbol { p } (\boldsymbol { y })} & 1 \text { and } \rightarrow \\
\text { 4. } & \boldsymbol{I} \triangleleft\{\boldsymbol{y} \mapsto \boldsymbol{v}\} \not \models \boldsymbol{p}(\boldsymbol{y}) & 3 \text { and } \forall \text {, for some } \boldsymbol{v} \in \boldsymbol{D}_{\boldsymbol{I}} \\
\text { 5. } & \boldsymbol{I} \triangleleft\{\boldsymbol{x} \mapsto \boldsymbol{v}\} \vDash \boldsymbol{p}(\boldsymbol{x}) & 2 \text { and } \forall \\
\mathbf{6 .} & \boldsymbol{I} \vDash \perp & 4 \text { and } 5
\end{array}
$$

Example 2

Prove that the formula is valid:

$$
F:(\forall x \cdot p(x)) \leftrightarrow(\neg \exists x . \neg p(x))
$$

We need to show both of forward and backward directions.

$$
F_{1}:(\forall x \cdot p(x)) \rightarrow(\neg \exists x . \neg p(x)), F_{2}:(\forall x \cdot p(x)) \leftarrow(\neg \exists x \cdot \neg p(x))
$$

Suppose $\boldsymbol{F}_{\mathbf{1}}$ is not valid; there is an interpretation \boldsymbol{I} such that $\boldsymbol{I} \not \models \boldsymbol{F}_{\mathbf{1}}$.

$$
\begin{array}{lll}
\text { 1. } & \boldsymbol{I} \vDash \forall \boldsymbol{x} \cdot \boldsymbol{p}(\boldsymbol{x}) & \text { assumption } \\
\text { 2. } & \boldsymbol{I} \not \models \neg \exists \boldsymbol{x} . \neg \boldsymbol{p}(\boldsymbol{x}) & \text { assumption } \\
\text { 3. } & \boldsymbol{I} \vDash \exists \boldsymbol{x .} \neg \boldsymbol{p}(\boldsymbol{x}) & 2 \text { and } \neg \\
\text { 4. } & \boldsymbol{I} \triangleleft\{\boldsymbol{x} \mapsto \boldsymbol{v}\} \vDash \neg \boldsymbol{p}(\boldsymbol{x}) & 3 \text { and } \exists \text {, for some } \boldsymbol{v} \in D_{\boldsymbol{I}} \\
\text { 5. } & \boldsymbol{I} \notin\{\boldsymbol{x} \mapsto \boldsymbol{v}\} \vDash \boldsymbol{p}(\boldsymbol{x}) & 1 \text { and } \forall \\
\text { 6. } & \boldsymbol{I} \vDash \perp & 4 \text { and } 5
\end{array}
$$

Exercise) Prove that $\boldsymbol{F}_{\mathbf{2}}$ is valid.

Example 3

Prove that the formula is invalid:

$$
F:(\forall x \cdot p(x, x)) \rightarrow(\exists x \cdot \forall y \cdot p(x, y))
$$

It suffices to find an interpretation \boldsymbol{I} such that $\boldsymbol{I} \vDash \neg \boldsymbol{F}$. Choose $D_{I}=\{0,1\}$ and $p_{I}=\{(\mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1})\}$. The interpretation falsifies \boldsymbol{F}.

Soundness and Completeness of FOL

A proof system is sound if every provable formula is valid. It is complete if every valid formula is provable.

Theorem (Sound)
If every branch of a semantic argument proof of $\boldsymbol{I} \not \models \boldsymbol{F}$ closes, then \boldsymbol{F} is valid.

Theorem (Complete)
Each valid formula \boldsymbol{F} has a semantic argument proof.

Substitution

- A substitution is a map from FOL formulas to FOL formulas:

$$
\sigma:\left\{F_{1} \mapsto G_{1}, \ldots, F_{n} \mapsto G_{n}\right\}
$$

- To compute $\boldsymbol{F} \boldsymbol{\sigma}$, replace each occurrence of $\boldsymbol{F}_{\boldsymbol{i}}$ in \boldsymbol{F} by $\boldsymbol{G}_{\boldsymbol{i}}$ simultaneously.
- For example, consider formula

$$
F:(\forall x . p(x, y)) \rightarrow q(f(y), x)
$$

and substitution

$$
\sigma:\{x \mapsto g(x), y \mapsto f(x), q(f(y), x) \mapsto \exists x . h(x, y)\}
$$

Then,

$$
F \sigma:(\forall x \cdot p(g(x), f(x))) \rightarrow \exists x . h(x, y)
$$

Safe Substitution

- A restricted application of substitution, which has a useful semantic property.
- Idea: Before applying substitution, replace bound variables to fresh variables.
- For example, consider formula

$$
F:(\forall x . p(x, y)) \rightarrow q(f(y), x)
$$

and substitution

$$
\sigma:\{x \mapsto g(x), y \mapsto f(x), q(f(y), x) \mapsto \exists x . h(x, y)\}
$$

Then, safe substitution proceeds
(1) Renaming: $\left(\forall x^{\prime} \cdot p\left(x^{\prime}, y\right)\right) \rightarrow q(f(y), x)$
(2) Substitution: $\left(\forall x^{\prime} \cdot p\left(x^{\prime}, f(x)\right)\right) \rightarrow \exists x \cdot h(x, y)$

Safe Substitution

A FOL version of Substitution of Equivalent Formulas:
Theorem
Consider substitution

$$
\sigma:\left\{F_{1} \mapsto G_{1}, \ldots, G_{n} \mapsto G_{n}\right\}
$$

such that for each $\boldsymbol{i}, \boldsymbol{F}_{\boldsymbol{i}} \Longleftrightarrow \boldsymbol{G}_{\boldsymbol{i}}$. Then $\boldsymbol{F} \Longleftrightarrow \boldsymbol{F} \boldsymbol{\sigma}$ when $\boldsymbol{F} \boldsymbol{\sigma}$ is computed as a safe substitution.

A FOL version of Valid Templates:
Theorem
If \boldsymbol{H} is a valid formula schema and $\boldsymbol{\sigma}$ is a substitution obeying \boldsymbol{H} 's side conditions, then $\boldsymbol{H} \boldsymbol{\sigma}$ is also valid.

Examples on Valid Templates

- Consider valid formula schema:

$$
H:(\forall x . F) \leftrightarrow(\neg \exists x . \neg F)
$$

The formula

$$
G:(\forall x \cdot \exists y \cdot q(x, y) \leftrightarrow(\neg \exists x \cdot \neg \exists y \cdot q(x, y))
$$

is valid because $\boldsymbol{G}=\boldsymbol{H} \boldsymbol{\sigma}$ for $\boldsymbol{\sigma}:\{\boldsymbol{F} \mapsto \exists \boldsymbol{y} \cdot \boldsymbol{q}(\boldsymbol{x}, \boldsymbol{y})\}$.

- Consider valid formula schema:

$$
\boldsymbol{H}:(\forall \boldsymbol{x} . \boldsymbol{F}) \leftrightarrow \boldsymbol{F} \quad \text { provided } \boldsymbol{x} \notin \text { free }(\boldsymbol{F})
$$

The formula

$$
G:(\forall x \cdot \exists y \cdot p(z, y)) \leftrightarrow \exists y \cdot p(z, y)
$$

is valid because $\boldsymbol{G}=\boldsymbol{H} \boldsymbol{\sigma}$ for $\boldsymbol{\sigma}:\{\boldsymbol{F} \mapsto \exists \boldsymbol{y} \cdot \boldsymbol{p}(\boldsymbol{z}, \boldsymbol{y})\}$.

Negation Normal Form

- A FOL formula \boldsymbol{F} can be transformed into NNF by using the following equivalences:

$$
\begin{aligned}
& \neg \neg F_{1} \Longleftrightarrow F_{1} \\
& \neg \top \Longleftrightarrow \perp \\
& \neg\left(F_{1} \wedge F_{2}\right) \Longleftrightarrow \neg F_{1} \vee \neg F_{2} \\
& \neg\left(F_{1} \vee F_{2}\right) \Longleftrightarrow \neg F_{1} \wedge \neg F_{2} \\
& F_{1} \rightarrow F_{2} \Longleftrightarrow \neg F_{1} \vee F_{2} \\
& F_{1} \leftrightarrow F_{2} \Longleftrightarrow\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right) \\
& \neg \forall x . F[x] \Longleftrightarrow \exists x . \neg F[x] \\
& \neg \exists x . F[x] \Longleftrightarrow \forall x . \neg F[x]
\end{aligned}
$$

Example

Convert the formula into NNF:

$$
G: \forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)
$$

(1) Use the equivalence $\boldsymbol{F}_{1} \rightarrow F_{2} \Longleftrightarrow \neg F_{1} \vee F_{2}$:

$$
\forall x \cdot \neg(\exists y \cdot p(x, y) \wedge p(x, z)) \vee \exists w \cdot p(x, w)
$$

(2) Use the equivalence $\neg \exists \boldsymbol{x} \cdot \boldsymbol{F}[\boldsymbol{x}] \Longleftrightarrow \forall \boldsymbol{x} \cdot \neg \boldsymbol{F}[\boldsymbol{x}]$:

$$
\forall x \cdot(\forall y \cdot \neg(p(x, y) \wedge p(x, z))) \vee \exists w \cdot p(x, w)
$$

(3) Use De Morgan's Law:

$$
\forall x \cdot(\forall y \cdot \neg p(x, y) \vee \neg p(x, z)) \vee \exists w \cdot p(x, w)
$$

Prenex Normal Form (PNF)

- A formula is in prenex normal form (PNF) if all of its quantifiers appear at the beginning of the formula:

$$
\mathbf{Q}_{1} x_{1} \ldots \mathbf{Q}_{n} x_{n} . F\left[x_{1}, \ldots, x_{n}\right]
$$

where $\mathbf{Q}_{i} \in\{\forall, \exists\}$ and \boldsymbol{F} is quantifier-free.

- Every FOL \boldsymbol{F} has an equivalent PNF. To convert \boldsymbol{F} into PNF,
(1) Convert \boldsymbol{F} into NNF: $\boldsymbol{F}_{\mathbf{1}}$
(2) Rename quantified variables to unique names: $\boldsymbol{F}_{\mathbf{2}}$
(3) Remove all quantifiers from $\boldsymbol{F}_{\mathbf{2}}: \boldsymbol{F}_{\mathbf{3}}$
(9) Add the quantifiers before $\boldsymbol{F}_{\mathbf{3}}$:

$$
F_{4}: \mathbf{Q}_{1} x_{1} \ldots \mathbf{Q}_{n} x_{n} \cdot F_{3}
$$

where $\mathbf{Q}_{\boldsymbol{i}}$ are the quantifiers such that if $\mathbf{Q}_{\boldsymbol{j}}$ is in the scope of $\mathbf{Q}_{\boldsymbol{i}}$ in $\boldsymbol{F}_{\mathbf{1}}$, then $\boldsymbol{i}<\boldsymbol{j}$.

- A FOL formula is in CNF (DNF) if it is in PNF and its main quantifier-free subformula is in CNF (DNF).

Example

$$
F: \forall x . \neg(\exists y \cdot p(x, y) \wedge p(x, z)) \vee \exists y \cdot p(x, y)
$$

(1) Conversion to NNF:

$$
F_{1}: \forall x .(\forall y \cdot \neg p(x, y) \vee \neg p(x, z)) \vee \exists y \cdot p(x, y)
$$

(2) Rename quantified variables:

$$
F_{2}: \forall x \cdot(\forall y \cdot \neg p(x, y) \vee \neg p(x, z)) \vee \exists w \cdot p(x, w)
$$

(3) Remove all quantifiers:

$$
F_{3}: \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

(9) Add the quantifiers before $\boldsymbol{F}_{\mathbf{3}}$:

$$
F_{4}: \forall x . \forall y \cdot \exists w \cdot \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Note that $\forall x \cdot \exists w \cdot \forall y \cdot F_{3}$ is okay, but $\forall y \cdot \exists w \cdot \forall x \cdot F_{3}$ is not.

Additional Meta-Theorems

Theorem (Compactness Theorem)
A countable (possibly infinite) set of first-order formulas S is simultaneously satisfiable iff the conjunction of every finite subset is satisfiable.

Theorem (Craig Interpolation Lemma)

If $\boldsymbol{F} \rightarrow \boldsymbol{G}$ is valid, then there exists a formula I (called interpolant) such that $\boldsymbol{F} \rightarrow \boldsymbol{I}$ and $\boldsymbol{I} \rightarrow \boldsymbol{G}$ are valid and whose predicates and free variables occur in both \boldsymbol{F} and \boldsymbol{G}.

- $F: f(a)=b \wedge p(f(a))$
- $G:(b=c) \rightarrow p(c)$
- $I: p(b)$

Summary

- Syntax and semantics of first-order logic
- Satisfiability and validity
- Substitution, Normal forms
- Meta-theorems: soundness, completeness, Craig interpolation

